BSP130: Validation of cell line assays for toxicity and antigenicity testing of *Clostridium septicum* vaccine antigens

Part 1 (Phase I & II)

Management team:
Arnold Daas, Marie-Emmanuelle Behr-Gross, Lukas Bruckner, Keith Redhead

Presentation by Keith Redhead, given by Marie-Emmanuelle Behr-Gross (supported by Botond Siklodi and Lukas Bruckner)

Simplified Toxoid Vaccine Manufacture

1. Grow organism in liquid culture
2. Remove cells (centrifugation &/or filtration)
 - analytical, toxicity and antigenicity
3. Chemically inactivate toxins in supernatant
 - analytical, toxicity and antigenicity
4. Blend with other antigens and adjuvant
 - analytical, potency and safety
5. Dispense vaccine
 - analytical
Current Testing for Clostridial Antigens

In–Process: In vivo

Toxicity of toxin (Minimum lethal dose, MLD)

Residual toxicity of toxoid (MLD)

Antigenicity of toxoid (Total combining power, TCP)

In Process Testing
Toxicity / Freedom from Toxicity

Assessed by the Minimum Lethal Dose (MLD) test using mice

How far can the toxin/toxoid be diluted before it is no longer lethal in mice
MLD in mice

Antigenicity of the toxoid is assessed by the Total Combining Power (TCP) test using mice. How much reference neutralising antitoxin is bound by the toxoid?

The amount of active unbound antitoxin remaining is measured on the basis of its ability to neutralise a lethal amount of toxin — assessed in mice.

Antigenicity (toxoid)

Antigenicity of the toxoid is assessed by the Total Combining Power (TCP) test using mice.

How much reference neutralising antitoxin is bound by the toxoid?

The amount of active unbound antitoxin remaining is measured on the basis of its ability to neutralise a lethal amount of toxin — assessed in mice.
TCP in mice

Summary of regulatory tests considered for BSP130 Part 1

<table>
<thead>
<tr>
<th>Test</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD</td>
<td>Mice</td>
</tr>
<tr>
<td>TCP</td>
<td>Mice</td>
</tr>
</tbody>
</table>

Mice are used only as an indicator of toxicity
Animal welfare aspects

These in–process tests for clostridial antigens use 100,000s mice per annum in Europe alone

The data provided by these *in vivo* tests i.e. toxicity and antigenicity of the toxins/toxoids were not fully provided by any of the available *in vitro* tests by the time BSP130 started

(e.g. ELISA does not measure the overall biological effects)

Replacement of In–process In Vivo Tests
A Direct and Simple Approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD</td>
<td>Cell line</td>
</tr>
<tr>
<td>TCP</td>
<td>Cell line</td>
</tr>
</tbody>
</table>

As mice are used only as an indicator of toxicity, replace the mice with a different indicator of toxicity:

Toxin-sensitive cell lines

Effect of *Cl. septicum* Toxin on VERO Cells

<table>
<thead>
<tr>
<th>Control cell monolayer</th>
<th>Treated cell monolayer</th>
</tr>
</thead>
</table>

[Image of control and treated cell monolayers]
Assay Outline

Seed microplates with suitable cell line
Incubate to form confluent cell layer
Add dilutions of toxin or toxoid (or toxin+antitoxin etc)
Incubate
Visualise effects (staining of viable cells)
Assess effects (measure staining)
Determine end-points and calculate toxicity or antigenicity

Cell line assay plate
Advantages of Cell Line Assays

Greater Sensitivity (up to x1000)
Improved discriminative power (up to x5)
Precision / Reproducibility
Speed of the assay (24 hours vs 4 days)
Ethics
Cost

In Vitro *Cl. septicum* Cell Line Assays

MSD Animal Health In–house correlations of in–process *in vitro* and *in vivo* assays
MSD AH In-house Correlation Study Results

<table>
<thead>
<tr>
<th>Assay</th>
<th>Correlation</th>
<th>Linear Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>TCP</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

- These results are only applicable to *Clostridium septicum* toxins and toxoids produced and tested by MSD AH UK.
- Can similar levels of correlation be obtained in other laboratories using toxins and toxoids from other sources?

EPAA Clostridial Working Group: Purpose

To promote the acceptance (Ph.Eur. and Regulatory Authorities assessing Marketing Authorisation applications) of *in vitro* alternatives to mouse *in vivo* tests for the in-process control testing of veterinary clostridial vaccine antigens.

The tests selected for replacement were the Minimum Lethal Dose (MLD) and the Total Combining Power (TCP) and the potential replacement identified were cell line based assays.
Selection of one species of *Clostridium* for which the toxin and toxoid can be assessed.

Assemble a group of participants from manufacturing and OMCL backgrounds in different countries able to test this type of toxin and/or toxoid in the *in vivo* and/or *in vitro* assays.

Perform an international collaborative study, with toxins and toxoids from various sources and of different strengths, to validate the *in vitro* assays and assess concordance with the *in vivo* tests.

EPAA Clostridial Working Group: Approach

Industrial
- CEVA
- MSD AH
- Pfizer AH (CZV)
- SYVA

Non-Industrial
- Bornova Vet Inst
- NEBIH
- PEI
- CVB
- EDQM
- IVI

Industrial: CEVA Hungary, MSD AH UK, USA, NZ, Pfizer AH (CZV) UK (Spain), SYVA Spain

Non-Industrial: Bornova Vet Inst Turkey, NEBIH Hungary, PEI Germany, CVB USA, EDQM Europe, IVI Switzerland
EPAA Clostridial Working Group

Test Materials:

WHO IS *Clostridium septicum* antitoxin, VI – NIBSC, UK
Reference *Clostridium septicum* toxin, CSTx – CEVA, Hungary

Six batches each of *Clostridium septicum* toxins and toxoids of differing strengths. Sourced from:

- MSD AH UK (3 toxins and 3 toxoids)
- MSA AH NZ (1 toxin and 1 toxoid)
- CEVA (1 toxin and 1 toxoid)
- MSD AH USA (1 toxin and 1 toxoid)

EPAA Clostridial Working Group

Tests Performed by Participants:

- There were 11 participants in the study (5 manufacturers and 6 OMCLs from Europe and USA)
- One participant performed *in vivo* tests only
- Five participants performed *in vitro* tests only
- Five participants performed *in vitro* and *in vivo* tests
BSP130 Study Outline

- **Sensitivity testing** – MLD at 10-fold then at 5- and 3-fold dilutions using CSTx. To check sensitivity of different participant’s mice and Vero cells.

- **Latent toxicity** – Each toxoid, diluted 1 in 10, and the standard antitoxin, at 5IU/ml, in one pair of mice and on Vero cells (to check for any residual toxicity).

- **Preliminary ranging** – MLD at 10-fold dilutions on all 6 toxins on one occasion in mice and Vero Cells. TCP at 40 unit steps on all 6 toxoids on one occasion in mice and Vero cells.

- **Full testing** – MLD at 5- or 3-fold dilutions on all 6 toxins on three occasions or until 3 valid assays are obtained. TCP at 20 unit steps on all 6 toxoids on 3 occasions or until 3 valid assays are obtained.

BSP130 Results: Latent toxicity

- Standard antitoxin (VI) showed no toxicity

- No toxoids showed latent mouse toxicity

- All toxoids showed some latent Vero cell toxicity (expected due to greater sensitivity) but at different toxicity levels

- Generally the labs ranked the toxoids in the same order of toxicity
BSP130 Results: MLD

- Ranking of toxins in mice similar in all labs
- Ranking of toxins in Vero cells similar in all labs and similar to the ranking by mouse MLD
- Reported invalid Vero cell MLD assays: 9%
- Toxin/antitoxin neutralisation on Vero cells allowed quantification of toxin in terms of VI
- This method of expressing toxicity of CSTx produced inter-lab GCVs of only 7%

BSP130 Results: TCP

- Ranking of toxoids in mice similar in most labs
- Ranking of toxoids in Vero cells similar in most labs and similar to the ranking by mouse TCP
- Reported invalid Vero cell TCP assays: 4%
Concordance correlation between the MLD methods is 0.964

Concordance correlation between the TCP methods is 0.968
BSP130 Conclusions

- Cell line assays are repeatable and reproducible
- Relatively easily transferable to other laboratories
- More sensitive and reproducible than mouse tests
- Can provide an objective measure of toxicity
- More accurate antigen quantification
- Concordance between the cell line and mouse assays is excellent

BSP130 Outcomes

- Cell line assays are suitable replacements for the mouse MLD and TCP tests for *Cl. septicum* antigens
- Cell line MLD could be the basis for an objective measurement of toxicity
- Cell line TCP gives more accurate quantification of antigenicity than the mouse test
- The *in vitro* assays can give significant savings in animal usage, shorten the duration of QC testing, allow more accurate and reproducible blending of final vaccines and provide a basis for harmonisation
Recommendations

- Vero cell MLD and TCP assays to be promoted as replacements for the *Cl. septicum* mouse tests
- Follow up study, with optimised protocol and assay methods to:
 1. Fully exploit the advantages of the *in vitro* assays
 2. Assess a modified MLD assay’s potential to provide objective measurement of toxicity
 3. Increase accuracy of TCP antigen quantification
 4. Investigate replacement of TNT on mice for vaccine potency
 5. Establish a basis for applying this approach to other relevant toxin antigens

Acknowledgements

The study Project Team would like to thank:

The study participants
The manufacturers who donated test materials
Major Antigens of Clostridial Vaccines

<table>
<thead>
<tr>
<th>Organism</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl. perfringens type A</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. perfringens type B</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. perfringens type C</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. perfringens type D</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. novyi type B</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. septicum</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. haemolyticum</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. sordelli</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. difficile</td>
<td>Cytotoxic</td>
</tr>
<tr>
<td>Cl. tetani</td>
<td>Neurotoxin</td>
</tr>
<tr>
<td>Cl. botulinum</td>
<td>Neurotoxin</td>
</tr>
<tr>
<td>Cl. chauvoei</td>
<td>Toxin + cells?</td>
</tr>
</tbody>
</table>