Experience in extending the approach of cell-based TCP and MLD assays to *Clostridium perfringens* vaccines

Arjen Sloots
Intravacc, Bilthoven, The Netherlands

Novel in-vitro models as alternative to in-vivo toxoid vaccines testing: *Clostridium septicum* vaccine as proof of concept
Virtual Workshop, 9 & 10 March 2021

Main objective within VAC2VAC project

- Contribute to the development of *in vitro* assays addressing specific toxicity of *Clostridium perfringens*, type C (non-inactivated) antigen as an alternative to the currently used *in vivo* mouse tests.
Approach

• Use the same principle as described for in vitro toxicity testing of C. septicum vaccines. However, VERO cells are only poorly susceptible to the β-toxin of C. perfringens type C, considered the main antigen of this vaccine.

• Hence, main goals defined as follows:

 1. Identification of cell line specifically susceptible to the C. perfringens, type C β-toxin.

 2. In case of identification of such a cell line, show feasibility of assay development based on this cell line for assessment of C. perfringens C β-toxin activity in vitro.

 ➢ Start with cell-based alternative to MLD in mice using C. perfringens C non-inactivated antigen

 ➢ If successful, continue with development of cell-based assay (CBA) for assessment of residual toxicity of inactivated (toxoid) antigen

First steps

• Literature search for β-toxin-sensitive cell lines yielded the human HL-60 and THP-1 cell lines. In addition, one of our VAC2VAC industry partners recommended testing the rat A10 cell line.

• Parallel approach: Transfect VERO cells with P2X7 receptor, published to be the receptor involved in β-toxin activity (Nagahama et al., 2015) to render the cells sensitive to β-toxin.

Initial results:

• HL-60 proved very difficult to culture and stable VERO-P2X7 transfectants did not show enhanced susceptibility to C. perfringens C non-inactivated antigen compared with parental VERO cells (Crystal Violet staining). ➢HL-60 & VERO-P2X7 not tested further!

• In contrast, Rat A10 and human THP-1 showed β-toxin-induced toxicity in a concentration dependent manner using the MTS assay for THP-1 cells and Crystal Violet staining for the A10 cells.
Next step

- Use of neutralizing Mab 10A2 against β-toxin and international anti-β-toxin standard to determine whether observed toxicity on A10 and THP-1 cell lines is β-toxin-specific

 - Crude C. perfringens C non-inactivated antigen used from one of our VAC2VAC industry partners in all experiments (also called ‘end-of-fermentation supernatant’; contains β-toxin)
 - Mab 10A2 purchased from USDA
 - International anti-β-toxin standard (CPBETAAT) purchased from NIBSC
 - Equal volumes of diluted non-inactivated antigen were pre-incubated with dilutions of antitoxin in medium, followed by 30 min incubation at 4°C on an orbital shaker (250 rpm).

Basic assay set-up

A10 cell line:

- Seed cells in 96-well plate (10,000/well)
- 37°C, 5% CO₂ overnight
- Add toxin
- 37°C, 5% CO₂, 16-24h
- Assess viability/toxicity: Crystal Violet staining

THP-1 cell line:

- Seed cells in 96-well plate (25,000/well), add PMA (300 ng/ml)
- 37°C, 5% CO₂ overnight
- Add toxin
- 37°C, 5% CO₂, 16-24h
- Assess viability/toxicity: MTS assay
MTS assay as a read-out for cell viability

- Assay is based on bio-reduction of MTS by living cells into a soluble colored formazan product.
- The amount of formazan produced can be quantified by reading absorbance at 490nm.

Toxicity of *C. perfringens* C non-inactivated antigen on A10 cells is only partially β-toxin dependent

- **Readout**: Crystal Violet staining

![Graph A](image1.png)
A
- *Mab 10A2*
- dilution factor: C. perfringens β toxin

![Graph B](image2.png)
B
- *polyclonal antitoxin standard (JCPBETAAT)*
- dilution factor: C. perfringens β toxin
Toxicity of *C. perfringens* C non-inactivated antigen on THP-1 cells is β-toxin specific

- Readout: MTS assay

![Graph A](#) + Mab 10A2

![Graph B](#) + polyclonal antitoxin standard (2CPBETAAT)

Sensitivity in vivo test: Estimated to detect 1:100 – 1:1000 dilution of same non-inactivated antigen material (VAC2VAC Industry partners, personal communication)

Results are reproducible with newly purchased THP-1 cells (ATCC: TIB-202)

- PMA-treated THP-1 cells exposed to dilutions of *C. perfringens* non-inactivated antigen, either pre-incubated with anti-toxin (Mab 10A2) or not. **Readout: MTS assay (in triplicate)**
Assay optimization - Cell density, PMA concentration & FBS amount

- Experimental set up used thus far:
 - 25,000 cells/well (96-well plates)
 - 300 ng/ml PMA
 - 10% FBS

- First optimization experiments showed that **50,000 cells/well** performed better than 25,000 or 100,000 cells/well (using 300 ng/ml PMA & 10% FBS; not shown).
- In addition, **75 ng/ml PMA** performed better than 150 or 300 ng/ml (using 25,000 cells/well & 10% FBS; not shown).

Best performing conditions:
50,000 cells/well & 12.5 ng/ml PMA
Assay optimization - Cell density & FBS amount

Best performing conditions:
75,000 cells/well & 12.5 ng/ml PMA
2.5, 5 or 10% FBS does not seem to make a large difference

Conclusions:
1.25% - 10% FBS has only minor influence on the assay.
0% FBS: Curve reaches plateau already at relatively low dilutions. Suggests that assay has less discriminatory power when no FBS is used.
Further development THP-1 CBA to assess toxicity of *C. perfringens* C inactivated antigen (toxoid)

- Dotted line represents the average absorbance reading of untreated control wells
- 1.5-fold dilution series

Conclusions (I)

- A10 cells are susceptible to *C. perfringens* type C non-inactivated antigen but observed toxicity is not β-toxin specific
- PMA-treated THP-1 cells are specifically susceptible to the β-toxin that is present in the *C. perfringens* type C non-inactivated antigen
- Results with the ‘in-house’ THP-1 cells can be reproduced with ‘new’ THP-1 cells ordered at ATCC
- Optimized experimental setup includes 75,000 cells per well (96-well plate) and 12.5 ng/ml PMA, in which the amount of FBS can be anywhere between 1.25% and 10%
 - An optimized protocol for the THP-1-based MLD assay has been prepared and transferred to the industry partners for further assessment and validation
Conclusions (II)

• THP-1 CBA may be suitable for assessment of residual toxicity of inactivated (toxoided) antigen preparations. However, there is a problem to solve:

 • The inactivated antigen still contains residual formaldehyde. This makes it difficult to determine whether the cell death observed at low dilutions is caused by residual β-toxin or by formaldehyde (or both).

 ➢ Next step: Repeat the THP-1 CBA with inactivated antigen in the presence of formaldehyde-neutralizing agents

Acknowledgements

Intravacc:
- Dionne David
- Lisette de Brouwer
- Afshin Zariri
- Marieke Hoonakker

VAC2VAC Industry partners:
- MSD Animal Health
- Zoetis
- Boehringer Ingelheim

The VAC2VAC project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement N-115924. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.
Disclaimer

This presentation reflects only the author's view and that the Innovative Medicines Initiative 2 Joint Undertaking is not responsible for any use that may be made of the information contained herein.