Use of RS for impurity control
System suitability, peak identification and quantification

2019 Training Session
"The European Pharmacopoeia"
Dr Jochen Pauwels
EDQM Laboratory Department

10 – 11 September 2019, Iselin, New Jersey, USA
SYSTEM SUITABILITY

II.5.8.2.a RELATED SUBSTANCES – LC – System suitability criteria

In-situ degradation offers an alternative approach to define the suitability of the system to produce decomposition products, the peaks of which can be used to determine a resolution or a peak-to-valley ratio. This may be a useful approach to avoid the use of impurity reference standards.

The use of a spiked or impure substance requires procurement of sufficient material to establish the reference substance used and in the future, replacement of the system suitability test material with material exhibiting the same characteristics.

SYSTEM SUITABILITY

- Parameters that are assessed
 - selectivity (resolution, peak-to-valley ratio)
 - repeatability
 - sensitivity
 - similarity to chromatogram of RS

- RS strategy
 - nature/composition of RS is key (integral part of system suitability test/validation)
 - impurities of interest at appropriate level, especially for peak-to-valley ratio
 - alternative to RS: commercial reagent or in situ degradation (cave impact)
 - sometimes also used for peak identification
SYSTEM SUITABILITY

RS types

<table>
<thead>
<tr>
<th>Type of RS</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single substance</td>
<td>Stability</td>
<td>May result in high number of RS</td>
</tr>
<tr>
<td></td>
<td>Concentration easily controlled</td>
<td></td>
</tr>
<tr>
<td>Mixture (normal production batch)</td>
<td>Representative of what user observes</td>
<td>RS batch continuity</td>
</tr>
<tr>
<td></td>
<td>Peak saturation for API</td>
<td></td>
</tr>
<tr>
<td>Mixture (compounded)</td>
<td>Concentration controlled</td>
<td>Stability may be compromised</td>
</tr>
<tr>
<td></td>
<td>Batch continuity</td>
<td>More laborious</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not always feasible</td>
</tr>
</tbody>
</table>

Example single substance RS

Identification of impurities: use the chromatogram obtained with reference solution (a) to identify the peak due to impurity D; use the chromatogram supplied with fluticasone propionate CRS to identify the system suitability reference solution (b).

System suitability: reference solution (b):

- Resolution: minimum 1.5 between the peaks due to impurity D and fluticasone propionate.

Limits:

- Impurities D, G: for each impurity, maximum 0.3 per cent.
SYSTEM SUITABILITY

- Example mixture RS (normal production batch)

CARVEDIOL

Related substances. Liquid chromatography (2.2.29).

Reference solution (c). Dissolve 5 mg of carvedilol for system suitability CRS (containing impurities A and D) in the mobile phase and dilute to 56.0 mL with the mobile phase.

Identification of impurities: use the chromatogram supplied with carvedilol CRS and the chromatogram obtained with reference solution (c) to identify the peaks due to impurities A and D; use the chromatogram obtained with reference solution (b) to identify the peak due to impurity C.

System suitability:
- resolution: minimum 3.5 between the peaks due to impurity A and carvedilol in the chromatogram obtained with reference solution (c);

Limits:
- correction factor: for the calculation of content, multiply the peak area of impurity A by 2.0;
- impurity A: not more than twice the area of the principal peak in the chromatogram obtained with reference solution (b) (0.2 per cent);
- impurity D: not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (c) (0.15 per cent);

SYSTEM SUITABILITY

- Example mixture RS (compounded)

LAMIVUDINE

Enantiomeric purity. Liquid chromatography (2.2.29): use the normalisation procedure.

Reference solution. Dissolve the contents of a vial of lamivudine for system suitability 2 CRS (containing impurity D) in 1.0 mL of water R.

System suitability: reference solution:
- peak-to-valley ratio: minimum 15, where H_p = height above the baseline of the peak due to impurity D and H_v = height above the baseline of the lowest point of the curve separating this peak from the peak due to lamivudine.

Limits:
- impurity D: maximum 0.3 per cent.
II.5.8. RELATED SUBSTANCES

Monographs should provide a reliable means of locating all specified impurities on the chromatogram. Identification of unspecified impurities is necessary if a correction factor is to be applied. Peaks may be located using:

- a reference standard for each impurity;
- a reference standard of the substance to be examined containing some or all of the specified impurities, provided with a chromatogram.

Location by relative retention is not generally considered sufficient for pharmacopoeial purposes, notably for gradient elution.

RS strategy

- nature/composition of RS is less critical, compared to system suitability
- impurities of interest at detectable levels
- alternative to RS: commercial reagent or in situ degradation (more than for system suitability)
- types of RS: cfr. system suitability
- impurities are specified; therefore, normal production batches expected to be suitable
- a chromatogram is often supplied in the RS leaflet
PEAK IDENTIFICATION

- Example mixture RS (normal production batch)

LEVOTHYROXINE SODIUM
Levothyroxinum natricum

Related substances. Liquid chromatography (2.2.20). Carry out the test protected from light.
Reference solution (d). Dissolve 2.0 mg of levthyroxine for peak identification CRS (containing impurities F and G) in 10.0 ml of the solvent mixture and sonicate for 10 min.
System suitability: reference solution (a):
- resolution: minimum 5.0 between the peaks due to impurity A and levthyroxine.

Identification of impurities: use the chromatogram supplied with levthyroxine for peak identification CRS and the chromatogram obtained with reference solution (d) to identify the peaks due to impurities F and G.

Limits:
- impurity F: not more than 5 times the area of the peak due to levthyroxine in the chromatogram obtained with reference solution (b) (0.5 per cent);
- impurity G: not more than 5 times the area of the peak due to levthyroxine in the chromatogram obtained with reference solution (b) (0.3 per cent).

QUANTIFICATION

II.5.8. RELATED SUBSTANCES

External standard. A dilution of the test solution/substance to be examined is used, unless there is a large difference in the detector response of a specified (or exceptionally an unspecified) impurity that necessitates the use of a specific external standard, which may be:

- a solution of the impurity, normally in form of a reference standard (preferred option);
- a solution of the substance to be examined containing a known amount of the impurity.
QUANTIFICATION

- **RS strategy**
 - purity of RS is critical:
 * ≥ 95.0 % (preferred) no content assigned (considered 100 % pure)
 * < 95.0 % content is assigned and given in RS leaflet
 - salt form has impact on use
 - alternative to RS: use of a commercial reagent may be considered, if available sufficiently pure and well defined in corresponding Ph.Eur. Chapter
 - types of RS: single substance RS only
 - higher amount of candidate material is required: extensive characterisation and increased amount per vial (sufficient for preparation of two solutions)
 - sometimes also used for system suitability/peak identification

QUANTIFICATION

- **Example**

Related substances. Liquid chromatography (2.2.29).

Reference solution (e). Dissolve 4.0 mg of folic acid impurity D CRS in solution A and dilute to 100.0 mL with solution A. Dilute 1.0 mL of this solution to 100.0 mL with the mobile phase.

Calculation of percentage contents:
 - for impurity A, use the concentration of impurity A in reference solution (d);
 - for impurity D, use the concentration of impurity D in reference solution (e);
 - for impurities other than A and D, use the concentration of folic acid hydrate in reference solution (c).

Limits:
 - impurity D: maximum 0.4 per cent;
Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter
LinkedIn: https://www.linkedin.com/company/edqm/
Twitter: @edqm_news
Facebook: @EDQM_CouncilofEurope

©2019 EDQM, Council of Europe. All rights reserved.