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INTRODUCTION 

The purpose of this document is to illustrate some statistical issues presented in Chapter 5.3 of the 
European Pharmacopoeia - Statistical analysis of results of biological assays and tests. It consists in 4 
sections dealing with assay designs, regression models (including assay validity criteria), structure of 
the ANOVA table and analysis and interpretation of results. 

This document could be prepared thanks to the collaboration between statisticians from the OMCL 
network and from the EDQM. It is intended for information only, and does not replace the statistical 
requirements found in the chapters and monographs of the European Pharmacopoeia. 

1. ASSAY DESIGNS 

This section illustrates 3 types of assay designs commonly used in routine testing and inter-laboratory 
studies, i.e. the completely randomised design, randomised block design, and Latin square design. It 
addresses also the replication of treatments (defined as doses or dilutions of a test and standard 
preparations) and the replication of assays. 

The randomised block design is presented first, although it is an advanced design compared to the 
completely at random. The reason is that it allows introducing statistical notions that are needed 
thereafter to make a clear comparison between the 3 designs. 

The explanations and examples given in this section will have met their goal if the reader becomes 
convinced that i) planning the experiments is crucial to the reliability of results and conclusions, ii) it 
is too late to address the selection of a type of design once the experiments are done. 

1.1. Randomised block design 

Getting started 

A control laboratory is in charge of testing 2 products (8 vials each). As a maximum of 10 vials can be 
tested in a run, the analyst is planning one run per product. Each run will require reconstituting a fresh 
aliquot of a critical reagent, which has a significant effect on the results. Past experiments showed 
that a difference of 15% could be observed, on average, between results of vials tested on different 
runs. 

Critical assessment 

The analyst is interested in calculating the mean difference between two products accurately. 
However, the proposed design introduces a significant bias. Indeed, in the case where both products 
would be identical, a mean difference of 15% could still be observed due to confounding with 
differences between reagent aliquots. 

Proposal 

Confounding will be avoided by testing vials of each product in parallel, i.e. for a same aliquot of the 
critical reagent. In this case, two runs can be carried out, in which 4 vials of each product will be tested. 
Each run represents a block of experiments comparing both products in similar and controlled 
experimental conditions. 

Figure 1 shows that the vials are tested in random order in each block. There is a mean difference of 
14% (103.8 / 91.4) between the results of the blocks (due to differences between reagent aliquots), 
but it does not affect the comparison of products. The mean difference between the two products is 
rather similar in each block (1.45 and 1.18, respectively). The overall mean difference is 1.31. 
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Additional blocks of results could be added in order to achieve better precision about the overall 
means difference. The number of blocks can be determined during the design phase (study protocol) 
or adjusted after some initial block results are obtained (sequential approach), showing how flexible 
the randomised block design strategy is.   

 

Figure 1. Example of a randomised block design. 

CombiStats examples 

There are several examples of randomised block designs in the user manual of the CombiStats 
software. In most cases, all the doses of the standard and test preparations are present in each block 
(called complete blocks). The blocks allow controlling the heterogeneity of some materials, such as 
water-bath (Ex. A.1.4), agar plates (Ex. A.2.7) or litters of rats (Ex. A.2.5), which are the block factors 
in the respective examples. 

The user manual introduces the randomised block design in page 19, where the treatments refer to 
the doses of the preparations (standard, samples): 

If it is possible to identify an experimental factor that could influence the response of specific 
groups of units in the same way, the randomised block design may be appropriate. For example, 
a group of different treatments in a Petri dish might, on average, give a lower response than an 
identical group of treatments in another Petri dish. Hence, it is important that the treatments be 
equally distributed over the Petri dishes (the blocks). Applying the same treatment in only one 
block should absolutely be avoided, as this would confound the effect of the treatment with the 
block effect, and thus lead to erroneous results. 

Example A.3.4 of the user manual consists in 6 treatments (2 prep. × 3 doses) tested using a 
randomised block design. There are 6 gels of agar (blocks) on which the 3 doses of the standard and 
sample preparations are tested in parallel. Figure 2 shows the outcome of the random allocation of 
the 6 treatments to each block (e.g. 1|1 represents Prep. 1|Dose 1). 

The block effect (i.e. heterogeneity between gels) depends on differences between the block means. 
The mean values range from 204.5 (block 1) to 211 (block 6) and are significantly different according 
to the analysis of variance (ANOVA table, p-value = 0.001 for the Blocks line). This result shows that 
the blocking strategy was relevant and useful, given the heterogeneity between gels. 
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Figure 2. Example of randomised blocks in CombiStats. (6 blocks coded from (1) to (6), 
in which all treatments (Prep.|Dose) are carried out in random order). 

1.2. Completely randomised design 

Introduction 

The completely randomised design can be used when no factor of heterogeneity, such as defined in 
Section 1.1, is suspected. The doses of the various preparations are thus tested in experimental 
conditions that are considered to be similar enough. Such conditions can be assumed when, for 
example, the materials and procedures used for the assay are well standardised. 

Specifically, the completely randomised design is recommended when the sources of variation are 
known to have low and similar contributions to the assay variation. The resulting variation is referred 
to as the residual error in the penultimate row of the ANOVA table of CombiStats files (section 3.1). 

Some bias can still be introduced inadvertently during the course of the assay. It can be prevented by 
testing the treatments in random order, so that, on average, results remain accurate. 

CombiStats example  

Example A.2.10 consists in 2 preparations tested at 2 doses (the blank condition, i.e. 0 µg, is excluded). 
Each of these 4 treatments is to be tested 4 times in a completely randomised design. 

The best way to illustrate the fact that the 16 trials are performed in random order is to show the 
order of trials in a single row (or column) as in Figure 3. For example, the first 2 trials are the first and 
second replicates of Prep. 2, Dose 2. 

 

Figure 3. Example of a completely randomised design in CombiStats. 
Each treatment is tested 4 times (Prep.|Dose|Rep.) in random order. 

A more compact layout, i.e. a table with multiple rows and columns, is still possible (Figure 4), although 
it may be confused with the layout of other designs. In addition, the trial order must be specified in 
the study protocol: start with the 4 treatments in first row, then those in the second row, and so on. 

 

Figure 4. Completely randomised design represented in a 4-by-4 table. 
The trial order (by row in this example) must be specified in the study protocol. 
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1.3. Latin square design 

Introduction 

This design is of particular interest when the treatments are tested on a support that shows a gradient 
of heterogeneity. A typical example is the agar gel used in immuno-diffusion assays, which contains 
an active protein that may not be uniformly distributed/plated. 

Figure 5 shows an agar gel with higher (lower) amounts of protein represented by darker (lighter) grey 
areas. In the first design (Design 1), the 4 replicates of the 4 treatments (2 prep. × 2 doses) are grouped 
for convenience, but it leads to confounding between the treatment effect and the gradient of protein.  

In the Latin square design, the replicates are allocated to NTreat.² = 16 squares defined on the gel such 
that each treatment occurs once in each row and column. Doing so, every treatment is tested in areas 
covering higher and lower amounts of protein. Subsequently, the mean results of the 4 treatments, 
and thus the potency estimates, will show limited bias. 

 

Figure 5. Example of Latin square design used in case of gradient of heterogeneity on an agar gel. 

CombiStats example  

Example A.1.3 consists in 6 treatments (2 prep. × 3 doses) tested using a 6-by-6 Latin square design, 
in which each treatment appears once and only once per row and column. CombiStats shows the 
layout of the design (Figure 6). Note that the treatments should be tested in random order as defined 
in the study protocol. 

 

Figure 6. Example of a 6-by-6 Latin square design in CombiStats. 

As a result of the allocation of treatments per row and column, the ANOVA table contains p-values for 
row and column effects that inform about the direction taken by the gradient of heterogeneity: 

- From top to bottom if the row p-value is significant, 

- From left to right if the column p-value is significant, 

- More complex pattern of heterogeneity if both p-values are significant. 
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The p-values reported in the ANOVA table (Table 1) indicate a significant ‘Row block’ effect (p = 0.012) 
and non-significant ‘Column block’ effect (p = 0.107). It means that the gradient of heterogeneity on 
the agar gel is mainly vertical in this case. 

Table 1. ANOVA table of the 6-by-6 Latin square design (Ex. A.1.3 of the user manual). 

 

1.4. The value of replication of treatments 

Replicates are defined as the number of times a treatment is included in the assay. Replicates should 
be independent, and when each treatment has the same number of replicates, the design is said to 
be balanced (unbalanced otherwise). These replicates play a significant role in the statistical analysis. 

Assay validity 

Replicates are involved in the validity assessment of the assay, e.g.: 

- The replicated results of a given treatment can be too scattered, denoting a potential 
experimental error with possible exclusion of results (section 4.4, Ex. A.2.13), 

- The variability between replicates can increase with the dose concentration, requiring some 
refinement of the statistical model (section 2.8, weighted regression in Ex. A.3.17), 

- The variability between replicates is used to calculate the Residual error, which is usually the 
basis for assessing the significance of the various sources of variation listed in the ANOVA 
table, such as Non-linearity and Non-parallelism of regression lines (Table 1, section 3.1), 

- The residual error can be compared with historical data by means of control charts. A residual 
error being out of the control limits may indicate a problem with the assay (section 0). 

Precision of potency estimates 

The variability between replicates is also used to calculate 95% confidence limits (95%CL) about 
potency estimates. These limits represent the precision of the calculated means, and, in many 
monographs, should fall within some acceptance criteria. 

Examples in Ph. Eur. 10th Edition: 

- General monograph 2.7.2. Microbiological assay of antibiotics: Unless otherwise stated in the 
monograph, the confidence limits (P = 0.95) of the assay for potency are not less than 95 per 
cent and not more than 105 per cent of the estimated potency. 

- Monograph 0343. Tetanus antitoxin for veterinary use: The confidence limits (P = 0.95) have 
been estimated to be: i) 85 per cent and 114 per cent when 2 animals per dose are used; ii) 
91.5 per cent and 109 per cent when 3 animals per dose are used; iii) 93 per cent and 108 per 
cent when 6 animals per dose are used. 
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The latter example is of particular interest as it shows that the acceptance limits get tighter as more 
animals (replicates) are included in the assay. This is because the precision improves (95%CL get 
narrower) with the number of replicates, so that acceptance criteria can be adjusted accordingly. 

Residual error (CombiStats example) 

Example A.1.1 consists in 6 treatments (3 prep. × 2 doses) tested using a completely randomised 
design. There are 10 replicates per treatment, which yield a residual error of 765.57. As shown in Table 
2, the residual error is the mean of the variances calculated using the 10 replicates of the treatments, 
and it is expressed in (unit/mg)². The square root of the residual error represents the experimental 
standard deviation and is equal to SD = 27.7 unit/mg. On average, the analyst can thus expect a 
difference of about 30 unit/mg between replicated results. 

Table 2. Residual error calculation in a completely randomised design. 

 

The same calculation was performed using the first 5 replicates of each treatment. Table 3 shows the 
potency estimates and 95%CL calculated by CombiStats for Sample T using both scenarios. Wider 
95%CL are observed as the number of replicates has decreased (from 69%-148% of estimate for 10 
replicates to 50%-201% for 5 replicates). 

Table 3. Potency estimates for 5 and 10 replicated (completely randomised design). 

 

Note. It is often and erroneously though that the residual error decreases as the number of replicates 
increases. What actually decreases is the uncertainty about the calculated value, which, on average, 
tends towards the true experimental error. E.g. a lower estimate is observed for 5 replicates (741.7) 
than for 10 replicates (765.6). However, the latter should be preferred as it is more precise. 

Residual error vs. pure error  

The calculation of the residual error was presented for the completely randomised design. In 
summary, there are 6 treatments of 10 replicates in Ex. A.1.1 for a total of 6 × (10 – 1) = 54 degrees of 
freedom, as reported for the residual error in the ANOVA table. This error, which derives from 
replicated results, is the pure error representing the repeatability of the assay. In addition, the number 
of degrees of freedom informs about how reliable the error term is. With 54 degrees of freedom, the 
pure error estimated in this example is deemed reliable. 
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In Ex. A.3.4 of the randomised block design (section 1.1), each of the 6 treatments appears only once 
in each block. Therefore, there is no pure error and the degrees of freedom are logically equal to 0 in 
each block (6 × (1 – 1) rep. = 0). However, the ANOVA table contains a residual error reported with 25 
degrees of freedom. In this case, the residual error doesn’t represent the pure error of the assay 
(repeatability within a block) but depends on differences between treatments from one block to 
another. The residual error thus represents the treatment-by-block interaction effect, which number 
of degrees of freedom is (NTreat. – 1) × (NBlock – 1) = (6 – 1) × (6 – 1) = 25. 

The same principle applies to the Latin square design, for which each treatment appears once per row 
and per column (section 1.3). In the absence of pure error, the residual error consists in the treatment-
by-block interaction effect, which number of degrees of freedom is (NTreat. – 1) × (NBlock – 2) = (6 – 1) × 
(6 – 2) = 20 as in Ex. A.1.3. 

Note that the residual error can be made of some pure error and treatment-by-block interaction 
effect. Assume, for example, a randomised block design consisting in 4 treatments tested in duplicates 
in 5 complete blocks. The residual error has 32 degrees of freedom, distributed as 4 × (2 – 1) = 4 
degrees of freedom per block for the pure error (4 × 5 = 20 in total) and (4 – 1) × (5 – 1) = 12 degrees 
of freedom for the treatment-by-block interaction effect. 

Power and sample size calculation 

Sample size calculation consists in defining the number of replicates per treatment required to achieve 
a given level of quality of information. The example in Table 3 shows that the precision (half-width of 
the 95%CL) about potency estimates improves as the sample size increases. With acceptance criteria 
set in many monographs, precision is probably the first element that motivates the calculation of an 
appropriate sample size. 

In addition, CombiStats performs a series of statistical tests to assess the significance of the sources 
of variation listed in the ANOVA table (Table 1), e.g.: 

- Preparations: test for significant differences between the preparation intercepts, 
- Regression: test the common slope to 0 (i.e. is there a significant dose effect), 
- Non-parallelism: test for significant differences between the preparation slopes. 

These tests are characterised by some statistical power, given as a percentage that represents the 
ability to detect a minimum difference, say 1.5 IU/mL between preparation intercepts. The power is 
often set to a minimum of 80%, meaning that the test will be significant in more than 80% of routine 
assays when the difference between intercepts is truly equal to or greater than 1.5 IU/mL. 

Once the minimum difference is defined, the number of replicates per treatment is calculated to 
ensure that the statistical power will be met. The analyst is in charge of defining the minimum 
difference and statistical power, while the statistician usually performs the sample size calculation. 

The number of replicates per treatment will logically increase if the analyst wants: 

- To detect a lower difference, e.g. 1 IU/mL instead of 1.5 IU/mL between intercepts, 
- To achieve a higher statistical power, e.g. 90% instead of 80%. 

The number of replicates depends also on other elements, among which: 

- The number of preparations and doses (and distribution along the dose-range), 
- The type of design (completely at random, blocked designs), 
- The confidence level (1 – α) and, 
- The experimental residual error. 
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In practice, the first 3 elements are usually fixed, and depends mainly on the study objectives and 
experimental constraints. The residual error can be determined using historical data (validation and/or 
past routine data). A higher residual error (less reproducible assay) will increase the number of 
replicates needed to detect the minimum difference or reach the required precision about the 
potency estimate with adequate statistical power. 
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2. REGRESSION MODELS 

2.1. Regression analysis 

CombiStats performs a same regression analysis whatever the type of multiple-dilution assay (slope-
ratio, parallel-line, sigmoid curve, quantal response). This analysis includes the estimation of individual 
slopes and intercepts for the various preparations, as a start to further calculations used to build the 
ANOVA table and estimate the potency results and/or effective doses. 

This regression analysis uses all the dilution points, even those in the lower and upper plateaus of 
sigmoid curves. In this case, CombiStats performs a linearisation transformation prior to fit the 
regression model. Non-linearised and linearised values are available from the menu Options > 
Advanced > Export Matrices > Dataset. They are referred as to NLinObs and LinObs in the export, 
respectively. 

Table 4 shows the values calculated for Ex. A.3.21 (assay based on quantal responses). Raw data are 
numbers of respondents out of 8 animals. Non-linearised values are the corresponding proportions 
(e.g. 8/8 = 1 or 100%) and linearised values are calculated after probit transformation of the 
proportions (section 2.7). The transformation involves some weighting of the data (LinWeight and 
NLinWeight in the export), without which the linearisation cannot be happen. 

Table 4. Raw data and linearised values (Ex. A.3.21). 

Dose (log) -3.5 -4 -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8 

Raw data 8/8 8/8 7/8 6/8 2/8 1/8 1/8 0/8 0/8 0/8 

Non-Lin. values 1 1 0.875 0.75 0.25 0.125 0.125 0 0 0 

Lin. Values 3.05 2.40 1.15 0.67 -0.64 -1.14 -0.78 -2.84 -3.51 -4.21 

Linearised and non-linearised values are represented by crosses and dots in Figure 7, respectively. 
CombiStats performs the regression analysis on linearised values. Predicted values (dotted line on left 
panel) are referred as to LinPred in the export of results. These values are back transformed to obtain 
non-linearised predicted values (NLinPred, continuous line on right panel). 

The regression parameters calculated using linearised values can be exported using the menu Options 
> Advanced > Export Matrices > Linear (slope: Slpe1 = 0.6462; intercept: Icpt1 = 0.1953 for Ex. A.3.21). 

 

Figure 7. Plot of linearised and non-linearised values (Ex. A.3.21). 
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2.2. Overview of models 

The selection of the regression model depends first on the characteristics of the multi-dilution assay, 
mainly the type of response variable and dose-response relationship, as shown in Table 5: 

- The response variable (Y) can be either quantitative (e.g. absorbance values as in immuno-
assays) or quantal reported as a number of events out of a total (e.g. 5 positive cases out of 
10 as in in-vivo assays). 

- The dose-response relationship is usually determined during the development of the assay. If 
the dilution factor chosen by the analyst is additive and the quantitative response varies in a 
linear manner with the doses (e.g. 0, 2, 4, 6, 8), then the slope-ratio analysis is appropriate 
(Ex. A.1.6). If the selected dilution factor is multiplicative (fold-ratio) and the response 
describes a sigmoid curve after the doses (e.g. 1, 2, 4, 8, 16, 32, etc.) are log-transformed, then 
the 4-parameter logistic regression is appropriate (Ex. A.1.8 for quantal responses and Ex. 
A.1.14 for quantitative responses). 

Table 5. Regression models in CombiStats. 

Response (Y) Dose scale x-axis Shape Regression model 

Quantitative Additive Dose Straight lines Slope-ratio analysis (SRA) 

 Fold-ratio Ln(Dose) Straight lines Parallel-line analysis (PLA) 

 Fold-ratio Ln(Dose) Sigmoid curve 4-parameter logistic regression (4PL) 

Quantal Fold-ratio Ln(Dose) Sigmoid curve 4-parameter logistic regression (4PL) 

Doses are equidistant on the x-axis of the regression plot of the slope-ratio model. 
Similarly, Ln(Doses) are equidistant on the x-axis of the regression plot of the parallel-line model. 

2.3. Slope-ratio analysis 

In the slope-ratio analysis, a linear regression model (of the form Y = a + bX + error; a: intercept, b: 
slope) is fitted for each preparation. As doses are expressed on an additive scale, the regression lines 
diverge if the preparations have different strengths (Figure 8). For this reason, potency estimates 
depend on ratios between preparation slopes. 

In Ex. A.1.6, the slopes are 0.2467 and 0.2031 for the standard and test preparations, respectively. The 
relative potency estimate of the test preparation is RP = 0.2031 / 0.2467 = 0.823 (the test preparation 
is 17.7% less potent than the standard preparation). The potency of the test preparation is equal to 
the potency of the standard preparation multiplied by the RP, i.e. 1 RP/volume × 0.823 = 0.823 
RP/volume. 

Linearity of the regression lines is a typical assay validity criterion. In addition, multi-dilution assays 
assume that the preparations are similar (that they act as dilution of the same substance). In a slope-
ratio analysis, similarity is demonstrated if the regression lines intersect each other at zero-dose 
(common intercept assumption). The equality of regression intercepts is thus evaluated (Intersection 
source of variation in the ANOVA table) and constitutes another validity criterion. 

The additive dose-scale also offers the possibility to consider blank (zero-dose) results during the 
statistical evaluation. The difference between the mean intercept of the preparations and the mean 
of the blanks is calculated, comparing the signal of the product matrix to the background signal of the 
assay. 
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Figure 8. Slope-ratio model. 

2.4. Four-parameter logistic regression model 

The 4-parameter logistic regression model (4-PL) is used in case of sigmoid curves. This model is 
defined by lower and upper asymptotes (a and d parameters in the equation below), a slope (b) and 
a mid-point (c). In case of quantitative response variables, this model requires enough doses (usually 
about 10 x-fold dilution points including 4 to 5 points in the linear part of the sigmoid) to cover the 
sigmoid, from product matrix/background signal (lower asymptote) to saturation (upper asymptote). 

𝑌𝑌 = 𝑎𝑎 +
𝑑𝑑 − 𝑎𝑎

1 + �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐 �
𝑏𝑏 + 𝐷𝐷𝑒𝑒𝑒𝑒𝐷𝐷𝑒𝑒 

As doses are expressed on a log-scale, there is a shift between the sigmoid curves if the preparations 
have different strengths. In other words, the (relative) potency depends on the difference between 
the preparation mid-points. 

In Ex. A.1.14, the mid-points are 5.39071E-3 IU and 1.84758E-3 IU for the standard and test 
preparations, respectively (the assumed potency of the test preparation was set to 0.2 IU/mL in the 
data table, instead of “? IU/mL”, for the sake of the presentation). The relative potency is RP =  5.39071 
/ 1.84758 = 2.918. On the regression plot (Figure 9), the two regression lines are distant by ln(RP) = 
1.07 Ln(IU) on the x-axis. The potency of the test preparation is equal to the assumed potency of the 
preparation multiplied by the RP, i.e. 0.2 IU/mL × 2.918 = 0.5836 IU/mL. 

As for the slope-ratio analysis, linearity of regression lines and similarity of preparations should be 
demonstrated. In 4-PL regression models, these features are evaluated after linearization of the 
sigmoid curves (section 2.1). In particular, similarity is demonstrated if the linearised regression lines 
are parallel (common slope assumption). Non-linearity and non-parallelism are thus evaluated 
(ANOVA table) and constitute two assay validity criteria. 

The sigmoid curve of the 4-parameter logistic model is symmetrical on each side of the mid-point. A 
fifth parameter (i.e. asymmetry factor as in Ex. A.3.32) can be added to the model in case of lack of fit 
between the observed results and the fitted curve.  

2.5. Parallel-line analysis 

The 4-parameter logistic and parallel-line models share the same selection criteria: a quantitative 
response and log-transformed doses. The use of one or the other will usually depends on additional 
considerations. First, let us recall that the 4-parameter logistic model usually requires about 10 
dilution points. The analyst may not be interested in the dilution points corresponding to the lower 
and upper asymptotes of the sigmoid curve, especially if he is testing similar preparations on a routine 
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basis. In such a case, the analyst may decide to keep the dilution points corresponding to the steepest 
and linear part of the sigmoid (Figure 9). The parallel-line model is then appropriate (Ex. A.1.1). 
Because this model usually requires about 5 dilution points, the analyst can test more preparations 
on the same plate or in the same run. 

In the parallel-line analysis, a linear regression model (of the form Y = a + bX + error; a: intercept, b: 
slope) is fitted for each preparation. As for the 4-parameter logistic model, doses are expressed on a 
log-scale, with the same two main outcomes: 

i) The regression lines should be parallel (common slope assumption). This validity 
criterion, if not met, may indicate non-similarity of preparations, 

ii) The potency estimates depend on distances between the regression lines of the 
preparations, that is, differences between preparation intercepts (relative potency = 
(aTest - aStd) / bCommon). 

 

Figure 9. Sigmoid curves (4-parameter logistic model). The relative potency (RP) depends on the 
difference between the mid-points of the preparations. The steepest part of the curves can be used 

to fit a parallel-line model. 

Note. The parallel-line model can be used on a subset of dilution points selected in the steepest part 
of the sigmoid curve (4-PL model). It may not work in the other direction, i.e. adding extra dilution 
points on each side of a series of dilution points showing satisfactory linearity of the dose-response 
relationship may not result in a sigmoid curve. 

2.6. Other regression models 

Multiple dilution assays 

For multiple dilution assays based on quantal responses, CombiStats can estimate potency results and 
effective doses using the Spearman-Kaerber method. The user cannot select this method, which is not 
described in Ph. Eur. Chapter 5.3 as it is an empirical approach and not a regression analysis. As a 
result, no ANOVA table is produced, with no possibility to assess non-linearity nor non-parallelism of 
regression lines.  

However, CombiStats will automatically invoke this method when it cannot fit the 4-parameter logistic 
regression. A typical example is the lack non-extreme responses for the selected dose range, which 
precludes the calculation of the slope parameter. Example A.3.31 illustrates this issue, also known as 
complete or quasi-complete separation (Table 6). From a design perspective, the analyst may consider 
revising the dose range. 
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“Spearman-Kaerber method used” is the message that appears on the CombiStats sheet, above the 
tables of potency estimates. 95% confidence limits of potency estimates are calculated using the 
Irwin/Cheeseman formula. 

Table 6. Example of complete separation in models based on quantal responses 
(Results come down to 2 groups with 0% and 100% probability levels). 

Dose 1/1 1/2 1/4 1/8 1/16 1/32 1/64 1/320 
Resp. 0/4 0/4 0/4 0/4 4/4 4/4 4/4 4/4 

Single dilution assays 

CombiStats can also compare the results of different preparations in case of single dose assays. 
Specifically, the software performs the one-sided test of Wilcoxon-Mann-Whitney to assess the null 
hypothesis of equality between: 

- The actual potency of the test preparation, which is unknown, and, 

- The assumed potency of the test preparation, which is calculated using information about 
predilutions and the assigned potency of the standard preparation. 

If the null hypothesis is rejected, the analyst can conclude that the test preparation contains 
significantly more (or less) than the assumed potency. Therefore, this test is referred as to a limit test 
in CombiStats. Prior to run the test, the analyst should select Completely randomised from the Design 
tab of the Options Wizard as well as Parallel-lines or Quantal responses from the Model tab for 
quantitative and qualitative results, respectively. 

2.7. Data transformations 

The statistical analysis of multi-dilution assay results involves different types of data transformations. 
As shown in Table 5, doses (x-axis) are log-transformed in all models, with the exception of the slope-
ratio model. Thus, the transformation applied to the doses is model-dependent. The response variable 
(y-axis) can be transformed as well for different purposes: 

- The analyst can apply a data transformation to improve the fit of the slope-ratio model or 
parallel-line model. Example A.1.5 can be run with and without the logarithm transformation 
to assess its benefit on the linearity and parallelism of the regression lines. Although the 
logarithm transformation is likely to be the most frequent, several other transformations of 
the response variable are available in CombiStats. More generally, these transformations are 
referred as to power transformations, e.g.: 

Label Power Comments 

Inverse (1/y)  → y-1 
The log transformation is a 
special case where the power 
transformation is defined as y0.  

Square root (�𝑦𝑦) → y0.5 

Square (y²) → y2 

- Sigmoid models for quantitative and quantal responses are characterised by a linearization of 
the dose-response relationship, prior to fit the regression model (section 2.1). This 
linearization always involves a data transformation of the response variable. Thus, the 
transformation is model-dependent. The default transformations are Logit and Probit for 
quantitative and quantal responses, respectively. However, other transformations are 
available as shown in Table 7. 
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Table 7. Data transformations. Model-dependent transformations are in italic. 

Regression model X-scale Y-scale 

Slope-ratio analysis (SRA) Dose Power transformations (y-1, y0, y0.5, y², etc.) 

Parallel-line analysis (PLA) Ln(Dose) Power transformations (y-1, y0, y0.5, y², etc.) 

Sigmoid (4PL), quantitative Ln(Dose) Probit, Logit (default), Angular, Rectangular, Gompertz  

Sigmoid (4PL), quantal Ln(Dose) Probit (default), Logit, Angular, Rectangular, Gompertz 

Model-dependent transformations are combined with some weighting of the data required to linearise the dose-
response relationship. 

Figure 10 shows the two dialog boxes available from the Options wizard to select the transformations 
of the response variable. With regards the linearization of sigmoid curves, the Gompertz 
transformation is applicable to asymmetrical curves with a shorter lower tail and longer upper tail. 
The Probit, Logit, Angular and Rectangular transformations are applicable to symmetrical curves, as 
shown in Figure 11: 

- Probit: short tails, i.e. sigmoid curves reach the minimum and maximum y-values rapidly, 

- Logit: long tails, i.e. sigmoid curves reach the minimum and maximum y-values slowly, 

- Angular and rectangular: almost no tails, i.e. sigmoid curves reach the minimum and maximum 
y-values even more rapidly than in the case of the Probit. 

Note. The “5-parameters” check box adds an additional regression parameter to the 4-parameter 
logistic model to account for potential asymmetry of the sigmoid curve. 

The shape of the sigmoid curves obtained during the validation exercise and first routine assays 
together with the knowledge about the response variable (e.g. based on growth, tolerance) can be 
used to support the selection of the most appropriate transformation.  

Transformations of response 
variables Linearization of sigmoid curves 

 
    y^0.5 corresponds to the square root of y. 

 

Figure 10. Dialog boxes for the selection of transformations. 
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Figure 11. Examples of possible shapes of sigmoid curves. 

In summary, data transformations are used to improve the model fit. The most appropriate 
transformations (of x- and y-values) are usually defined during the development of the method and 
should not be modified from one routine assay to another. Routine assays should be analysed in a 
consistent way. Otherwise: 

- Sporadic changes of the transformation may be indicative of errors during the experimental 
work (e.g. dilution error), reporting or analysis of results. This assumption can be reinforced 
by unexpected values obtained for other statistical parameters. 

- Time-to-time changes of the transformation may be indicative of a poorly developed assay or 
lack of command of the method. Assay optimisation (e.g. redefinition of the optimal dose-
range) and better standardisation of the operating procedure should be carried out to 
improve the reliability and comparability of future assay results. 

- Recurrent use of another transformation than the one selected initially may be indicative of a 
permanent change. The analyst should evaluate how this change affects the assay results (that 
may be systematically under or overestimated) and take appropriate actions, if needed. 

2.8. Weight functions 

The regression models applied to quantitative data assume a constant variance among replicated 
results across the dose range. Graphically, the spread of the data points look rather similar from one 
dose to another (Ex. A.1.1). This variance is the residual error in the ANOVA table (complete 
randomised design). Weights are set to 1 (w = 1), and all the observations contribute equally to the 
regression fit. 

In some assays, however, the variance among replicates can depend on the dose. In Ex. A.3.17, the 
spread of the data points, represented by the standard deviation in Figure 12, increases with the dose 
(in a ratio of 1 to 6 between D01 and D11 for Sample 1 and in a ratio of 1 to 9 for Sample 2). In such a 
case, it is usual to calculate the relative standard deviation, which tends towards a common value (rsd 
= 4% here). CombiStats offers the possibility to address this heterogeneity of variance by performing 
a weighted regression analysis with weights inversely proportional to the variance observed at each 
dose. To do so, the analyst can indicate w = 1 / (m*m) as weight function. 

Note. Weights are available from the Advanced options dialog box only (F12 shortcut). 
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Example A.3.30 shows another application of the weight function used to alleviate the negative effect 
of outliers on the regression fit. To do so, the analyst can indicate w = h as weight function. CombiStats 
performs a regression analysis where outlying results are replaced by values calculated according to 
the Huber’s robust approach. 

 

Figure 12. Raw data in Ex. A.3.17. 

The two previous examples show that the analyst can define his own weight functions. However, this 
function can also be model-dependent. It is the case for quantal responses, which differ from 
quantitative responses by, among others, the nature of the probability distribution: 

- Quantitative responses follow normal distributions defined by a mean and a variance that are 
independent parameters. Observed mean values can be calculated at each dose and predicted 
by the regression line fitted across the dose range. If the variances are equal from one dose 
to another, no weight function is required (w = 1). Otherwise, the analyst can adjust it. 

- Rates (e.g. 1/10, 3/10, 5/10) in quantal responses follow binomial distributions, which means 
and variances are dependent parameters. The observed mean values are simply the rates, e.g. 
m1 = 0.1, m2 = 0.3 and m3 = 0.5. Variances are calculated as v = m × (1 – m), i.e. v1 = 0.09, v2 = 
0.21 and v3 = 0.25. Since variances are unequal from one dose to another, CombiStats 
performs a weighted regression analysis with weights inversely proportional to the variances. 
The weight function is model-dependent and equal to w = n / (m*(1 – m)) (where n is the size 
of the group, e.g. 10 animals/group). 

In addition, the weight function should be adapted when the response variable represents counts like 
in bioassays based on CFU or PFU (colony- or plaque-forming units). Counts follow a Poisson 
distribution, which variance is equal to the mean (v = m). Therefore, the weight function should be set 
to w = 1/m for a correct evaluation of the assay results. 

In summary, weight functions, just like data transformations, can be used to improve the model fit. 
Some weight functions are model-dependents. Others can be defined during the development of the 
method and should be used consistently in routine (unless intended modifications of the method 
affect the weight function). Otherwise, the use of another weight function in routine may be indicative 
of an issue. The analyst should run an investigation and take appropriate actions, if needed. 

Rep. D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11
1 0.217 0.209 0.214 0.233 0.291 0.395 0.497 0.696 0.644 0.877 0.786
2 0.208 0.225 0.222 0.235 0.289 0.415 0.561 0.675 0.762 0.801 0.853
3 0.206 0.222 0.212 0.254 0.310 0.429 0.564 0.681 0.760 0.891 0.793
4 0.212 0.219 0.212 0.235 0.309 0.416 0.570 0.682 0.742 0.788 0.815

Std.dev 0.005 0.007 0.005 0.010 0.011 0.014 0.034 0.009 0.056 0.052 0.030
Rsd 2% 3% 2% 4% 4% 3% 6% 1% 8% 6% 4%

Rep. D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11
1 0.204 0.209 0.214 0.253 0.320 0.414 0.516 0.673 0.708 0.795 0.847
2 0.210 0.212 0.216 0.241 0.295 0.386 0.506 0.643 0.708 0.843 0.858
3 0.210 0.230 0.215 0.235 0.277 0.396 0.514 0.619 0.701 0.808 0.777
4 0.215 0.211 0.219 0.243 0.262 0.378 0.532 0.606 0.710 0.768 0.784

Std.dev 0.005 0.010 0.002 0.007 0.025 0.016 0.011 0.029 0.004 0.031 0.042
Rsd 2% 5% 1% 3% 9% 4% 2% 5% 1% 4% 5%

Doses, Sample 1

Doses, Sample 2
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3. ANOVA TABLE 

3.1. Introduction 

The analysis of variance (ANOVA) table provides a summary of the fitted model, with focus on the 
evaluation of the validity criteria. The content of the ANOVA table should be interpreted in logical 
order. 

The first question to address is to know whether the different preparations tested at different doses 
led to some significant change of the signal/response variable. As the combinations of preparations 
and doses are referred to as treatments in Ph. Eur. Chapter 5.3, the requested information appears in 
the “Treatments” line of the ANOVA table (Table 8). However, depending on the display options in 
CombiStats, the Treatments effect can be labelled as “Full factorial” as well. 

Table 8. ANOVA Table – Treatment effect (Ex. A.2.8). 

Source of variation DF Mean squares F-ratio Probability 

Treatments    8       12.0863 621.579 0.000 (***) 

Residual error    9         0.0194444   

Total 17         5.69794   

        DF: degrees of freedom 

A summary of the assay design is required to evaluate the content of the ANOVA table correctly. 
Example A.2.8 is a completely randomised design in which the standard and sample preparations were 
tested at 5 and 3 doses, respectively. There were 2 replicates per dose and 2 blank results (zero-dose). 

Degrees of freedom  

With regards the degrees of freedom, there are: 

- 9 treatments in total, i.e. (1 std × 5 doses) + (1 test × 3 doses) + (1 zero-dose). The Treatments 
effect has 9 – 1 = 8 degrees of freedom, 

- 9 treatments × (2 rep. – 1) = 9 degrees of freedom for the residual error. In addition, the 
residual error represents the pure error (repeatability) of the assay as the design is completely 
randomised (Section 1.4). The residual error is s² = 0.0194444 Unit². The corresponding 
experimental SD is s = 0.139 Unit.  

Mean squares 

An introduction to Mean squares (MS) is needed to continue interpreting the ANOVA table: 

- Residual error: with 9 treatments of 2 replicates, 9 variances of repeatability can be calculated. 
The mean squared error is the average of the 9 variances, also called pooled variance. 

- Treatments: the overall mean is first calculated (mean of 18 results) and then the mean of 
each treatment (2 results/treatment). MS-Treatments depends on the squares of the 
differences between the 9 treatment means and the overall mean. The greater the differences 
between the treatment means, the higher the MS value, the more likely the treatments to 
have a statistically significant effect on the assay signal. 

The significance of the Treatments effect is obtained by calculating the ratio between MS-Treatments 
and MS-Error = 12.0863 / 0.0194444 = 621.579. This ratio consists in performing an F-test (F-ratio) 
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that tests the hypothesis of “no treatment effect”, i.e. “no differences between the 9 treatment 
means”. This hypothesis is unlikely given the high ratio (622) between MS-Treatments and the 
variance of repeatability. A probability (p-value = 0.000, i.e. less than 0.1%) can be calculated to further 
illustrate this outcome. 

p-values 

The treatment means are reported in the next table. The p-value represents the probability of getting 
these values just by chance, i.e. if we assume that no differences are expected at all. This scenario is 
of course unlikely, in light of the experimental SD (0.139). More precisely, it has less than 0.1% chances 
to occur. 

Treat. S-0.05 S-0.10 S-0.15 S-0.20 S-0.25 T-1.0 T-1.5 T-2.0 Blank 
Mean 3.4 4.9 6.2 7.9 9.5 4.9 6.4 7.7 1.5 

E.g. S-0.05 stands for the standard preparation at 0.05 µg, T-1.0 for the Test preparation at 1.0 mL in Ex A.2.8. 

P-value are reported with 3 decimal places in CombiStats, with very low p-values appearing as 0.000. 
P-values that indicate a statistically significant effect are followed by 1, 2 or 3 stars: 

- No star: the p-value is greater than or equal to 0.05 (5%), which is the usual significant 
threshold in statistics. The null hypothesis of “no effect” cannot be rejected. 

- (*): the p-value is greater than or equal to 0.01 (1%) and lower than 0.05 (5%). The effect is 
significant. 

- (**): the p-value is greater than or equal to 0.001 (0.1%) and lower than 0.01 (1%). The effect 
is highly significant. 

- (***): the p-value is lower than 0.001 (0.01%). The effect is very highly significant. 

In summary 

The F-test has concluded to significant differences among the 9 treatment means. If it would not be 
the case, the analyst could stop the statistical analysis and most likely invalid the assay. 

The information contained in the Treatments effect remains rather non-specific, however. The next 
step consists in assessing the significance of additional effects addressing specific questions, in relation 
with the assay design. 

3.2. Slope-ratio analysis 

With 2 preparations tested at several doses plus some blank results as in Ex. A.2.8, the Treatments 
effect can be split into 4 effects that can be used to validate the assay (Table 9). Note that the sum of 
the degrees of freedom of these effects is equal to the number of degrees of freedom of the parent 
Treatment effect. More generally, the ANOVA table of the slope-ratio analysis depends on the assay 
design. For example, 

- The Blanks effect requires a zero-dose experimental condition, 

- In case of one preparation only, there will be no Intersection effect (no preparation intercepts 
to compare), 

- In case of 2 doses per preparation, there will be no Non-linearity effect (a minimum of 3 doses 
are needed to assess deviation from linearity). 
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Table 9. Effects in the ANOVA table of a slope-ratio analysis (Ex. A.2.8). 

Treatments               DF =  8 Questions 

 
 

Regression 2 Are preparation slopes significantly different from 0 (significant 
dose effect)? 

 
 

 
 

Blanks 1 Is there any significant difference between the mean intercept and 
the mean of blank results? 

 
 

 
 

Intersection 1 Is there any significant difference between preparation intercepts? 

 
 

 
 

Non-linearity 4 Is there any significant deviation from linearity of the regression 
lines? 

 
 

Residual Error 9  

CombiStats performs F-tests to assess the significance of the various effects (Table 10). For example, 
F-ratio = 0.144689 / 0.0194444 = 7.441 for the Blanks effect. The p-value (0.023) is below the 0.05 
significant threshold, meaning that there is a significant difference between the mean intercept and 
the mean of blank results. 

As part of the validity assessment of the assay results, the Regression effect should be significant (p-
value ≤ 0.05), while the Intersection and Non-linearity effects should not be significant (p-value > 
0.05). With p-values equal to 0.000, 0.287 and 0.309, respectively, these validity criteria are met. Note 
that CombiStats further splits the Non-linearity effect into individual effects (i.e. due to the standard 
and due to sample 1). 

Table 10. ANOVA table of a slope-ratio analysis (Ex. A.2.8). 

 

3.3. 4-parameter logistic and parallel-line models 

The 4-parameter logistic model and parallel-line model both share the same structure of ANOVA table.  

Table 11 shows how the Treatments effect can be turned into specific information. Example A.1.14 
consists in 20 treatments (2 prep. × 10 doses) tested using a completely randomised design. There are 
2 replicates per treatment and the results are fitted using a 4-parameter logistic model. 

More generally, the ANOVA table depends on the assay design. For example, 

- In case of one preparation only, there will be no Preparations effect, nor Non-parallelism 
effect. Indeed, with only one intercept and slope, there are no further intercepts (or slopes) 
to compare. 
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- In case of 2 doses per preparation, there will be no Non-linearity effect. Indeed, a minimum 
of 3 doses are needed to assess deviation from linearity in parallel-line models (4-parameter 
logistic model require even more doses to reach the lower and upper asymptotes). 

Table 11. Effects in the ANOVA table of a 4-parameter logistic model (Ex. A.1.14). 

Treatments               DF =  19 Questions 

  Preparations  1 Is there any significant difference between preparation intercepts? 
  

  Regression  1 Is the common slope significantly different from 0 (significant dose 
effect)? 

  

  Non-parallelism  1 Is there any significant difference between preparation slopes? 

  

  Non-linearity   16 Is there any significant deviation from linearity of the regression 
lines? 

  

Residual Error 20  

CombiStats assesses the significance of the various effects (Table 12), using F-tests for parallel-line 
analyses and Chi-square tests for 4-parameter logistic models. For example, Chi-square = (MSPrep. × 
DFPrep.) / MSError = (0.000756861 × 1) / 0.00142898 = 0.529653 for the Preparations effect. With such a 
low ratio, it is likely that the effect is not significant. Indeed, the p-value (0.467) is almost ten times 
higher than the 0.05 significant threshold. 

As part of the validity assessment of the assay, the Regression effect should be significant (p-value ≤ 
0.05), while the Non-parallelism and Non-linearity effects should not (p-value > 0.05). With p-values 
equal to 0.000, 0.830 and 0.918, respectively, these validity criteria are met. 

Table 12. ANOVA table of a 4-parameter logistic model (Ex. A.1.14). 

 

The analyst should check the validity criteria in logical order. In practice, he should start by the bottom 
of the ANOVA table and go up line-by-line, stopping at the line where a validity criterion is not met:  

1. Residual error: the analyst can check whether the error term is consistent with those of 
previous assays (by means of a control chart for example). A high value may be indicative 
of outlying results due to some mistakes (e.g. experimental, reporting). A low value may be 
of concern too as the residual error appears at the denominator of the statistical test. F-
ratios or chi-square values will increase artificially with Non-linearity and Non-parallelism 
criteria very likely to fail. This issue is further discussed in sections 4.5 and 4.6. 

2. Treatments: this overall effect should be significant, due to, at least, the dose range 
selected to get a significant slope (significant dose-response relationship). The steeper the 
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slope, the better the precision about the potency estimates (i.e. the narrower the 95% 
confidence limits). 

The Treatments effect is split into further effects in the next lines of the ANOVA table, which help 
assessing the validity of the assay. The first of these effects is the Non-linearity effect. 

3. Non-linearity: should be non-significant (p-value > 0.05) to conclude to linearity of the dose-
response relationship. This effect is applicable to all regression models, including sigmoid 
models for which CombiStats performs a linearization transformation first. In other words, 
all the dilution points, including those in the asymptotes, take part in the evaluation of the 
Non-linearity effect. The number of degrees of freedom is equal to the number of dilution 
points – 2 for each preparation. Therefore, there are 8 degrees of freedom for each 
preparation (16 in total) for the sigmoid model presented in Table 12. 

Note. The Non-linearity overall effect (i.e. pooled across the preparations) is used in Ph. Eur. 
Chapter 5.3 as part of the assay validity assessment. However, the analyst may pay 
attention to the individual effects (i.e. of each preparation) reported in the ANOVA table of 
CombiStats, when the p-value of the overall effect is close to the significance threshold. 
Indeed, some of the individual effects may be statistically significant. The analyst may 
decide to take appropriate actions in this case.  

4. Non-parallelism: a key assumption is that the test and standard preparations are similar. In 
this case, they act as dilution of the same substance, which implies that the regression lines 
are parallel. Therefore, the Non-parallelism effect should be non-significant (p-value > 0.05) 
to conclude to equality of slopes, i.e. similarity of preparations. 

5. Regression: the p-value should be ≤ 0.05 to conclude to a significant dose-response 
relationship. The steeper the common slope, the better the precision of the potency 
estimates (narrower 95%-CL). 

6. Preparations: compares differences between regression intercepts linked to the strength 
(potency) of the preparations. The p-value should be ≤ 0.05 if some difference is expected, 
> 0.05, otherwise. The analyst may also decide not to set any validity criterion for this effect.  

3.4. Coefficients of correlation and determination 

In classical slope-ratio and parallel-line models, CombiStats calculates the coefficient of correlation 
|r|, and reports its absolute value comprised between 0 and 1. This coefficient is linked mainly to the 
regression effect of the ANOVA table:  a very significant slope usually results in a high coefficient of 
correlation. 

The square of r (r²) is the coefficient of determination, which represents the percentage of the 
variation of the results that is explained by the fitted model. In Ex. A.1.1, r = 0.7654 (76.54%) and r² = 
0.5858 (58.58%). The regression model explains less than 60% of the variation of the experimental 
results. This rather low percentage is explained mainly by the high experimental/residual error, which 
accounts for 34.55% of the variation (SSError / SSTotal = 41340.9 / 119647 = 0.3455). 

The r² is calculated using the formula: r² = SSModel / SSTotal = (SSPreparations + SSRegression) / SSTotal 

The sums of squares (SS) of Preparations and Regression are given in the Normal ANOVA table. Their 
sum (SSModel) can be displayed by selecting the Complete ANOVA from the Options wizard. Table 13 
shows the Complete ANOVA, with focus on the Model, Deviation from model and Residual Error sums 
of squares. It appears that r² represents the percentage of variation of the results that is explained by 
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the fitted model after subtracting lack-of-fit effects (deviation from linearity and parallelism for 
parallel-line models, deviation from linearity and intersection for slope-ratio models). 

Note. In Ex. A.1.1, deviations from model are limited to non-parallelism, as non-linearity cannot be 
evaluated with 2 doses for each preparation only. 

Table 13. Sums of squares of the Complete ANOVA table of Ex. A.1.1. 

 DF Sum of squares (SS) Contributions 

Model 3   70087.5   58.58% (r²) 
  

Preparations 2      63830.8      53.35% 
  

  
Regression 1        6256.63        5.23% 

  

Deviation from model 2   8218.23     6.87% 
  

Non-parallelism 2      8218.23        6.87% 
  

Residual Error 54   41340.9   34.55% 

Total 59 119647 100% 

For sigmoid models that involve a linearization of dose-response relationship, CombiStats calculates a 
weighted coefficient of correlation. This coefficient can be obtained by taking the square root of the 
coefficient of determination calculated as above. In Ex. A.1.14, the coefficient of determination is 
equal to SSModel / SSTotal = 9.43129 / 9.47265 = 0.995634 and the weighted coefficient of correlation is 
equal to 0.997815. The simple or unweighted coefficient of correlation, introduced previously, is also 
reported, but for information only. In addition, it cannot be calculated from the sums of squares of 
the ANOVA table anymore. 

If the model involves some weighting of the response variable, CombiStats performs a weighted 
regression and thus reports the weighted coefficient of correlation only. Weights can be defined using 
the Weight function of the Advanced options (F12). CombiStats performs a weighted regression when 
the weight function is different from w = 1 (no weight factor). It is the case for quantal responses, for 
which w = n / (m × (1 – m)), by default (Ex. A.1.8). Weighted regression applied to quantitative data 
are found in Ex. A.3.17, A.3.24 and A.3.29, in which the weight function (w = 1/m²) is used to stabilize 
the variance when it increases with the dose. In Ex. A.3.30, Huber’s weights (w = h) are used to reduce 
the influence of outliers without having to exclude them.  

Table 14 provides a summary of the coefficients of correlation reported on CombiStats sheets 
depending on the regression model and weight function used. 

Table 14. Coefficients of correlation reported on CombiStats sheets. 

Model No weights (w = 1) Weights (w ≠ 1) 
   

Slope-ratio Unweighted r Weighted r 

Parallel-line Unweighted r Weighted r 

Sigmoid, quantal data Not applicable Weighted r 

Sigmoid, quantitative data Weighted r and 
unweighted r 

Weighted r 
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4. ANALYSIS AND INTERPRETATION OF RESULTS 

4.1. Global analysis versus individual analyses 

It is common to assay the standard and several test preparations in the same run, to make full use of 
resources, for example. The question is whether the analyst should perform one global statistical 
analysis or compare each test preparation to the standard in separated analyses. 

The question is raised because the potency estimates and 95% confidence limits calculated for the 
test preparations will differ depending on the type of analysis. From the information provided in Table 
15, the analyst can conclude that: 

- Differences in common slopes and intercepts will affect the potency estimates, primarily. 
- Differences in residual errors and associated degrees of freedom will affect the 95% CL. 

Table 15. Key statistical parameters used to calculate potency estimates and 95% CL. 
(Parallel-line model, completely randomised design: 4 preparations × 5 doses × 3 replicates). 

Parameters Global analysis Separated analyses 

Output One set of parameters 
calculated on 60 data  

Three sets of parameters calculated on 30 
data (standard: 15, test preparation: 15) 

Common 
slope 

Average of 4 individual slopes 
(standard and 3 test preparations) 

Average of 2 individual slopes 
(standard and selected test preparation) 

Intercepts One vector of 4 intercepts 
{aStd, aT1, aT2, aT3}  

Three vectors of 2 intercepts 
{a’Std, a’T1} ; {a’’Std, a’’T2} ; {a’’’Std, a’’’T3} 

Residual 
error 

Average of 4 experimental variances 
(standard and 3 test preparations) 

Average of 2 experimental variances 
(standard and selected test preparation) 

Degrees of 
freedom 4 prep. × 5 doses × (3 rep. – 1) = 40 2 prep. × 5 doses × (3 rep. – 1) = 20 

The global analysis would be relevant from a statistical viewpoint, as it reflects the experimental 
design (all the preparations tested in the same run) with some benefits: 

- Control of the type I error rate. A statistical test can result in erroneous conclusions. For 
example, the effect of a factor (e.g. non-linearity or non-parallelism) can be declared as 
significant whereas it is not. This outcome is defined as the Type I error, which nominal rate is 
5% in the global analysis, whatever the number of preparations tested. By performing multiple 
analyses on the same set of data, the error rate will increase, and so the risk of taking wrong 
conclusions about the validity of the regression analyses.  

- Robust estimates of slopes and intercepts. The calculation of the slope and intercept of a 
given preparation takes into account the experimental results obtained for the other 
preparations. For similar preparations tested in parallel, the global analysis will provide more 
robust estimates of the slopes and intercepts than the separated analyses. 

- Robust estimate of the assay repeatability. Likewise, with the residual error calculated as the 
average of the experimental variances of the preparations, the global analysis will result in a 
more robust estimate of the assay repeatability (reflected by the increased number of degrees 
of freedom). 
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Overall, better precision (tighter 95%CL) can be expected from the global analysis of the results of a 
test run as well as more consistent potency estimates from one test run to another. However, the 
global analysis is meaningful only if all the preparations are similar (i.e. act as dilutions of a same 
product). This assumption – which is the basis of the regression models presented in Ph. Eur. Chapter 
5.3 – is made, for example, when batches of a product are to be tested in routine analyses. 

Despite the elements above in favour of the global analysis, the analyst may decide to perform 
separated analyses (one analysis per test preparation), depending on further considerations, e.g. 

- There may be a formal request from a regulatory body to perform separated analyses. 

- Separated analyses can result in a more flexible quality control process (e.g. invalid results of 
one preparation will not affect the processing of other preparations). 

- The analyst may be testing unknown products with no guarantee of similarity among them. 
Separated analyses will allow evaluating the preparations, case by case. 

4.2. Table of potency estimates 

The potency estimates and 95% lower and upper limits (95%CL) of the test preparations are reported 
below the ANOVA table. In the case of separated analyses, there is one table of result in each 
CombiStats file. In case of a global analysis, there are as many tables of results as tested preparations. 

As shown in Figure 13, the results are reported using the experimental units of the assay, e.g. 0.214 
(95%CL: 0.185, 0.250) ng/unit and 936.6 (95%CL: 874.6, 1003) IU/mg. The 95%CL are also reported as 
percent of the potency estimate (Rel. to Est.): 

- Rel. to Est. = (0.185/0.214, 0.250/0.214) = (86.3%, 116.7%) in Ex. A.2.6, 
- Rel. to Est. = (874.6/936.6, 1003/936.6) = (93.4%, 107.1%) in Ex. A.3.2. 

The 95%CL represent the precision of the potency result for which validity criteria can be found in 
monographs when applicable (e.g. 95%-105%, 80%-125%). 

  

Figure 13. Table of potency estimates (Ex. A.2.6 and A.3.2). 

In addition, potency results can be reported as percent of the assumed potency of the test preparation 
specified on top of the table of raw data, e.g. 1000 IU/mg in Ex. A.3.2: 

- Rel. to Ass. = (874.6/1000, 936.6/1000, 1003/1000) = (87.5%, 93.7%, 100.3%). 

In absence of assumed potency of the test preparation, question marks are reported.  

The assumed potency indicated by the analyst on top of the data table for the test preparation should 
be use with caution as it can influence the calculated potency results, depending on how doses are 
specified. Four different cases are shown in Table 16, based on Ex. A.1.2: 

- Case 1: the assumed potency is 1 unit/mg and doses are reported as final contents (units) 
(explicit notation). The potency is 1.11181 unit/mg (Rel. to Ass. = 1.11181 / 1 = 111.2%). 

- Case 2: the assumed potency is 2 unit/mg and doses are reported as final contents (units) 
(explicit notation). The potency is now 2.22361 unit/mg (Rel. to Ass. = 2.22361 / 2 = 111.2%). 
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- Case 3: the assumed potency is 2 unit/mg and doses are reported as dilutions (implicit 
notation). The potency is 1.11181 unit/mg (Rel. to Ass. = 1.11181 / 2 = 55.6%). 

- Case 4: the assumed potency is 1 unit/mg and doses are reported as dilutions (implicit 
notation). The potency is 1.11181 unit/mg (Rel. to Ass. = 1.11181 / 1 = 111.2%). 

In conclusion, when doses are reported as final contents (explicit notation, cases 1 and 2), the assumed 
potency of the test preparation takes the role of an assigned (true) potency used in the calculation of 
the potency result. When doses are reported as dilutions (implicit notation, cases 3 and 4), the 
assumed potency has no effect on the calculated potency result, only on the ‘relative to assumed’ 
(Rel. to Ass.).  Therefore, the analyst should enter doses as final contents only when he is sure about 
the expected potency value of the test preparation. He should enter doses as dilutions otherwise.  

Table 16. Effect of assumed potency and dose entry on calculated potency results. 

Case Data table Potency results 

1 
 

 

2 
 

 

3 
 

 

4 
 

 

There is the possibility to calculate effective doses in addition to potency estimates. This option is 
available from the Advanced options dialog box (F12 shortcut). The analyst can enter m = 50 and check 
‘Perc.’ to calculate the classical ED50% value (Figure 14). The interpretation given to this value 
depends on the type of response variable used in the 4-parameter logistic model: 

- Quantitative response: ED50 is the mid-point (parameter C) of the sigmoid curve (the other 
parameters, i.e. common slope, lower and upper asymptotes, are displayed on the right of the 
CombiStats file, just below the data tables). 

- Quantal responses: ED50 is the dose producing an effect in 50% of subjects (e.g. 6 seropositive 
animals out of 12). Other effective doses can be calculated (e.g. EDm=10, EDm=90). 

Figure 14 shows how the ED50 value and 95%CL are displayed according to selected options in the 
Advanced options dialog box. In this example, the ED50 value is ¼ of the assumed potency, i.e. 0.25 
IU (Option 1: ED50 = 0.25 IU). Therefore, a dose of 1 IU contains 4 times the effective dose (Option 2: 
1 dose = 4 ED50) (Rel. to Ass. = 400%). 
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Data table Option 1: how many IU for the ED50? Option 2: how many ED50 in a dose? 

 

 
 

 

 
 

 

Figure 14. Table of ED50 value and 95%CL. 

The analyst may decide to untick the ‘Perc.’ checkbox. In that case, the effective dose is the dose 
required to reach an expected value (m) of the response variable. This option is of limited interest for 
quantal responses but is useful for quantitative ones as it offers the possibility to perform inverse 
predictions (interpolation of concentrations). 

Example A.1.6 

The analyst wants to calculate the dose corresponding to an absorbance value of 0.2. This dose is in-
between S1 (0.33 RP) and S2 (0.66 RP) for the standard preparation and in-between T2 (0.66 RP) and 
T3 (1 RP) for the test preparation, according to the tables of raw data. After indicating m = 0.2 for the 
effective dose and unticking the ‘Perc.’ checkbox, the analyst obtains 0.596 and 0.724 RP for the 
standard and test preparations, respectively. 

Note that the data transformation influences the values of ED50. As a result, the analyst should be 
very cautious when comparing or plotting (e.g. on a control chart) the ED50 values of routine assays 
analysed using different data transformations, as they may be expressed on different scales. 

4.3. Plot of residuals 

The term “residual” represents the vertical distance from one result to the regression line. There are 
as many residual values as experimental results, as shown in Figure 15, and the squares of these values 
are used to calculate the experimental/residual error (pure error in the ANOVA table) at the basis of 
the F-tests calculation. The lower the residuals, the lower the experimental error, the higher the ability 
of F-tests to detect signals (e.g. regression, deviation from linearity or parallelism). Low residuals also 
result in higher values of the coefficient of determination. 

 

Figure 15. Regression plot with residuals represented by vertical dotted lines. 

The main objective of the regression analysis is to summarise the experimental results, replacing them 
by mean values constituting the regression line. This substitution is relevant if it does not cause too 
much loss of information. This loss depends on the magnitude of the residual values and is calculated 
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as one minus the value of coefficient of determination (see section 3.4). For example, to a coefficient 
of determination of 97% corresponds a loss of information of 3%. From a graphical viewpoint, a 
coefficient of 100% would imply all the results (data points) to be on the regression line 
(experimentally unlikely). 

However, a good coefficient of determination is not enough for the model to be fully valid. In 
particular, the analyst should check that the regression line follows the trend of the data points or that 
their spread is managed correctly at each dose-level (see weight functions in case of heterogeneous 
variances in section 2.8). 

Example A.2.1 

The dose-response relationship was fitted using a simple linear regression, which explains r² = 96.8% 
of the variation of the data. The residuals represent the remaining and unexplained 3.2%. 

      Resp. = a + b × ln(Dose) + error. 

The data points show some curvature (regression plot in Figure 16-a) confirmed by the highly 
significant non-linearity contrast (ANOVA table, F-ratio = 7.288, p ≤ 0.001). As the model equation 
doesn’t include a quadratic term (i.e. c × ln(Dose)²), the curvature is likely to account for most of the 
3.2% unexplained variation contained into the residuals. The curvature observed on the residual plot 
in Figure 16-b confirms this assumption. 

  
(a) Ex. A.2.1. Regression plot (b) Ex. A.2.1. Residual plot 

  
(c) Ex. A.2.2. Regression plot (d) Ex. A.2.2. Residual plot 

Figure 16. Regression plots and residual plots of Ex. A.2.1. and Ex. A.2.2. 

Example A.2.2 

The response variable was transformed (�𝑦𝑦) to improve the linear fit (section 2.7). The simple linear 
regression explains r² = 98.6% of the variation of the data. The residuals represent the remaining and 
unexplained 1.4%. The regression and residual plots in Figure 16-c-d show that the model fit has 
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improved significantly following the data transformation. In particular, the residual points are 
randomly distributed (expected distribution for a valid model). Therefore, the 1.4% unexplained 
variation can be attributed to random experimental variations (repeatability). The good fit is 
confirmed by the non-significant non-linearity contrast in the ANOVA table (F-ratio = 0.621, p = 0.712). 

In conclusion 

The residual plot is a key element of the validity assessment of the fitted model. Any trend in the data 
not properly addressed by the analyst will be visible on the residual plot, helping to identify possible 
root-causes (e.g. curvature, heterogeneous variances across the dose range) and to take relevant 
actions (e.g. data transformation, weight function). 

There is the possibility to represent the residuals (y-axis) according to different variables on the x-axis, 
like the observed responses or predicted responses. The residuals can be plotted also as raw or 
standardised values (recommended). The analyst can look at the different plots to check the 
goodness-of-fit of the model. 

Notes. 

The plots of residuals can be displayed using Tools > Graphs > Graph > Residual plot from the Menu 
bar. In addition, the residuals can be exported using Options > Advanced > Export Matrices > Dataset. 
They appear on the right part of the table as “RawRes” and “StandRes” for raw and standardised 
residuals, respectively. In CombiStats, standardised residuals are raw residuals adjusted for leverages 
(relative distances of data points on the x-axis (dose range)) and weighting function.  

4.4. Outliers 

Outliers are results which distances from the regression line are unexpectedly high. Since such 
distances are called residuals, an effective way to detect outliers is to look at the residual plot (section 
4.3). 

How to detect outliers 

Residual plots usually come along with lower and upper limits (centred on 0), similar to the control 
limits of a control chart. Residual points located beyond these limits are considered as potential 
outliers. 

In the absence of such calculated limits on the residual plots created by CombiStats, the analyst should 
consider the spread of the residual points on each side of the central line in order to define an 
empirical symmetrical interval representing the range of random variation of the assay. This interval 
can be further supported by approximated limits equal to k = 2 or 3 times the experimental standard 
deviation (“k-sigma limits”). 

{Lower, Upper} limits = {- k × SQRT(residual error), + k × SQRT(residual error)} 

Examples 

The distribution of residuals in Figure 16-d looks rather homogeneous, ranging from about -0.06 to 
0.06. Obviously, there are no outliers and an interval ranging, for example, from -0.05 to 0.05 would 
be too strict. A more practical range could be -0.075 to 0.075, supported by 2-sigma and 3-sigma limits 
equal to ± 0.058 and ± 0.087, respectively (residual error = 0.00085 in Ex. A.2.2). 

Two more examples of residual plots are shown in Figure 17. The distribution of residuals shows no 
particular trend on the first plot. A practical range of random variation could be (-0.7, 0.7) (residual 
error = 0.064, 2-sigma limits ± 0.51 and 3-sigma limits ± 0.76). 
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Four clusters are visible on the second plot. They are explained by the selected dose range and do not 
represent an issue. A practical range of random variation could be (-5, 5), denoting the presence of 
two outliers: dose T4, rep. 5 (y = 188, resid. = 30.2) and dose S3, rep. 2 (y = 187, resid. = 10.2). 

Note that the k-sigma limits would be too large in this last example, as the residual error is affected 
by the presence of the two outliers (residual error = 70, 2-sigma limits ± 17). This example reemphases 
the need to control chart residual errors (section 0) with the opportunity to replace the observed 
residual error by the average value of the control chart. 

  

Figure 17. Residual plots of Ex. A.2.14. and Ex. A.3.30. 

Declaration of outliers 

The analyst should not exclude an outlier from statistical considerations only. He should investigate 
and identify likely causes of exclusion. Examples of classical root-causes are: 

- Experimental work: preparation/dilution errors, stability issues, contamination, edge effect 
on microplates. 

- Data analysis: calculation/reporting errors (possible correction), inappropriate statistical 
model/options (possible improvement). 

The analyst may decide to perform a robust regression analysis in case he fails to identify the root-
cause. By using Huber’s weights (section 2.8, w = h), the influence of the outlier will be reduced 
without having to exclude its value (Ex. A.3.30). 

4.5. Non-linearity contrast 

Linearity of dose-response relationships is a key assumption of the regression analysis performed by 
CombiStats (section 2.1). When departure from linearity is observed (non-linearity contrast p-value ≤ 
0.05), it is recommended to look at the regression plot (of linearised values) to figure out the possible 
root-cause (e.g. presence of outlier(s), curvature). As shown in Figure 18, the significance of the non-
linearity contrast depends on the location of treatment means (red crosses) and associated distances 
(vertical dotted lines) on both sides of the regression line. In this example, the clear curvature 
observed on the left panel is solved by applying a log transformation to the response variable. 

Significance of the non-linearity contrast is assessed against the experimental error in the ANOVA 
table, i.e. F-ratio = MSNon-Lin. / MSError. Table 17 shows the calculated results for the two above graphical 
representations. For example, in absence of transformation of the response variable, the high F-ratio 
(13.79) indicates a strong non-linearity signal, with subsequent low and significant p-value (0.001). 

The analyst may find opposite conclusions when looking at the regression plot, which doesn’t indicate 
any particular linearity issue, and the statistical test, which p-value is below the 0.05 significant 
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threshold. This paradoxical situation can be frequent when the assay is “very repeatable”. Indeed, 
very close replicated measurements result in a very low residual error, i.e. very low denominator of 
the F-ratio. Thus, the statistical test can detect very small departures from linearity, which are not 
practically meaningful. 

    

Figure 18. Non-Linearity contrast (Ex. A.1.5, Sample T). Significance depends on location of 
treatment means (red crosses) and associated distances (vertical dotted lines) on both sides of the 

regression line. 

Table 17. Non-Linearity contrast significance (Ex. A.1.5, Sample T, ANOVA table). 

Source DF Y = Absorbance  Y = Ln(Absorbance) 
MS F-ratio p-value  MS F-ratio p-value 

Non-Linearity 3 0.102506 13.79 0.001   0.001776 1.018 0.425 

Residual error 10 0.007433  (***)  0.001746   
 

Dealing with non-linearity 

In case of unusual departure from linearity, the analyst can look for errors during the experimental 
phase, the reporting of results or statistical analysis (e.g. inappropriate data transformation or model 
options). Excluding results during the statistical analysis may be acceptable in the plateaus of the 
sigmoid curve provided some rational exists (e.g. some reading systems can give erratic signals at 
saturation). Unexpected signal in the linear part of the sigmoid curve may require further investigation 
and the analyst may take appropriate actions, in accordance with their quality assurance procedures. 

If departures from linearity occur frequently and are confirmed by the regression plot, the analyst can 
try a data transformation. If the data transformation doesn’t solve the lack of linearity, the range of 
selected doses may be reconsidered. The statistical analysis of a series of routine assays may be 
needed to better assess the expected dose-response relationship and find a suitable range of doses. 
In addition, a minimum of 3 doses should be kept in order to assess non-linearity (for parallel-line and 
slope-ratio analyses). 

If the regression plot doesn’t confirm the significant non-linearity contrast (ANOVA table), the analyst 
can check whether replicates are independent and obtained with all relevant uncertainty contributors 
taken into account. Otherwise, significant non-linearity contrasts may be attributable to an 
underestimated experimental error. For example, replicates of signal measurements may not be 
enough and additional uncertainty contributors be worth considering (e.g. independent preparations, 
pre-dilutions). 
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If non-linearity contrasts remain frequently significant, the analyst may decide to introduce one 
decision rule in addition to the classical F-test (F-ratio). Different options may be suitable, including: 

- Option 1. Replacing the exceptionally low residual error by a value that best represents the 
experimental error (standard uncertainty). This value can be estimated during the validation 
exercise and re-evaluated periodically using routine data (e.g. control chart of residual errors). 
It can be entered in the Variance tab of the Options wizard under Theoretical variance (left 
panel in Figure 19). 

- Option 2. Checking that the mean square of the quadratic curvature is negligible compared to 
the mean square of the linear regression. Specifically, the ratio of mean squares should be less 
than 1/100 and the difference between preparations should be small [Bliss 1956, Hewitt 
1981]. The quadratic curvature can be displayed by selecting the Extended or Complete 
ANOVA table from the Option wizard (right panel in Figure 19). 

    

Figure 19. Additional rules to the classical F-test. Option 1. Using a theoretical variance that best 
reflects the experimental error (Left panel). Option 2. Checking whether the quadratic term is 

negligible compared to the linear term (Right panel). 

The complete ANOVA table provides the information required by Option 2 (Figure 20). CombiStats 
actually displays the regression parameters of a polynomial model, e.g. for one preparation: 

Response = a0 + a1 × Ln(Dose) + a2 × Ln(Dose)² + error, where: 

- a0 is the regression intercept, 
- a1 is the slope, which significance is reported under “Regression” in the ANOVA table, 
- a2 is the quadratic term, which significance is reported under “Quadratic curvature”. 

The requested mean squares are 0.280443 and 2.03737 for the quadratic term and slope, respectively, 
of the regression plot on the left panel of Figure 18. The ratio of mean squares (0.138) is far above the 
1/100 threshold recommended in Option 2, confirming the significance of the curvature. 

 

Figure 20. Extract from the complete ANOVA table used to compare quadratic term to linear term. 

The degrees of freedom (DF) of the Non-linearity contrast is equal to the number of dilution points 
minus 2 (i.e. DF = 5 – 2 = 3). This contrast is further split into the Quadratic curvature (DF = 1), which 



PA/PH/OMCL (21) 26 - Statistical analysis of results using CombiStats 

 p. 34/40 

let 2 extra DF to assess the lack of fit of the polynomial model (Lack of quadratic fit). With a p-value of 
0.212, there is no evidence of such a lack of fit, i.e. there is no need to add extra terms to the 
polynomial model. 

However, a polynomial model that would require more than two terms (e.g. a0 + a1 × Ln(Dose) + a2 × 
Ln(Dose)² + a3 × Ln(Dose)3 + error) is practically unlikely and would rather denote some errors during 
the experimental phase, evaluation or reporting of results. 

Note. The tables and figures of this section were created using the data of Sample T of Ex. A.1.5. 

4.6. Non-parallelism contrast 

Introduction 

Parallelism of regression lines is applicable to parallel line and sigmoid models (for quantitative and 
quantal responses), i.e. models characterised by a log-dose transformation (section 3.3). Parallelism 
results from similarity between the test and standard preparations, which is a key condition to potency 
calculations. 

When departure from parallelism is observed (non-parallelism contrast p-value ≤ 0.05), it is 
recommended to look at the regression plot (of linearised values) to figure out the possible root-cause. 
For example, there is very good parallelism between the regression lines of Preparations S and T in 
Figure 21. Preparation U shows an atypical trend affected by the lower results observed at the first 
dose. The analyst could look for possible experimental errors (e.g. pre-dilution error), unless the trend 
is expected. 

Significance of the non-parallelism contrast is assessed against the experimental error in the ANOVA 
table, i.e. F-ratio = MSNon-Par. / MSError. Table 18 shows the calculated results for Ex. A.1.1 (Preparations 
S, T and U) and Ex. A.1.2 (Preparations S, T). Taking the 3 preparations in account, the high F-ratio 
(5.367) indicates a strong non-parallelism signal, with subsequent low and significant p-value (0.007). 

The analyst may find opposite conclusions when looking at the regression plot, which doesn’t indicate 
any particular non-parallelism issue, and the statistical test, which p-value is below the 0.05 significant 
threshold. This can be frequent when the assay is “very repeatable”. Indeed, very close replicated 
measurements result in a very low residual error, i.e. very low denominator of the F-ratio. Thus, the 
statistical test can detect very small departures from parallelism, which are not practically meaningful. 

Example A.3.17 provides an illustration of this paradoxical situation. While the regression plot doesn’t 
indicate any particular non-parallelism issue, the contrast in the ANOVA table is slightly significant (F-
ratio = 3.90, p-value = 0.048), as a consequence of a low residual error. 

Notes. 

The residual error is the experimental variance, i.e. the variance between replicated results (Var. =  
0.001865 absorbance² in Ex. A.3.17). The standard deviation may be easier to interpret as expressed 
in absorbance like the replicated results (SD = sqrt(Var.) = 0.0432 absorbance). Taking the absorbance 
value (about 0.5) corresponding to the ED50, the relative standard deviation is RSD = 0.0432 / 0.5 = 
8.6%. 

The RSD value is not as low as thought initially, which may explain why the non-parallelism contrast is 
‘just’ significant (i.e. p-value slightly lower than the 0.05 significant threshold). Therefore, there is no 
clear evidence that this paradoxical situation would happen frequently. On contrary, it is likely to be 
the case when the RSD is about 2.5% or lower. 
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Table 18. Non-Parallelism contrast significance (ANOVA table). 

 Preparations S, T, U (Ex. A.1.1)  Preparations S, T (Ex. A.1.2) 
Source DF MS F-ratio p-value  DF MS F-ratio p-value 

Non-Parallelism 2 4109.12 5.367 0.007  1 34.2250 0.046 0.831 

Residual error 54 765.572  (**)  39 738.536   

 

 

Figure 21. Example of a regression plot (parallel line assay in Ex. A.1.1). 

Dealing with non-parallelism 

In case of unusual departure from parallelism, the analyst can look for errors during the experimental 
phase, the reporting of results or statistical analysis (e.g. inappropriate data transformation or model 
options). Excluding results during the statistical analysis may be acceptable in the plateaus of the 
sigmoid curve provided some rational exists (e.g. some reading systems can give erratic signals at 
saturation). Unexpected signal in the linear part of the sigmoid curve may require further investigation 
and the analyst may take appropriate actions, in accordance with their quality assurance procedures. 

If departures from parallelism occur frequently and are confirmed by the regression plot, the analyst 
can try a data transformation. If the data transformation doesn’t solve the lack of parallelism, the 
range of selected doses may be reconsidered. Actually, the analyst should address these points during 
the development of the assay such that an appropriate dose range and data transformation are used 
consistently in routine testing. Therefore, a lack of parallelism in routine assays may be indicative of 
an uncontrolled change in the procedure or manufacturing process or storage condition of materials.  

If the regression plot doesn’t confirm the significant non-parallelism contrast (ANOVA table), the 
analyst can check whether replicates are independent and obtained with all relevant uncertainty 
contributors taken into account. Otherwise, significant non-parallelism contrasts may be attributable 
to an underestimated experimental error. For example, replicates of signal measurements may not be 
enough and additional uncertainty contributors be worth considering (e.g. independent preparations, 
pre-dilutions). 

If non-parallelism contrasts remain frequently significant, the analyst may decide to introduce one 
decision rule in addition to the classical F-test (F-ratio). Different options may be suitable, including 
the replacement of the exceptionally low residual error by a value that best represents the 
experimental error. This value can be estimated during method development and first routine assays 
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and re-evaluated periodically, e.g. using e.g. control chart of residual errors. It can be entered in the 
Variance tab of the Options wizard under Theoretical variance (left panel in Figure 19). 

Another approach consists in using an equivalence test in place of the classical F-test.  To do so, the 
analyst can check the “Equivalence testing” box in the ANOVA tab of the Option wizard (right panel in 
Figure 19). CombiStats will calculate differences of slopes (test preparations vs. standard) together 
with 90% confidence intervals. It will also calculate ratios of slopes (and 90%CI), as both calculations 
can be found in the scientific literature. However, the analyst should not use them in parallel and 
should choose between differences or ratios for routine analyses. 

The equivalence between the slopes of the test and standard preparations is demonstrated if the 
slope difference (or ratio) and 90%CI are within some pre-defined equivalence limits (-θ, + θ) (Figure 
22). These limits should mimic the shape of the 90%CI and thus be symmetrical or asymmetrical 
(defined as a fold-ratio) for differences and ratios of slopes, respectively. In addition, the range of the 
equivalence limits is critical to the ability of the test to detect non-parallelism of practical significance. 
These limits can be determined using relevant information obtained during method development and 
first routine assays and then checked periodically. 

 

Figure 22. Equivalence of slopes (non-parallelism evaluation). The dot and horizontal line represent 
the slope difference (or ratio) and 90% confidence interval. The vertical dotted line represents the 
expected value is case of perfect parallelism (equality of slopes). Outer vertical lines represent the 

equivalence limits (-θ, + θ). 

Figure 23 shows the results of the equivalence test performed to compare the slopes of preparations 
T and U (Samples 1 and 2) to the slope of preparation S (Standard). For example, the slope ratio 
between T and S is 0.956 (90%CI: 0.659-1.377). That is, the slope of preparation T is equal to 95.6% 
(90%CI: 65.9%-137.7%) of the slope of preparation S. The slope ratio between U and S is much more 
pronounced (38.5%, 90%CI: 13.5%-68.5%) and would likely fail the equivalence limits. 

Recall that the equivalence limits are assay-dependent and that they should be defined in a way to 
detect departures from parallelism of practical relevance. Last, the classical F-test and equivalence 
test cannot be used in parallel for the evaluation of non-parallelism in routine tests of a given assay. 

 

Figure 23. Individual slopes, differences and ratios (Ex. A.1.1). 
(confidence intervals are reported in brackets). 
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Figure 24. Non-linearity and non-parallelism assessment flowchart. 
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4.7. Use of control charts 

Control charts can be used to monitor the validity and performance of the assay. The analyst should 
start by identifying relevant parameters, which would be indicative of unexpected events (e.g. 
experimental error) or potential trends (e.g. material degradation). In that view, the results of an 
internal control, the slope of the standard preparation and the experimental (residual) error are 
frequently monitored parameters. 

Different control charts may be suitable, including: 

- The Shewhart charts (e.g. IMR-chart), which 3-sigma limits can be used to detect unexpected 
events, 

- Multirules (e.g. 6 increasing or decreasing results in a row) or advanced control charts (e.g. 
EWMA chart), which can be used to detect the onset of a trend or mean shift. 

Example 1. Table 19 shows the experimental variance (mean square error) and associated degrees 
of freedom (DF) of 30 independent assays. Each assay consists in two preparations tested in duplicates 
at 6 doses. There is one variance between duplicates for each of the 12 treatments (2 prep. × 6 doses), 
calculated with 1 DF (number of replicates – 1). The experimental variance is the average of the 
individual variances, calculated with 12 DF. 

In practice, the analyst can exclude some doses from the parallel-line analysis. With 2 replicates per 
dose, the number of DF reported in the table informs about the number of doses kept for analysis 
(e.g. 9 for the first assay). There are 8 to 9 doses kept in 19 out of 30 analyses (63%) and 7 to 10 doses 
kept in 28 out of 30 analyses (93%). 

For convenience, the experimental variances was multiplied by 10,000 in Table 19. In addition, as the 
analyst routinely performs a log transformation of the response (absorbance) – to improve linearity 
and parallelism of regression lines – the experimental variances are reported in [ln(Absorbance)]². A 
practical way to represent the assay variability is to calculate the geometric coefficients of variation 
or GCV (below formula), which values range from 0.7% (Assay A24) to 5.7% (assay A14). 

GCV = 100 × SQRT(EXP(mean squared error) – 1), 

Where residual error is the value found in the ANOVA table in the column Mean Square. 

Table 19. Mean squared errors (MSE), degrees of freedom (DF) and 
geometric coefficients of variation (GCV) of 30 parallel-line assays. 

Assay MSE DF GCV  Assay MSE DF GCV  Assay MSE DF GCV 
A01 3.34 9 1.8%  A11 7.65 9 2.8%  A21 2.57 10 1.6% 
A02 18.38 10 4.3%  A12 3.10 9 1.8%  A22 5.00 8 2.2% 
A03 3.97 9 2.0%  A13 9.91 10 3.1%  A23 2.80 9 1.7% 
A04 4.69 9 2.2%  A14 32.48 12 5.7%  A24 0.55 7 0.7% 
A05 2.46 8 1.6%  A15 4.11 8 2.0%  A25 2.42 8 1.6% 
A06 1.12 7 1.1%  A16 3.09 9 1.8%  A26 1.89 7 1.4% 
A07 3.24 8 1.8%  A17 2.00 8 1.4%  A27 7.36 10 2.7% 
A08 7.67 9 2.8%  A18 0.59 7 0.8%  A28 2.28 6 1.5% 
A09 3.92 9 2.0%  A19 6.78 10 2.6%  A29 2.73 8 1.7% 
A10 2.03 8 1.4%  A20 0.90 8 0.9%  A30 3.75 8 1.9% 

GCVs are plotted against numbers of doses kept for analysis in Figure 25, where it appears obvious 
that both variables are correlated. The higher the number of doses, the higher the experimental 
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variation. This is somewhat expected as results in the tails of the dose range are often more dispersed 
than in the middle-range. With this observation, it is not possible to create a classical control chart, 
which is applicable to simple random samples only. One possibility could be to model the relationship 
between the experimental variation and the number of doses kept for analysis in order to estimate 
relevant control limits. 

 

Figure 25. GCVs vs. numbers of doses kept for analysis. 

Example 2. The previous example showed that data of a control chart should be obtained using the 
same statistical design, model and analysis options. In the current example, residual errors are pure 
errors from completely randomised designs (section 1.2). Each assay consists in 2 preparations tested 
in triplicates at 3 doses analysed using a parallel-line model with no data transformation nor weighting 
of the response variable (units: Y). 

Experimental variances (MSE in Y²) are reported in Table 20 together with coefficients of variation 
(CV%), which values range from 3.2% (Assay A06) to 10.0% (assay A14). 

CV = 100 × SQRT(MSE) / Mean, 

Where Mean is the mean absorbance value calculated at the middle dose. 

Note. In Example 1, a geometric coefficient of variation was calculated because of the log-
transformation of the response variable. 

Table 20. Mean squared errors (MSE) and coefficient of variation (CV). 

Assay MSE CV  Assay MSE CV  Assay MSE CV 
A01 1.223 5.9%  A11 0.494 3.7%  A21 0.830 4.9% 
A02 1.033 5.3%  A12 1.528 6.7%  A22 1.131 5.4% 
A03 0.951 4.9%  A13 0.452 3.5%  A23 2.254 8.3% 
A04 1.438 6.3%  A14 3.735 10.0%  A24 0.939 4.8% 
A05 1.937 7.5%  A15 0.752 4.6%  A25 1.145 5.6% 
A06 0.366 3.2%  A16 0.830 4.9%  A26 1.001 5.1% 
A07 1.699 6.6%  A17 1.853 7.5%  A27 1.937 7.3% 
A08 1.550 6.4%  A18 2.685 8.3%  A28 1.083 5.2% 
A09 0.939 4.9%  A19 1.255 5.9%  A29 1.043 5.5% 
A10 0.893 5.0%  A20 1.475 6.5%  A30 0.427 3.5% 

The skewed distribution shown on the left panel of Figure 26 is typical of MSE values. The analyst 
should log-transform these values to improve the symmetry of the distribution (right panel of Figure 
26) and calculate relevant control limits. 
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Figure 26. Boxplots of MSE values 
No transformation (left panel), log-transformed (right panel). 

The control limits can be calculated using the I-MR Shewhart chart, which results are summarised in 
Table 21. The control limits reported in the table are “2-sigma limits” (95% confidence level) calculated 
after log-transformation of MSE values, although another confidence level may be used. 

Table 21. I-MR Shewhart control chart. 

Scale Units Mean Standard 
deviation (SD) 

Lower 
control limit 

Upper 
control limit 

Log-transf. Ln(Y²) 0.125 0.428 -0.731 0.981 
Back-transf. Y² 1.13 n.a. 0.481 2.67 

Control limits = Mean ± 2 SD. Back-transformation: e-0.731 = 0.481 Y² and e0.981 = 2.67 Y². For an overall 
mean response of 19.1 at the middle dose, the above mean and control limits correspond to the 
following CVs: 5.6%, 3.6% and 8.6%. 

In routine, the analyst may decide to use the control chart of log-transformed values (ln(Y²)) or back-
transformed values (Y²) as shown in Figure 27. Both representations show the classical alert and action 
limits (“2-sigma” and “3-sigma” limits, respectively) and have exactly the same performance.  

     

Figure 27. I-chart of MSE values 
No transformation (left panel), log-transformed (right panel). 

Note. The analyst can find details about how to create control charts in many statistical publications, 
including, for example, the ISO 7870 guidelines and in Douglas Montgomery’s Introduction to 
Statistical Quality Control. 
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