THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)

European Directorate | Direction européenne for the Quality of Medicines | de la qualité du médicament & HealthCare | & soins de santé

COUNCIL OF EUROPE

CONSEIL DE L'EUROPE

Control of impurities : CEP approach

Florence SCHULIAR & Rita ALMEIDA EDQM, Certification of Substances Department

EDQM training 2023 6 July 2023

2 © EDQM, Council of Europe, 2023. All rights reserved.

Impurities & Control strategy in Active Substances

- Related Substances (Organic impurities)
- Mutagenic Impurities
- Nitroso impurities
- Residual Solvents
- Elemental Impurities
- Inorganic impurities

What is the impact of a certain impurity in the impurity profile of the API?

How to set specifications accordingly?

3 © EDQM, Council of Europe, 2023. All rights reserved.

Which key guidance? A brief recap...

Directive 2001/83/EC, as amended

Where a specification contained in a Ph.Eur. monograph might be insufficient to ensure the quality of the substance, the competent authorities may request more appropriate specifications from the marketing authorisation holder

ICH Q6A Specifications:

Test procedures and acceptance criteria for new chemical substances

PA/PH/CEP (04) 1 :

Content of the dossier for <u>chemical purity</u> and microbiological quality

Type of impurity	ICH/EMA	EDQM
Related substances	ICH Q3A	Ph.Eur. 5.10, Ph.Eur. GM 2034 Antibiotics only: Guideline on setting specifications for related impurities in antibiotics (EMA/CHMP/CVMP/ QWP/199250/2009)
Mutagenic impurities	ICH M7 and its Q&A document	-
Elemental impurities	ICH Q3D	Ph.Eur. 5.20 PA/PH/CEP(16)23: Implementation of policy on elemental impurities in the Certification Procedure
Residual solvents	ICH Q3C CPMP/QWP/450/03 -Rev.1 (Annex I)	Ph.Eur. 5.4
Analytical procedures	ICH Q2 (R1)	Ph.Eur. 2.2.46 (for Pharmacopoeial methods)

Expectations ?

Impurity profile of the material should be **known** in detail

Analytical specifications should **control** the impurity profile and be **representative** of the process adopted Discussion showing understanding of the impurity profile.

Origin, fate and carry-over of impurities as basis for justification to the proposed specifications.

5 © EDQM, Council of Europe, 2023. All rights reserved.

Case study (fictitious)

Case study (fictitious)

European Directorate for the Quality of Medicines & HealthCare & soins de santé

CONSEIL DE L'ELIROI

Organic impurities

- ICH Q3A
- Ph.Eur. 5.10 Control of Impurities in Substances for Pharmaceutical Use
- Ph. Eur. GM 2034 Substances for Pharmaceutical Use
- Individual substance Ph. Eur. monograph

Table	20341	Reporting,	identification	and	qualification	of
	orgai	ic impurit	ies in active su	ibsta	nces	-

Use	Maximum daily dose	Report- ing threshold	Identification threshold	Qualification threshold
Human use or human and veterinary use	≤ 2 g/day	> 0.05 per cent	> 0.10 per cent or a daily intake of > 1.0 mg (whichever is the lower)	> 0.15 per cent or a daily intake of > 1.0 mg (whichever is the lower)
Human use or human and veterinary use	> 2 g/day	> 0.03 per cent	> 0.05 per cent	> 0.05 per cent
Veterinary use only	Not applicable	> 0.10 per cent	> 0.20 per cent	> 0.50 per cent

Table 2034.-2. - Reporting, identification and qualification of organic impurities in peptides obtained by chemical synthesis

Identification threshold	Qualification threshold
> 0.5 per cent	> 1.0 per cent
	Identification threshold > 0.5 per cent

Related substances (Organic impurities)

Do not forget ...

Related substances (Organic impurities)

Scope:

Certification of suitability to the monographs of the **EUROPEAN** Pharmacopoeia Terminology should refer to the **Ph. Eur.** or at least traceable to it

Show suitability of the monograph to control the actual quality of your substance

- Cross-check with transparency list of the monograph
- Additional impurities/in-house impurities:
 - Suitability of the monograph test and specification to control it
 - For in-house impurities: chemical structures and INN/chemical names should be given as far as possible

Related substances (Organic impurities)

Understand risks for the quality of the API

Acceptance criteria for impurities to be justified based on their fate and carryover up to the final substance, meaning, the ability of the process to purge them

Limit major impurities as specified impurities

Show the risk of having uncontrolled impurities up to the API is under control

- Special attention to be given to:
- Intermediates late in the process including the crude substance
- Related substances controlled by a method which is different comparing to the one adopted at release
- API-like impurities

Case study (fictitious)

European Directorate for the Quality of Medicines & HealthCare & soins de santé

CONSEIL DE L'ELIROI

Starting materials (3.2.S.2.3)

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
Precursor 1	Precursor. Found <0.05% in INT-A.	0.71%	Controlled as specified impurity in the SM at NMT 0.80%
Precursor 2	Precursor. Found <0.05% in SM.	0.02%	Controlled as unspecified impurity in the SM
Impurity RRT=1.2	Likely by-product. Found <0.05% in INT-A.	0.25%	Controlled as unspecified impurity in the SM

Potential by-products, side-reactions should be considered as well! <u>Same exercise for SM2</u>

Which specification ?

Impurity	Limit
Related substance	es
Precursor 1	NMT 0.80%
Unspecified imp.	NMT 0.30%
Total	NMT 1.0%

Related substances (Organic impurities)

12 © EDQM, Council of Europe, 2023. All rights reserved.

Intermediate INT-A:

Related substances (Organic impurities)

Which enacification 2

- ··				which specificat	1011 :
Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy	Impurity	Limit
SM1	SM. Absent (<0.05%) in INT-B	0.89%	Controlled as specified impurity	Impuncy	Linne
			at NMT 1.0%	Related substanc	es
				SM1	NMT 1.0%
Precursor 1	From SM	0.03%	Controlled as unspecified	Unspecified imp.	NMT 0.20%
			impuncy	Total	NMT 1.2%

Intermediate INT-B:

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy		
SM1	SM Absent (< 0.05%)	0.02%	Controlled as unspecified	Impurity	Limit
		010270	impurity	INT-A	NMT 0.70%
INT-A	Process impurity. Potentially	0.68%	Controlled as specified impurity	Unspecified imp.	NMT 0.20%
	mutagenic. Aromatic N-oxide		at NMT 0.70% in INT-B & in line	Total	NMT 1.0%
	alerting structure		demonstrated not mutagenic		

Potential by-products, side-reactions should be systematically considered!

Intermediates (3.2.S.2.4)

Intermediate INT-C, **Ph. Eur. imp. C** :

Tmpurity	Origin, fate and carry	Batch	Limit/Control strategy	Which spec	ification ?
	over	data		Impurity	Limit
INT-B	Process impurity. Potentially mutagenic.	0.90%	Controlled as specified impurity at NMT 1.0% in INT-C & in line with ICH M7 unless demonstrated not mutagenic	INT-B	NMT 1.0%
	structure			Unspecified imp.	NMT 0.20%
SM2	SM	0.16%	Ph.Eur. Impurity A. Controlled as	Total	NMT 1.2%
			unspecified impurity in INT-C and API		
Impurity RRT=0.4	Likely by-product. Found <0.05% in crude API	0.12%	Controlled as unspecified impurity in INT-C		

Crude API

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy	method for Relation is used for control	ed Substances of the API
INT-C	Process impurity	0.17%	Ph.Eur. Impurity C	Impurity	Limit
Sulfone impurity	Process impurity	0.21%	Ph.Eur. Impurity D	INT-C	NMT 0.20%
		0.040/		Sulfone impurity	NMT 0.25%
Impurity RRI=0.4	Likely by-product	0.04%	controlled as unspecified impurity in crude API	Unspecified imp.	NMT 0.15%
Potential by-prod	ducts side-reactions	should he	systematically considered!	Total	NMT 0.7%

Assuming Ph Fur Monograph

14 © EDQM, Council of Europe, 2023. All rights reserved.

Related substances

IMPURITIES

Specified impurities: D, E.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph Substances for pharmaceutical use (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. Control of impurities in substances for pharmaceutical use): A, B, C.

A. 5-methoxy-1H-benzimidazole-2-thiol,

B. 2-[(*RS*)-[(3,5-dimethylpyridin-2-yl)methyl]sulfinyl]-5methoxy-1*H*-benzimidazole,

C. 5-methoxy-2-[[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfanyl]-1*H*-benzimidazole (ufiprazole),

D. 5-methoxy-2-[[(4-methoxy-3,5-dimethylpyridin-2yl)methyl]sulfonyl]-1*H*-benzimidazole (omeprazolesulfone),

E. 4-methoxy-2-[[(*RS*)-(5-methoxy-1*H*-benzimidazol-2-yl)sulfinyl]methyl]-3,5-dimethylpyridine 1-oxide.

Related substances (Organic impurities)

Related substances. Liquid chromatography (2.2.29).

Limits:

- *impurities D, E*: for each impurity, not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.15 per cent);
- *unspecified impurities*: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.10 per cent);
- *total*: not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- *disregard limit*: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent).

Omeprazole sodium specifications :

Impurity	Limit	Batch data	Method
Ph.Eur. Impurity D	NMT 0.15 %	0.10-0.11%	HPLC, Ph.Eur. 1032
Ph.Eur. Impurity E	NMT 0.15%	0.07-0.09%	& 2.2.29
Unspecified	NMT 0.10%	0.08-0.09%	
Total	NMT 0.5%	0.25-0.29%	

In this case related substances controlled by the transparency list of the monograph No in-house impurity present (i.e. >0.05%) in the API

Related substances (Organic impurities)

But life is not perfect....

Other examples...

In-house impurities

Related substances (Organic impurities)

Related substances (Organic impurities)

Suitability (or unsuitability) of the method of the monograph to control all the related substances should be demonstrated

Alternative method

- When: Ph. Eur method **is suitable** to control in-house impurities but In-house methods may be used
- Equivalent results comparing to the corresponding Ph.Eur. method(s): cross-validation data on the same batches, using spiked solutions if necessary
- Validation in line with ICH Q2(R1)

Additional method

- When : Ph. Eur. method is **not suitable** to control in-house impurities
- To supplement monograph method(s)
- Unless absence of corresponding impurities is demonstrated, it will be reported on CEP
- Validation in line with ICH Q2(R1)

Other situations : specifications for in-house impurities 1, 2 and 3 ?

Impurity	Limit	Batch data	Method
Ph.Eur. Impurity D	NMT 0.15%	0.10-0.11%	HPLC,
Ph.Eur. Impurity E	NMT 0.15%	0.05-0.09%	Ph.Eur. 1032 &
In-house impurity 1	?	0.001-0.03%	2.2.29
In-house impurity 2	?	0.06-0.08%	
In-house impurity 3 (RRT 0.9)	?	0.09-0.14%	
Unspecified	NMT 0.10%	0.06-0.07%	
Total	NMT 0.5%	0.36-0.49%	

Related substances (Organic impurities)

21 © EDQM, Council of Europe, 2023. All rights reserved.

Related substances (Organic impurities)

Impurity	Limit	Batch data	Method
Ph.Eur. Impurity D	NMT 0.15%	0.10-0.11%	HPLC,
Ph.Eur. Impurity E	NMT 0.15%	0.05-0.09%	Ph.Eur. 103 & 2.2.29
In-house impurity 3 (RRT 0.9)	NMT 0.15%	0.09-0.14%	
Unspecified In-house impurity 2	NMT 0.10%	0.06-0.08%	
Total	NMT 0.5%	0.36-0.49%	

If in-house impurity 3 is found above the qualification threshold $(0.15\%) \rightarrow \rightarrow \rightarrow$ qualification needed

_	Maximum daily dose	Report- ing threshold	Identification threshold	Qualification threshold
	$\leq 2 \text{ g/day}$	> 0.05 per cent	> 0.10 per cent	> 0.15 per cent

In-house

Yes

© EDQM, Council of Europe, 2023. All rights reserved. 22

Other situations : specifications for in-house impurities 10, and 11 ?

Impurity	Limit	Batch data	Method
Ph.Eur. Impurity D	NMT 0.15%	0.10-0.11%	HPLC,
Ph.Eur. Impurity E	NMT 0.15%	0.05-0.09%	Ph.Eur. 1032 & 2.2.29
Unspecified	NMT 0.10%	0.08-0.09%	
Total	NMT 0.5%	0.23-0.30%	
In-house impurity 10	?	0.01-0.03%	In-house
In-house impurity 11	?	0.08-0.13%	HPLC method

Related substances (Organic impurities)

Related substances (Organic impurities)

Impurity	Limit	Batch data	Method
Ph.Eur. Impurity D	NMT 0.15%	0.10-0.11%	HPLC,
Ph.Eur. Impurity E	NMT 0.15%	0.05-0.09%	Ph.Eur. 1032 & 2.2.29
Unspecified	NMT 0.10%	0.08-0.09%	
Total	NMT 0.5%	0.31-0.42%	
In-house impurity 11	NMT 0.15%	0.08-0.13%	In-house HPLC method

Mutagenic impurities

ICH M7 (R2) "Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk" ICH M7(R2), Questions and Answers *Step 4*

From 01/07/2020: Guideline on assessment and control of DNA reactive (mutagenic) impurities in veterinary medicinal products (EMA/CVMP/SWP/377245/2016)

Active substance assessment

Actual and potential impurities that are likely to arise during the synthesis (synthetic impurities) and storage (degradation products) of a drug substance to be assessed for **MUTAGENIC POTENTIAL**

Potential mutagenic

impurities

Potential mutagenic impurities

Active substance assessment

1. **Actual impurities** Identified, known structure Impurities found > ICH Q3A reporting threshold

2. Potential impurities

Likely to be present in the final substance

Starting materials (its impurities & depending on where introduced in the process, also their synthesis), reagents, intermediates and byproducts in the route of synthesis from the starting material to the Active substance

Potential mutagenic impurities

Actual and potential impurities of known structure

Hazard assessment & classification

- Known mutagen: Database and literature searches
- Alerting structure of unknown mutagenicity = no data available... often the case...

In-silico assessment

Computational toxicology assessment using (Quantitative) Structure-Activity Relationships (SAR) that predict bacterial mutagenicity

- Two complementary (Q)SAR systems: Expert rule based and statistical based
- Expert review and discussion to support conclusions, if necessary

Class	Definition	Proposed action for control (details in Section 7 and 8)
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit
2	Known mutagens with unknown carcinogenic potential (bacterial mutagenicity positive*, no rodent carcinogenicity data)	Control at or below acceptable limits (appropriate TTC)
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of mutagenicity or carcinogenicity	Treat as non-mutagenic impurity

ICH M7 Table 1 Classification of impurities with respect to mutagenic and carcinogenic potential

Alerting structures and mutagenicity

Potential

or the Quality de la qualit

Case study (fictitious)

Hazard assessment

Potential mutagenic impurities

Class

?

Class 1

?

Class 1

?

Class	Definition	Proposed action for control (details in Section 7 and 8)			
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit			
2	Known mutagens with unknown carcinogenic potential (bacterial mutagenicity positive*, no rodent carcinogenicity data)	Control at or below acceptable limits (appropriate TTC)	Impurity	Origin	Hazard assessment
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2	Precursor SM 2	SM2	Nitro aromatic alerting structure.
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity	Hydrogen peroxide	Step 1	Known mutagenic carcinogens. Database and literature data.
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of	Treat as non-mutagenic impurity	L		ICH M7 "addendum".
	mutagenicity or carcinogenicity		INT-A	Step 2	N-oxide alerting structure.
			Thionyl chloride	Step 2	Known mutagenic carcinogens. Database and literature data. ICH M7.
			INT-B	Step 3	Alkyl chloride alerting structure.

Hazard assessment

Potential mutagenic impurities

Class	Definition	Proposed action for control (details in Section 7 and 8)				impurities
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit				
2	Known mutagens with unknown carcinogenic potential (bacterial mutagenicity positive*, no rodent carcinogenicity data)	Control at or below acceptable limits (appropriate TTC)	Impurity	Origin	Hazard assessment	Class
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2	Precursor SM 2	SM2	Nitro aromatic alerting structure.	?
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity	Hydrogen peroxide	Step 1	Known mutagenic carcinogens. Database and literature data. ICH	Class 1
5 No structural alerts, or alerting structure with sufficient data to demonstrate lack of		of Treat as non-mutagenic impurity			M7 addendum.	
	mutagenicity or carcinogenicity		INT-A	Step 2	N-oxide alerting structure.	?
			Thionyl chloride	Step 2	Known mutagenic carcinogens. Database and literature data. ICH M7.	Class 1
			INT-B	Step 3	Alkyl chloride alerting structure.	?

Hazard assessment

Potential mutagenic impurities

-

Class	Definition	Proposed action for control (details in Section 7 and 8)				impurities
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit	Tranukity	Origin	Hazard accomment	Class
2	Known mutagens with unknown carcinogenic potential	Control at or below acceptable limits (appropriate TTC)	Impunty		nazaru assessment	CidSS
	(bacterial mutagenicity positive*, no rodent carcinogenicity data)		Precursor	SM2	Nitro aromatic alerting structure.	Class 5
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2	SM 2		(Q)SAR study & Expert review. Negative. Non-mutagenic.	
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity	Hydrogen peroxide	Step 1	Known mutagenic carcinogens. Database and literature data. ICH	Class 1
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of	Treat as non-mutagenic impurity			M7 addendum.	
L	mutagenicity or carcinogenicity	<u> </u>	INT-A	Step 2	N-oxide alerting structure. No database or literature data. No mutagenicity data.	Class 3
			Thionyl chloride	Step 2	Known mutagenic carcinogens. Database and literature data. ICH M7.	Class 1
			INT-B	Step 3	Alkyl chloride alerting structure. No database or literature data. <i>In-vitro</i> bacterial mutagenicity assay (e.g. AMES test). Positive. Mutagenic.	Class 2

How to set an acceptable limit ?

Potential mutagenic impurities

Acceptable limit

MDD to be included in **3.2.S.1.3** along with **route of administration** and **treatment duration** considered for development of the control strategy and specification

Compound-specific acceptable limit

\rightarrow Class 1 impurities

Acceptable Intakes (AIs) or Permissible Daily Exposures (PDEs)

ICH M7 Appendix 3

Compound	CAS#	Chemical Structure	AI or PDE (µg/day)	Comment
Hydrogen peroxide	7722-84-1	но — он	68,000 or 0.5% whichever is lower	68 mg/day is 1% of estimated endogenous production

$$H_2O_2$$
 Acceptable limit = $\frac{68,000(\frac{\mu g}{day})}{0.0426(\frac{g}{day})} = 170\%$,
Thus <0.5%

How to set an acceptable limit ?

Acceptable limit

Note 7

• **TTC-based limit** \rightarrow Class 2 and 3 impurities

- Threshold of Toxicological Concern (TTC) concept was developed to define an **acceptable intake** for any unstudied chemical that poses a negligible risk of carcinogenicity or other toxic effects.
- Acceptable intake in relation to Less-than-lifetime exposure
- Does not apply to high potency mutagenic carcinogens referred to as the "cohort of concern", comprises aflatoxin-like-, N-nitroso-, and alkylazoxy compounds.

TTC-based limit

$$\frac{1.5\,(\frac{\mu g}{day})}{0.0426\,(\frac{g}{day})} = 35\,ppm$$

MDD Omeprazole sodium in long-term use. Worst case scenario.

	-
Scenario	Acceptable Intake
	(µg/day)
Treatment duration of \leq 1 month: e.g., drugs used in emergency procedures	120
(antidotes, anesthesia, acute ischemic stroke), actinic keratosis, treatment of	
lice	
Treatment duration of > 1-12 months: e.g., anti-infective therapy with	20
maximum up to 12 months treatment (HCV), parenteral nutrients,	
prophylactic flu drugs (~ 5 months), peptic ulcer, Assisted Reproductive	
Technology (ART), pre-term labor, preeclampsia, pre-surgical (hysterectomy)	
treatment, fracture healing (these are acute use but with long half-lives)	
Treatment duration of >1-10 years: e.g., stage of disease with short life	10
expectancy (severe Alzheimer's), non-genotoxic anticancer treatment being	
used in a patient population with longer term survival (breast cancer, CML),	
drugs specifically labeled for less than 10 years of use, drugs administered	
intermittently to treat acute recurring symptoms (chronic Herpes, gout	
attacks, substance dependence such as smoking cessation), macular	
degeneration, HIV	
Treatment duration of >10 years to lifetime: e.g., chronic use indications with	1.5
high likelihood for lifetime use across broader age range (hypertension,	* # * *
dyslipidemia, asthma, Alzheimer's (except severe AD), hormone therapy (e.g.,	
GH, TH, PTH), lipodystrophy, schizophrenia, depression, psoriasis, atopic	
dermatitis, COPD, cystic fibrosis, seasonal and perennial allergic rhinitis	

Potential mutagenic impurities

Control options

Potential mutagenic impurities

For Class 1, 2 and 3 impurities,

a control in line with one of ICH M7 Options is expected and should be justified

Option 1	Control \leq acceptable limit in the final substance	- Limit on CEP		
	Impurities introduced in the last step of the synthesis, unless otherwise justifiedCertification procedure does not take position on skip testing	 Analytical method appended Validation in line with ICH Q2 (R1) to be provided 		
Option 2	Control \leq acceptable limit in a raw material, SM or intermediate or as an IPC	For all carry-over studies:		
Option 3	Control > acceptable limit in a raw material, SM or intermediate or as an IPC.	- Validation data: at least LOD, LOQ, selectivity.		
	Suitability of the acceptable limit to be demonstrated by spike-purge studies: impurity <30% acceptable limit			
Option 4	Understanding the process and its effects on impurities, so that risk of an impurity residing in the final substance above the acceptable limit is determined to be negligible	OPTION 1 OPTION 3 OPTION 4		

Control options

If three or more Class 2 or 3 impurities controlled in the API

Individual limits & Total limit for Class 2 and 3 impurities ICH M7 table 3

Option 3 & 4: Where justification based on scientific principles alone is not considered sufficient...

Supportive analytical data is expected

Potential mutagenic impurities

Option 4

When?

- Impurities introduced early in the synthesis and effectively purged
- Impurities inherently unstable in process conditions (e.g. highly reactive substances, soluble, ionisable, gaseous and early reagents/ impurities that are purged/destroyed through/by the process (e.g. acyl halides, thionyl chloride)).

Justification?

- Generally, elements of a scientific risk assessment can be used. ICH M7 Ref. 11 & estimation of Purge factors
- When the impurity is known to form or introduced late in the process, process-specific data expected. Case-by-case

Case study (fictitious)

Potential mutagenic impurities

Impurity	Origin	Classification	Control in line with ICH M7	Justification	
Precursor SM2	SM2	Class 5	Treat as non-mutagenic impurity		
Hydrogen peroxide	Step 1	Class 1	Option 4	Used in the 1 st step of the process. Decomposes in water used widely ahead in the process (Steps 3 and 4).	
INT-A	Step 2	Class 3	?	?	
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).	
INT-B	Step 3	Class 2	?	?	

Potential mutagenic impurities

Impurity	Origin	Classification	Control in line with ICH M7	Justification
Precursor SM2	SM2	Class 5	Trea	at as non-mutagenic impurity
Hydrogen peroxide	Step 1	Class 1	Option 4 Used in the 1 st step of the proce Decomposes in water used wide in the process (Steps 3 and 4).	
INT-A	Step 2	Class 3	?	?
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).
INT-B	Step 3	Class 2	?	?

INT-A limited in INT-B at NMT 0.70%

Proposed limit > TTC-based limit

Option 3 \rightarrow **Spike/purge studies** e.g. INT-B spiked with 0.74% INT-A \rightarrow Pursue synthetic process \downarrow INT-A shown <u>absent</u>, i.e., <u><30% TTC-based limit</u>, in suitable intermediate or final substance by GC-MS (LOD=3ppm, LOQ= 7ppm).

Potential mutagenic impurities

-

Impurity	Origin	Classification	Control in line with ICH M7	Justification
Precursor SM2	SM2	Class 5	Trea	at as non-mutagenic impurity
Hydrogen peroxide	Step 1	Class 1	Option 4	Used in the 1 st step of the process. Decomposes in water used widely ahead in the process (Steps 3 and 4).
INT-A	Step 2	Class 3	Option 3 NMT 0.70% in INT-B	INT-A purged to levels < 30% TTC- based limit (35ppm) in API when present at 0.74% in INT-B as per spiking experiments by GC-MS (LOD=3ppm, LOQ= 7ppm).
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).
INT-B	Step 3	Class 2	?	?

Potential mutagenic impurities

2

CONSEIL DE L'EUROPE

European Directorate | Direction européenne for the Quality de la qualité of Medicines & HealthCare | & soins de santé

Impurity	Origin	Classification	Control in line with ICH M7	Justification			
Precursor SM2	SM2	Class 5	Trea	at as non-mutagenic impurity			
Hydrogen peroxide	Step 1	Class 1	Option 4	Used in the 1 st step of the process. Decomposes in water used widely ahead in the process (Steps 3 and 4).			
INT-A	Step 2	Class 3	Option 3 NMT 0.70% in INT-B	INT-A purged to levels < 30% TTC- based limit (35ppm) in API when present at 0.74% in INT-B as per spiking experiments by GC-MS (LOD=3ppm, LOQ= 7ppm).			
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).			
INT-B	Step 3	Class 2	?	?			
R Alkyl chloride Acceptable limit? ICH M7 Note 5 Monofunctional alkyl chlorides Lifetime and LTL daily intakes 10x default ones							
11 @ FDOM Crustle (France 2022 All table crusted							

Potential mutagenic impurities

Impurity	Origin	Classification	Control in line Justification with ICH M7		
Precursor SM2	SM2	Class 5	Trea	at as non-mutagenic impurity	
Hydrogen peroxide	Step 1	Class 1	Option 4	Used in the 1 st step of the process. Decomposes in water used widely ahead in the process (Steps 3 and 4).	
INT-A	Step 2	Class 3	Option 3 NMT 0.70% in INT-BINT-A purged to levels < 30% TTC- based limit (35ppm) in API when present at 0.74% in INT-B as per s experiments by GC-MS (LOD=3ppn LOQ= 7ppm).		
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).	
INT-B	Step 3	Class 2	Option 1 NMT 350ppm in API	Monofunctional alkyl chloride. ICH M7 Note 5. Despite control in INT-B, Option 1 chosen to be implemented.	

Mutagenic impurities

Potential mutagenic impurities

Impurity	Origin	Classification	Control in line with ICH M7	impuritie	
Precursor SM2	SM2	Class 5	Treat as non-mutagenic impurity		
Hydrogen peroxide	Step 1	Class 1	Option 4	Used in the 1 st step of the process. Decomposes in water used widely ahead in the process (Steps 3 and 4).	
INT-A	Step 2	Class 3	Option 3 NMT 0.70% in INT-B	INT-A purged to levels < 30% TTC-based limit (35ppm) in API when present at 0.74% in INT-B as per spiking experiments by GC-MS (LOD=3ppm, LOQ= 7ppm).	
Thionyl chloride	Step 2	Class 1	Option 4	Used in the step 2 of the process. Highly reactive in water used widely ahead in the process (Steps 3 and 4).	
INT-B	Step 3	Class 2	Option 1 NMT 350ppm in API	Monofunctional alkyl chloride. ICH M7 Note 5. Despite control in INT-B, Option 1 chosen to be implemented.	

Exercise and outcome of discussion to be summarised in section 3.2.S.3.2 – Mutagenic impurities

Specification as provided in relevant sections (3.2.S.2.3, 3.2.S.2.4, 3.2.S.4.1)

ICH M7 : structural groups identified to be of such high potency that intakes even below the TTC would theoretically be associated with a potential for a significant carcinogenic risk. This group is referred to as the "cohort of concern", comprises aflatoxin-like-, <u>N-nitroso</u>-, and alkyl-azoxy compounds.

 Example of formation conditions: concomitant presence of a secondary/tertiary amine and a nitrosating agent (e.g. NaNO₂) under acidic conditions

Risk assessment in CEP dossiers - Principles

Q & A for marketing authorisation holders/applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 referral on nitrosamine impurities in human medicinal products (EMA website)

Risk & Presence confirmed

Control strategy in line with:

- Q & A document, Question 10
- ICH M7 principles, as applicable

Calculation of applicable limit:

Limit (ppm)

= AI (ng) MDD (mg)

N-nitrosamine with insufficient substance specific data :

 \rightarrow default class specific TTC of 18 ng/d

 \rightarrow if not possible, interim requirements Q 21

Multiple N-nitrosamines (more than one)

 \rightarrow **Total** nitrosamines

 \rightarrow Q & A, Annex 1, Decision tree with control options for

products containing multiple N-nitrosamines

Q&A, Table 1 (refer to current version for full table): Following limits have been established for:

N-Nitrosamine (CAS number)	ng/day*
N-Nitrosodimethylamine, NDMA ¹ (62-75-9)	96.0
N-Nitrosodiethylamine, NDEA ¹ (55-18-5)	26.5
N-Nitrosoethylisopropylamine, EIPNA ² (16339-04-1)	26.5
N-Nitrosodiisopropylamine, DIPNA ² (601-77-4)	26.5
N-Nitroso-N-methyl-4-aminobutyric acid, NMBA ³ (61445-55-4)	96.0
1-Methyl-4-nitrosopiperazine, MeNP ² (16339-07-4)	26.5
N-Nitroso-di-n-butylamine, NDBA ² (924-16-3)	26.5
N-Nitroso-N-methylaniline, NMPA ¹ (614-00-6)	34.3
N-nitroso-morpholine, NMOR ⁴ (59-89-2)	127
N-nitroso-varenicline, NNV ⁵	37.0
N-nitrosodipropylamine, NDPA (621-64-7) ²	26.5
N-nitrosomethylphenidate ⁶	1300
N-nitrosopiperidine (100-75-4)	1300

...Etc.

These limits are applicable only if a FP contains a single N-nitrosamine.

Risk & Presence confirmed

Or... Non-mutagenic?

Toxicological data needed to classify a nitrosamine as a Class 5 impurity

Q&A, Q10, Guidance on use of Ames test

Negative in vitro bacterial reverse mutation tests:
 Not sufficient as <u>sole</u> evidence for lack of mutagenic potential for nitrosamines
 Can be used as part of a weight of evidence approach, but additional supporting evidence would be required

Internationally centralised assessment

- Analytical methods need sufficient sensitivity
- Quantitative test \rightarrow LOQ \leq acceptable limit based on the AI of the nitrosamine impurity.
- Quantitative testing to justify omission of a specification \rightarrow LOQ of the analytical method \leq 10% of the acceptable limit based on the AI of the nitrosamine impurity.

Reminder...

• To be provided for all new CEP applications

Summary and outcome of Risk Assessment to be provided in section 3.2.S.3.2

• For existing CEP applications:

Completion of *Step 2: Confirmatory Testing & Step 3: Update of CEP Application* (refer to Q&A principles) by **1st October 2023**

Summary and outcome of Risk Assessment to be provided in section 3.2.S.3.2 & & Other sections to be amended as needed

CEP holders should be supportive to MAHs and provide them with relevant information

Residual solvents

ICH Q3C / Ph.Eur. 5.4 classification and recommended limits
CPMP/QWP/450/03 - Rev.1 (Annex I)

Non-classified ICH Q3C Solvents: toxicological justification for any proposed limit.

Class 1 solvents as contaminant of another solvent

Residual solvents

Control needed unless...

Option 1. Limit in originator solvent ensures that the class 1 solvent will be present in the API at levels <30% ICH limit. Taking into account the maximum likely level of contamination of the Class 1 solvent and volatility of both solvents.

Benzene (bp : 80.1°C) limited in toluene: NMT 500 ppm Toluene (bp : 110.6 °C, purity NLT 99.5%) in API : NMT 200 ppm, eliminated by **drying** in process

Theoretical Max level of benzene in API: 0.1 ppm (ICH limit : 2 ppm)

Option 2. Class 1 solvent demonstrated < 30% ICH limit in an intermediate or API. Using a validated method, data on 6 consecutive pilot scale batches or 3 consecutive industrial scale batches.

Class 3 solvents & Certification Procedure

Residual solvents

Case study (fictitious)

Case study : Which specifications?

Residual solvents

Solvent	Used in step X / 5	ICH classification	Typical levels in API	LOD (ppm)	Limit in API		
Acetic acid	Step 1	Class 3 NMT 5000 ppm	ND	68	?		
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Class 2 NMT 890 ppm ND-42ppm		?		
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	28-94 ppm	15	?		
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	BDL-567 ppm	49	?		
Triethylamine	Step 4	Class 3 NMT 5000 ppm	ND	77	?		
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	ND	6	?		
Benzene	As contaminant	Class 1 NMT 2 ppm	ND	0.5	?		
Only water used as solvent in the manufacturing of SM2							

Testing using GC methods (or other suitable) validated in line with ICH Q2 (R1)

Data obtained from controls in intermediates may also be used to show absence

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	?	ND	68	* <10%ICH,
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	?	ND-42ppm	7	not used last step
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	?	28-94 ppm	15	
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	?	BDL-567 ppm	49	
Triethylamine	Step 4	Class 3 NMT 5000 ppm	?	ND	77	<10%ICH, not used last step
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	?	ND	6	•
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	X	ND	68	* <10%ICH,
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	X	ND-42ppm	7	not used last step
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	?	28-94 ppm	15	
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	?	BDL-567 ppm	49	
Triethylamine	Step 4	Class 3 NMT 5000 ppm	x	ND	77	<10%ICH, not used last step
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	?	ND	6	
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	Х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Х	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	?	28-94 ppm	15	\implies Class 2, > 10%ICH limit
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	?	BDL-567 ppm	49	
Triethylamine	Step 4	Class 3 NMT 5000 ppm	Х	ND	77	
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	?	ND	6	
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	Х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Х	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	NMT 600 ppm	28-94 ppm	15	\Rightarrow Class 2, > 10%ICH limit
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	?	BDL-567 ppm	49	
Triethylamine	Step 4	Class 3 NMT 5000 ppm	Х	ND	77	
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	?	ND	6	
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

10%ICH limit

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	Х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Х	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	NMT 600 ppm	28-94 ppm	15	Class 2, > 10%ICH lim
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	?	BDL-567 ppm	49	Used last step, no loss
Triethylamine	Step 4	Class 3 NMT 5000 ppm	Х	ND	77	on drying test in the monograph
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	?	ND	6	Used last step
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	Х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Х	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	NMT 600 ppm	28-94 ppm	15	Class 2, > 10%ICH limit
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	NMT 5000 ppm	BDL-567 ppm	49	Used last step, no loss
Triethylamine	Step 4	Class 3 NMT 5000 ppm	Х	ND	77	monograph
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	NMT 3000 ppm	ND	6	Used last step
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	Х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	Х	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	NMT 600 ppm	28-94 ppm	15	Class 2, > 10%ICH limit
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	NMT 5000 ppm	BDL-567 ppm	49	Used last step
Triethylamine	Step 4	Class 3 NMT 5000 ppm	Х	ND	77	
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	NMT 3000 ppm	ND	6	Used last step
Benzene	As contaminant	Class 1 NMT 2 ppm	?	ND	0.5	Class 1 solvent as
Only water used as solven	<30% ICH limit					

Residual solvents

Solvent	Used in step X / 5	ICH classification	Limit in API	Typical levels in API	LOD (ppm)	
Acetic acid	Step 1	Class 3 NMT 5000 ppm	х	ND	68	
Toluene	<i>SM1,</i> Step 2	Class 2 NMT 890 ppm	X	ND-42ppm	7	
Dichloromethane	<i>SM1,</i> Step 3, 4	Class 2 NMT 600 ppm	NMT 600 ppm	28-94 ppm	15	Class 2, > 10%ICH limit
Ethyl acetate	Step 3, 5	Class 3 NMT 5000 ppm	NMT 5000 ppm	BDL-567 ppm	49	Used last step
Triethylamine	Step 4	Class 3 NMT 5000 ppm	x	ND	77	
Methanol	Step 4, 5	Class 2 NMT 3000 ppm	NMT 3000 ppm	ND	6	Used last step
Benzene	As contaminant	Class 1 NMT 2 ppm	X	ND	0.5	Class 1 solvent as
Only water used as solvent	<30% ICH limit					

Exercise to be summarised in section 3.2.S.3.2 – Residual solvents

Residual solvents

Outcome of discussion in section 3.2.S.3.2 \rightarrow Specification as provided in section 3.2.S.4.1

Solvent	ICH classification	Limit in API
Dichloromethane	Class 2 NMT 600 ppm	NMT 600 ppm
Ethyl acetate	Class 3 NMT 5000 ppm	NMT 5000 ppm
Methanol	Class 2 NMT 3000 ppm	NMT 3000 ppm

If other solvents included in section 3.2.S.4.1., these will be transparent on the CEP

Elemental impurities

• ICH Q3D

- Covers 24 elements (classified under the classes 1, 2A, 2B and 3) and gives permitted daily exposure (PDE) according to the route of administration.

• PA/PH/CEP (16) 23, 2R

- Risk assessment requirements to control elemental impurities
- Component Approach as per ICH Q3D

Note

Principles also to be applied for substances for « veterinary use only » :

Reflection paper on risk management requirements for elemental impurities in veterinary medicinal products (EMA/CVMP/QWP/153641/2018)

Elemental impurities

Elemental impurities

The control strategy should focus on absence or presence of elemental impurities (e.g. metal catalysts) in the API

Absence in the API of an elemental impurity intentionally added i.e. purged to a level consistently and convincingly **below 30% of the limit** which is defined considering:

- the indicated route of administration
- the ICH Q3D option 1 (API daily intake of NMT 10g) or option 2a when justified
- Analytical method identified, at least sensitivity (LOD/LOQ) to be provided

Presence in API for an elemental impurity intentionally added : if not demonstrated absent, a justified **specification** should be applied - Analytical methods should be described in 3.2.S.4.2, validation in line with Q2(R1)

 \rightarrow Specification limit in the API is usually expected for any elemental impurity introduced into the <u>last synthetic</u> <u>step</u> not demonstrated absent

Implementation of ICH Q3D in the CEP procedure

 $\rightarrow\,$ besides the intentionally added elements the assessment should also cover all other potential elemental impurities from other sources

- Risk Management Summary report (summarised) which details the rationale of the study. Provide the reasons why impurities are considered + justification of the chosen control strategy + indicate the intended route of administration on which the risk assessment is based.
- to be completed with a **summary table** \rightarrow intended to be annexed to the CEP

A batch screening does not replace a risk management summary

RMS/no-RMS : with both scenarios specification at release <u>if</u> proposed by the applicant \rightarrow mentioned on CEP

Elemental impurities

Elements to be considered:

- elemental impurities derived from intentionally added catalysts and inorganic reagents
- Potential elemental impurities not intentionally added depending on the route of administration : see Table 5.1

- Potential elemental impurities derived from manufacturing equipment, water, leached from container closure system...

Element	Class	If intentionally added (all routes)	If not intentionally added							
			Oral	Parenteral	Inhalation					
Cd	1	yes	yes	yes	yes					
Pb	1	yes	yes	yes	yes					
As	1	yes	yes	yes	yes					
Hg	1	yes	yes	yes	yes					
Co	2A	yes	yes	yes	yes					
V	2A	yes	yes	yes	yes					
Ni	2A	yes	yes	yes	yes					
Tl	2B	yes	no	no	no					
Au	2B	yes	no	no	no					
Pd	2B	yes	no	no	no					
Ir	2B	yes	no	no	no					
Os	2B	yes	no	no	no					
Rh	2B	yes	no	no	no					
Ru	2B	yes	no	no	no					
Se	2B	yes	no	no	no					
Ag	2B	yes	no	no	no					
\mathbf{Pt}	2B	yes	no	no	no					
Li	3	yes	no	yes	yes					
Sb	3	yes	no	yes	yes					
Ba	3	yes	no	no	yes					
Mo	3	yes	no	no	yes					
Cu	3	yes	no	yes	yes					
Sn	3	yes	no	no	yes					
\mathbf{Cr}	3	yes	no	no	yes					

Table 5.1. Elements to be Considered in the Disk Assessment

Case study (fictitious)

Final substance (3.2.S.4.1) - Specification

Elemental impurities

Impurity	Limit	Batch data	Origin		Route of	adminis	tration conside	ered in the risk as	ssessment: parenteral	
Molybdenum	-	< 5 ppm	catalyst in st	ep 4						
- ICH Q3D Class 3 element						Class	Intentionally added?	Considered in risk	Conclusion	
- Option 1 li	renteral adminis	stration: 1700 pp	m	Cd	1	No	management?	Abcont		
Control thr	ochold .	510 nnm			Dh		No	Vec	Absent	
		oro hhiu			As	1	NO	Ves	Absent	
					Hg	1	No	Yes	Absent	
			Route of admir	histration 🦯	Co	2A	No	Yes	Absent	
					V	2A	No	Yes	Absent	
			Elements cor	nsidered 🦯	Ni	2A	No	Yes	Absent	
			or no	+	T1	2B	No	No	Absent	
			01 110	L	Au	2B	No	No	Absent	
					Pd	2B	No	No	Absent	
			Report a concil	ision on	II	2B	No	No	Absent	
			absence or c	ontrol	Os	2B	No	No	Absent	
					Rh	2B	NO	NO	Absent	
The control strategy (followed shoul	d he alees and montione	d on the DMS.		<u>Ku</u>	2B 2D	NO No	No	Absent	
The control strategy i	ionoweu snoui	u de clear and mentione	a on the KWIS:			2B 2B	No	No	Absont	
- "Absent" should be	e defined (e.g. "	less than 30% of ICH Q3	D option 1 limit")		<u>Ag</u> Pt	2B	No	No	Absent	
- or "NMT limit in	ppm"calculated	d based on option 1 (or alt	ernatively and if justified,		Li	3	No	Yes	Absent	
based on option 2a)					Sb	3	No	Yes	Absent	
or "No risk identifi	iad"				Ba	3	No	No	Absent	
					Мо	3	Yes	Yes	Absent	
					Cu	3	No	Yes	Absent	
		_			Sn	3	No	No	Absent	
		I	t term « Absent » is	used its	Cr	3	No	No	Absent	

NOTE: "Absent" means less than 30% of ICH Q3D option 1 limit

definition is required

Reagents & Inorganic impurities

- Carryover of reagents, in particular toxic reagents, to the final substance should be discussed, as applicable. (e.g TBAB)
 - Absence of carryover into the API is demonstrated using a validated method against a limit justified based on toxicological data

OR

- Routine control to be implemented at a suitable intermediate or final substance

Reagents and Inorganic impurities

Case study (fictitious)

Reagents & Inorganic impurities

Reagents	Origin, fate and carry over	Batch data	Limit
Acetic anhydride	Multiple steps up to the API. Low risk of carryover. Decomposes in water and NaOH, used ahead, to acetic acid which is demonstrated absent in the API.	x	X
Sulfuric acid	Washed along with water used in the manufacturing process.	x	X
Sodium hydroxide	Salt formation. Used last step. Carryover of residues controlled by the test for pH of the monograph.	x	x
Hydrogen peroxide	ICH M7 Class 1 impurity. Refer to section 3.2.S.3.2 – Mutagenic impuriti	es.	
Thionyl chloride	ICH M7 Class 1 impurity. Refer to section 3.2.S.3.2 – Mutagenic impuriti	es.	

Reagents and Inorganic impurities

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter LinkedIn: https://www.linkedin.com/company/edqm/ Twitter: @edqm_news Facebook: @EDQMCouncilofEurope

