Impurity Control in the European Pharmacopoeia

2020 Training Webinar “The European Pharmacopoeia”

7 – 8 July 2020
Agenda

- Which impurities are controlled?
- Analytical techniques and general texts/monographs
- Control of organic impurities
- Validation
- Elemental impurities
- DNA reactive impurities
- Summary

Control of impurities in Ph. Eur.

- Organic impurities
- Inorganic impurities
- Volatile impurities, Water and residual solvents
- Special groups, e.g. genotoxic (DNA reactive) imps, inorganics subjected to Q3D
Organic impurities: General texts and monographs

- General monograph 2034 « Substances for pharmaceutical use » describes general requirements for control of organic and inorganic impurities, volatiles, DNA reactive impurities.
- General text 5.10: Control of impurities in substances for pharmaceutical use helps to interpret the test for related substances, provides definitions, explanations, recommendations.
- General text 5.4: Residual solvents: refers to ICH Q3C.
- General text 5.20: Elemental impurities: refers to ICH Q3D.
- Several general chapters.

QUIZ

- Organic impurities:

 1. What is the difference between « disregard limit » and « reporting threshold »?
 2. What would you consider a suitable resolution criterion?
 3. What is the meaning of a « correction factor » in the quantitative determination of an organic impurity?
 4. How would you identify an impurity in a chromatographic system?
Related substances

• Unless otherwise prescribed, organic impurities in active substances are to be reported, identified wherever possible, and qualified as indicated in Table 2034.-1. (general) or in Table 2034.-2 (for peptides obtained by chemical synthesis) – implementation of ICH Q3 A which becomes legally binding

• Specific thresholds may be applied for impurities known to be unusually potent or to produce toxic or unexpected pharmacological effects.

• If the individual monograph does not provide suitable control for a new impurity, a suitable test for control must be developed and included in the specification for the substance

Requirements for active substances except synthetic peptides, Table 2034.1

<table>
<thead>
<tr>
<th>Use</th>
<th>Maximum daily dose</th>
<th>Reporting threshold</th>
<th>Identification threshold</th>
<th>Qualification threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human or human and veterinary</td>
<td>≤ 2 g/day</td>
<td>>0.05 per cent</td>
<td>>0.10 per cent or daily intake >1.0 mg (whichever lower)</td>
<td>>0.15 per cent or daily intake >1.0 mg (whichever lower)</td>
</tr>
<tr>
<td>Human or human and veterinary</td>
<td>> 2 g/day</td>
<td>>0.03 per cent</td>
<td>>0.05 per cent</td>
<td>> 0.05 per cent</td>
</tr>
<tr>
<td>Veterinary only</td>
<td>Not applicable</td>
<td>>0.10 per cent</td>
<td>>0.20 per cent</td>
<td>>0.50 per cent</td>
</tr>
</tbody>
</table>
Chapter 5.10: Control of impurities in substances for pharmaceutical use (1)

- Provides:
 - Basis for monographs and impurities control
 - Terminology
 - Interpretation of related substances tests
 - Other aspects of impurities control

Chapter 5.10: Control of impurities in substances for pharmaceutical use (2)

- How to interpret general acceptance criteria in relation with the Impurities section of the monograph
- In older monographs general acceptance criterion may be expressed in various ways in the monographs: “any other impurity”, “other impurities”, “any impurity”, “any spot”, “any band”, etc.
- Decision tree to help the users
Example

Substance is an active substance for human use with maximum daily dose ≤ 2 g: identification threshold > 0.10%; qualification threshold > 0.15%

- Monograph has:
 - Impurity A ≤ ... (2 per cent)
 - Impurity D ≤ ... (1 per cent)
 - Any other impurity ≤ ... (0.5 per cent)
- Impurities section:
 - Specified impurities A, B, C, D, E;
 - Other detectable impurities F, G
Example (continued)

- Impurities A and D are specified impurities with their own acceptance criteria (2%, 1%)
- “Any other impurity” refers to B, C and E as specified impurities (limit is above identification threshold) (0.5%)
- Apply Substances for Pharmaceutical Use for all other impurities (including F, G) (0.10%)*

*Substance is an active ingredient for human use with maximum daily dose ≤ 2 g: identification threshold > 0.10%; qualification threshold > 0.15%
Organic impurities in Ph. Eur (1)

- **Analytical Techniques:**
 - Most often chromatographic methods
 - HPLC with different detection techniques – e. g. UV/VIS, RI, MS, Fluorescence, ELSD, MALS, CAD
 - GC
 - TLC, HPTLC, mainly in the field of herbals
 - Rarely UV (e. g. absorbance ratios in riboflavin) or chemical reactions (e. g. test for free acids in testosterone esters)

Organic impurities in Ph. Eur. (2)

- General Chapter 5.10 defines:
 - **Specified impurity:** *an impurity that is individually listed and limited with a specific acceptance criterion in a monograph. A specified impurity can be either identified or unidentified.*
 - **Unspecified impurity:** *an impurity that is limited by a general acceptance criterion and not individually listed with its own acceptance criterion*
Monograph Diclofenac sodium

Identification of impurities: use the chromatogram supplied with diclofenac for system suitability CRS and the chromatogram obtained with reference solution (b) to identify the peaks due to impurities A and F.

Relative retention with reference to diclofenac (retention time = about 25 min): impurity A = about 0.4; impurity F = about 0.8.

System suitability: reference solution (b):
- resolution: minimum 4.0 between the peaks due to impurity F and diclofenac.

Calculation of percentage contents:
- correction factors: multiply the peak areas of the following impurities by the corresponding correction factor: impurity A = 0.7; impurity F = 0.3;
- for each impurity, use the concentration of diclofenac sodium in reference solution (a).

Limits:
- impurity A: maximum 0.2 per cent;
- impurity F: maximum 0.15 per cent;
- unspecified impurities: for each impurity, maximum 0.10 per cent;
- total: maximum 0.4 per cent;
- reporting threshold: 0.05 per cent.
Identification and system suitability test

- Identification: Specified impurities must be identified in the chromatographic system

 - Use of CRS – System suitability CRS or Peak identification CRS
 - Retention times and relative retention values: only given for information
Identification and system suitability test

- Alternative approach

 In situ degradation to form specified impurities

- Hydrolysis
- Oxidation
- Ring-closure
- Z-E Isomerisation
- Epimerisation

Cefuroxime axetil

Impurity A: heat the test solution at 60 °C for 1h

Impurity B: expose the test solution to uv-light at 254 nm for 24 h

Impurity A: heat the test solution at 60 °C for 1h

Impurity B: expose the test solution to uv-light at 254 nm for 24 h
Identification and system suitability test

System suitability test

Individual monograph

General chapter 2.2.46
Chromatographic separation techniques

Resolution test
Peak-to-valley ratio

Symmetry factor 0.8 to 1.5
Minimum S/N 10 at reporting threshold
Repeatability requirement for assays

Identification and system suitability test

System suitability test: e. g. peak-to-valley ratio
- Often used for closely eluting peaks when Rs is not possible
- Imitates « real life » situation: example Estriol
Requirement: p/v imp. A - estriol minimum 5.0
Calculation of percentage contents (1)

- **Option 1:** using an external standard – dilution of the test solution or impurity itself: preferred method in Ph. Eur.

 Attention: dilution of test solution consider response factor!

- **Option 2:** peak area normalisation

Calculation of percentage contents (2)

- **Response and correction factors:**

 Response factor: Sensitivity of a detector for a given substance relative to a standard substance

 - \(RRF = \frac{A_i}{A_s} \times \frac{C_s}{C_i} \)
 - \(RRF = \) response factor
 - \(A_i = \) area of the peak due to the impurity
 - \(A_s = \) area of the peak due to the test substance
 - \(C_s = \) concentration of the test substance in milligrams per millilitre
 - \(C_i = \) concentration of the impurity in milligrams per millilitre.

 - According to Ph. Eur. is negligible when between 0.8 and 1.2
 - **Correction factor:** reciprocal value of response factor
Calculation of percentage contents (3)

- Ascorbic acid and impurity C: example for different response factors (Imp. C is 8 x more concentrated than ascorbic acid)

![Graph showing peak profiles and areas for ascorbic acid and impurity C.]

Calculation of percentage contents (4)

- Response/correction factors:

- **Note:** when correction factors are > 5, the quantification should be performed using impurities as external standards (Ph. Eur. Technical Guide)

- **Calculation of response factors:**
 - using the mean of the area ratios over the whole range of linearity or the ratio of the slopes of the respective linearity regression equations
Calculation of percentage contents (5)

- **Response factor** - important points to consider:
 - Take into account the purity of the impurity and of the test substance
 - Purity calculation: Content (%) = \([100 - (\text{water} + \text{solvents})] \times \text{chromatographic purity (%)} / 100\)
 - Take into account the form (base/acid or salt) of the impurity and the test substance, an additional correction factor for the molecular mass ratio may be introduced
 - Perform the chromatography at defined wavelength and flow rate

Calculation of percentage contents (6)

- Sensitivity:
 - It must be assured that the system is sufficiently sensitive to control impurities not only at their acceptance criterion, but down to the reporting threshold: it may be necessary to add a sensitivity criterion in the case of low responding impurities (\(\text{RRf} < 0.8\))
Calculation of percentage contents (7)
Reporting threshold (previously disregard limit)

➢ Is the limit above which an impurity should be reported (ICH Q3A R2)
➢ 2-fold purpose

• decision criterion for the user whether a peak area or a corrected peak area of an impurity is to be included in the total of impurities
• general criterion for the user to determine compliance of his actual chromatographic system with the requirement of general chapter 2.2.46 S/N ratio minimum 10 at the disregard limit/reporting threshold (LOQ should be equal or less than reporting threshold)

Validation of impurity tests (1)

• Follows ICH Q2 (R1)

• Different requirements for limit tests (area comparison) and quantitative tests

• Typical parameters:
 - Accuracy
 - Specificity (selectivity)
 - Precision
 - Linearity and range
 - Limit of detection (limit test)
 - Limit of quantitation (quantitative test)
 - Linearity and range (quantitative test)
 - Robustness
Validation of impurity tests (2)

Revision of *Betamethasone sodium phosphate* monograph:
Revision of a related substances test
Addition of specified impurity I, acceptance criterion 0.15 %

What to do

Validation of impurity tests (3)

Revision of *Betamethasone sodium phosphate* monograph:
• Addition of a specified impurity I, acceptance criterion 0.15 %
• **Complete re-validation?**

• No, but partial re-validation:
 - Selectivity -> new SST
 - Sensitivity -> S/N ratio
 - Response factor of the new impurity
 - Linearity (new impurity)
 - Precision, robustness
Impurities in finished products (1)

Ph. Eur. Policy:
• Follows ICH Q3 B:
 ➢ Thresholds for identification, reporting and qualification are higher than for APIs
 ➢ Only degradation impurities above the reporting threshold are reported and taken into account for the total of impurities
 ➢ Synthetic impurities identified in the chromatographic system (e.g. by CRS) are excluded

Impurities in finished products (2)

Example: Rosuvastatin tablets, extract of the test for related substances:

Identification of impurities: use the chromatogram supplied with rosuvastatin for system suitability CRS and the chromatogram obtained with reference solution (b) to identify the peaks due to impurities A, B and C; use the chromatogram supplied with rosuvastatin impurity mixture CRS and the chromatogram obtained with reference solution (c) to identify the peak due to impurity D; use the chromatogram obtained with reference solution (d) to identify impurity FP-A.

Limits:
– impurity C: maximum 1.5 per cent;
– impurity D: maximum 1.5 per cent;
– impurity FP-A: maximum 0.5 per cent;
– unspecified impurities: for each impurity, maximum 0.2 per cent;
– total: maximum 2.5 per cent;
– reporting threshold: 0.1 per cent; disregard the peaks due to impurities A and B.

Synthetic impurities A and B not taken into account
Other impurities controlled

- **Inorganics:** are controlled by general tests like sulfated ash, heavy metals (2.4.8, now only for substances for veterinary use), specific tests like AAS, ICP or general chapter 2.4.20
- **Volatile:** residual solvents are controlled according to general text 5.4 and general chapter 2.4.24. Class 3 solvents may be controlled by LOD (up to 0.5 %). Water is most often controlled by semi-micro determination, coulometry or loss on drying.
- **DNA-reactive (mutagenic) impurities:** as from 1st January 2016 subjected to ICH M7. Control tests in monographs are in the test or production section.

Elemental Impurities (1)

- ICH Q3D fully implemented in Ph. Eur. (Gen. Text 5.20)
- General monographs 2034 (Substances for pharmaceutical use) and 2619 (Pharmaceutical preparations) revised
- Classical heavy metal tests have been deleted from individual monographs (except for monographs on substances only for veterinary use)
- Chapter 2.4.20 « Determination of elemental impurities » under revision in PDG
 - special webinar to follow in September 2020
Elemental Impurities (2)

- Chapter 2.4.20
 - This chapter is currently being harmonised within PDG
 - New concept: Example procedures are provided (ICP-MS/OES), validation criteria provided (e.g. accuracy, range, precision), user can choose own method, provided validation criteria are fulfilled

Elemental Impurities (3)

- Specific elemental impurity tests
 - No systematic deletion from individual monographs
 - Particular case: substances of natural origin, e.g. mined excipients:
 - Some case-by-case decisions: e.g. Methylthioninium chloride
DNA reactive (mutagenic) impurities (1)

Ph. Eur. follows ICH M7:

Tests are described when there is proof for genotoxicity, not based on structural alerts
- General monograph 2034 Substances for pharmaceutical use:

« For DNA reactive impurities, the requirements of ICH Guideline M7 Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk must be complied with for active substances to be used in medicinal products for human use, in cases defined in the scope of the guideline. »

DNA reactive (mutagenic) impurities (2)

Ph. Eur. follows ICH M7:

-Specific monographs:

Two options

1. Production section: Either no suitable, selective or sensitive test is known or the test requires too sophisticated equipment. MAH has to ensure the compliance of production with defined requirements.
2. Test section: Test to be included when suitable method is available and limits are known.
Conclusions

- Ph. Eur. impurity control strategy is in line with ICH guidelines
- Impurity tests are validated
- Monographs provide information on all known organic impurities controlled, specified or unspecified
- Limits based on specifications as approved by competent authorities and taking into account batch data. Limits provided for specified, unspecified and sum of impurities
- Nowadays quantitative tests preferred over comparative tests
- Peak identification and system suitability tests in chromatography performed using Ph. Eur. reference standards

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter
LinkedIn: https://www.linkedin.com/company/edqm/
Twitter: @edqm_news
Facebook: @edqmCounciloEurope