

European Directorate for the Quality of Medicines & HealthCare

Council of Europe

Module 8 Control of impurities: CEP approach

Chloé BUMB and Gaël RONSIN

EDQM, Certification of Substances Department

Thursday 11 December 2025 (10:00 – 11h30)

Impurities & Control strategy in Active Substances

- Related Substances (Organic impurities)
- Mutagenic impurities
- Nitrosamine impurities
- Residual solvents
- ★ Elemental impurities
- ★ Reagents and Inorganic impurities

What is the impact of a certain impurity in the impurity profile of the API?

How to set specifications accordingly?

NB: Excipients are out of scope of this presentation.

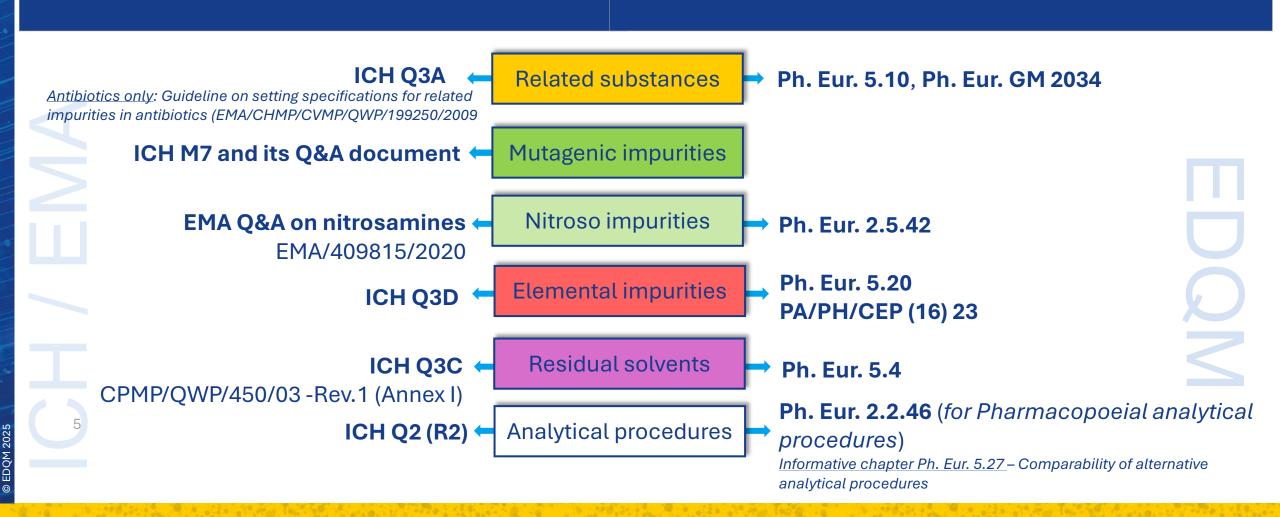
Impurities & Control strategy in Active Substances

Directive 2001/83/EC, as amended

Where a specification contained in a Ph. Eur. monograph might be insufficient to ensure the quality of the substance, the competent authorities may request more appropriate specifications from the marketing authorisation holder

For veterinary products:

REGULATION (EU) 2019/6 applies (repealing Directive 2001/82/EC)


Which key guidance? A brief recap...

ICH Q6A Specifications

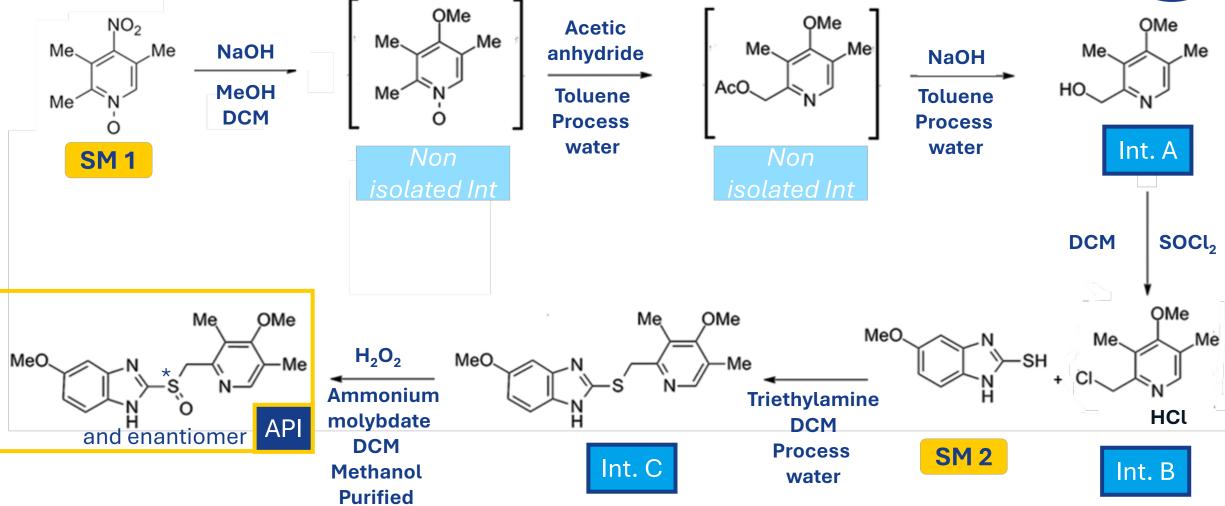
Test procedures and acceptance criteria for new chemical substances

PA/PH/CEP (04) 1, 7R

Content of the dossier for chemical purity and microbiological quality

What are the expectations?

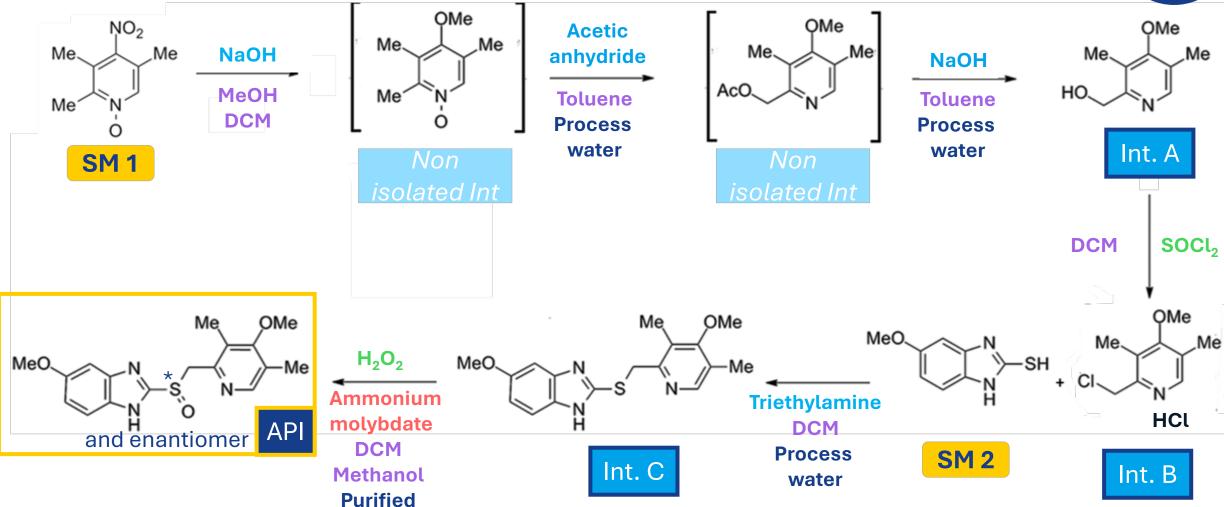
Analytical specifications should **control** the impurity profile and be **representative** of the process adopted


Impurity profile of the material should be **known** in detail

Discussion showing **understanding** of the impurity profile.

Origin, fate and carry-over of impurities as basis for justification to the proposed specifications.

Water



-

Water

8

- **★**Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★**Elemental impurities
- **★**Inorganic impurities

Organic impurities

ICH Q3A

Ph. Eur. GM 2034 Substances for Pharmaceutical Use

Ph. Eur. 5.10 Control of Impurities in Substances for Pharmaceutical Use

Individual substance Ph. Eur. monograph

Table 2034.-1. – Reporting, identification and qualification of organic impurities in active substances

Use	Maximum daily dose	Report- ing threshold	Identification threshold	Qualification threshold
Human use or human and veterinary use	≤ 2 g/day	> 0.05 per cent	> 0.10 per cent or a daily intake of > 1.0 mg (whichever is the lower)	> 0.15 per cent or a daily intake of > 1.0 mg (whichever is the lower)
Human use or human and veterinary use	> 2 g/day	> 0.03 per cent	> 0.05 per cent	> 0.05 per cent
Veterinary use only	Not applicable	> 0.10 per cent	> 0.20 per cent	> 0.50 per cent

Table 2034.-2. – Reporting, identification and qualification of organic impurities in peptides obtained by chemical synthesis

Reporting	Identification	Qualification
threshold	threshold	threshold
> 0.1 per cent	> 0.5 per cent	> 1.0 per cent

A short guide...

Understand risks for the quality of the API

Acceptance criteria for impurities to be justified based on their fate and carryover up to the final substance, meaning, the ability of the process to <u>purge</u> them

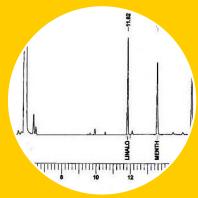
Limit
major/recurrent
impurities as
specified
impurities

Understand the risk for **uncontrolled impurities** up to the API to ensure compliance

Special attention to be given to:

- **★Late intermediates,** including the crude API
- Related substances
 controlled upstream by an
 analytical procedure
 different from the one used
 at release
- ***API-like impurities**

© EDQM 2025


Certification of suitability to Ph. Eur. monographs

Terminology referring to the Ph. Eur. or traceable to it

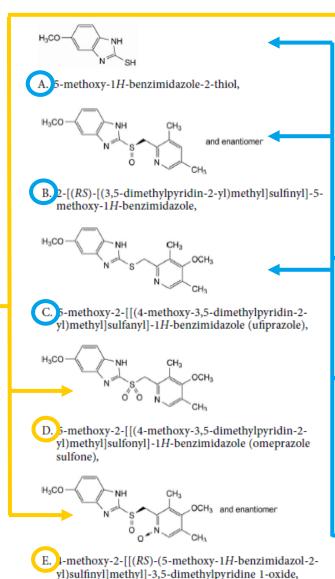
Cross-check with transparency list of the monograph

For in-house impurities present or limited above the disregard limit:

Suitability of the monograph and set a control in the specification

Chemical structure and INN/Chemical names given as far as possible

Certification of suitability to Ph. Eur. monographs


IMPURITIES

Specified impurities. D, E, F, G.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph Substances for pharmaceutical use (2034). It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. Control of impurities in substances for pharmaceutical use): A, B, C, H, I.

Specified impurities from the transparency list are controlled at a limit reported in the monograph (in this case, impurities F and G are controlled by a UV specific test)

Other detectable impurities **may not** be present in all processes. They are listed in the transparancy list and are **detectable** by the Ph. Eur. Monograph analytical procedure.

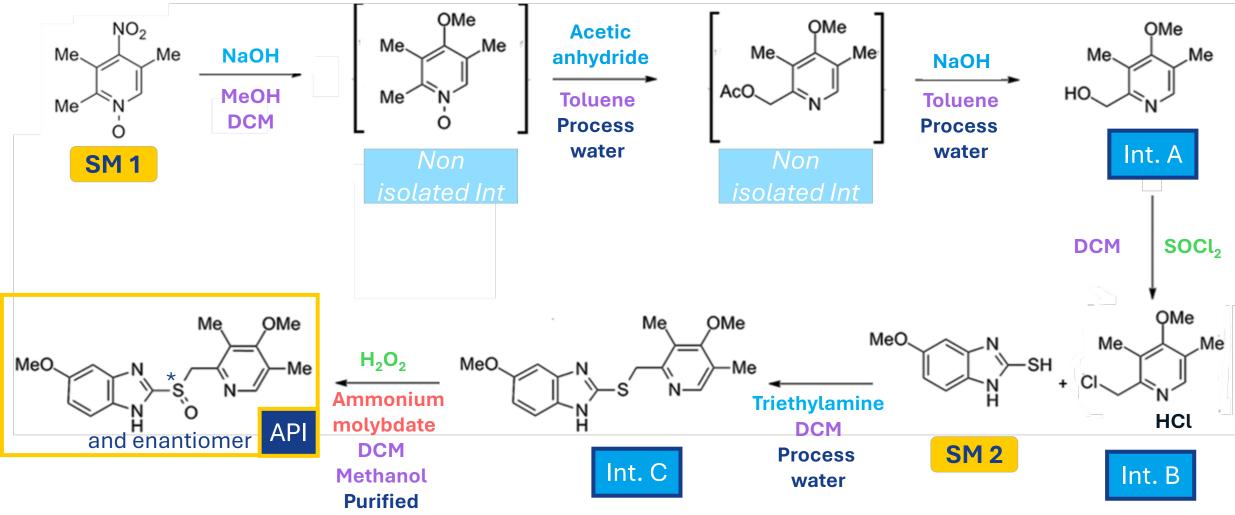
F. 8-methoxy-1,3-dimethyl-12-thioxopyrido[1',2':3,4]imidazo[1,2-a]benzimidazo[1,2H)-one, G. 9-methoxy-1,3-dimethyl-12-thioxopyrido[1',2':3,4]imidazo[1,2-a]benzimidazo[1,2H)-one, H. 2-[(RS)-[(4-chloro-3,5-dimethylpyridin-2yl)methyl]sulfinyl]-5-methoxy-1*H*-benzimidazole, I. 4-methoxy-2-[[(5-methoxy-1H-benzimidazol-2yl)sulfonyl]methyl]-3,5-dimethylpyridine 1-oxide.

Other detectable impurities from the transparency list are controlled at NMT 0.10% as unspecified impurities

Are all the impurities from the transparency list possible by the the RoS used?

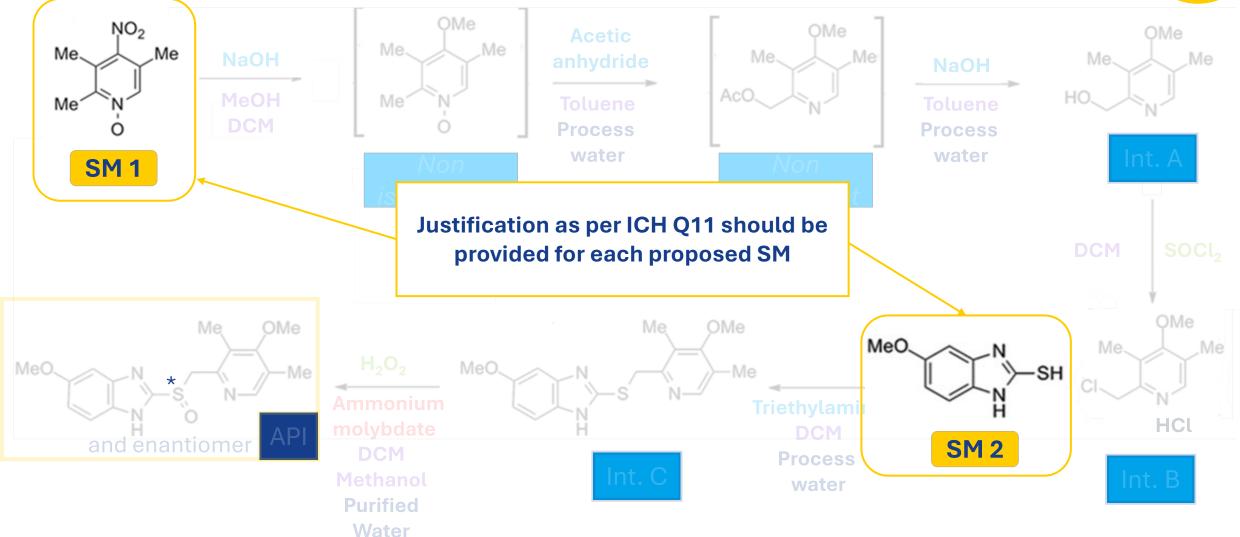
Ph. Eur. Imp A: unreacted SM2 carried over in the API

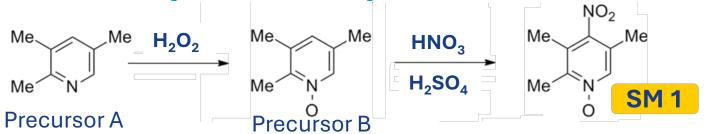
Ph. Eur. Imp B: unreacted first non isolated intermediate carried over and transformed in the downstream process


Ph. Eur. Imp C: unreacted intermediate D carried over in final API

Ph. Eur. Imp H: unlikely from the RoS.

Ph. Eur. Imp I: potentially formed by oxidation of Ph. Eur. Imp. D

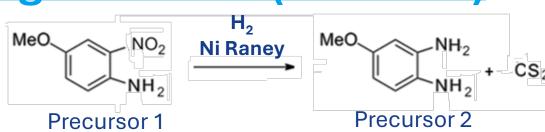

Water

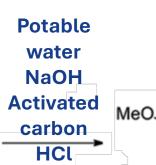


15

Starting materials (3.2.S.2.3)

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
Precursor A	Raw material, eliminated during crystallisation	0.26%	Controlled as specified impurity in the SM at NMT 0.50%
Precursor B	Precursor. Eliminated during crystallisation in mother liquor.	0.08%	Controlled as specified impurity in the SM at NMT 0.15%.
3,5-lutidine	Positional isomer carryover. Not reactive in the downstream process	0.24%	Controlled as specified impurity at NMT 0.50%


Fate: potential by-products, side-reactions should be considered as well!


Which specification?

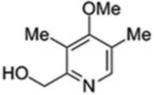
Impurity	Limit
Precursor A	NMT 0.50%
Precursor B	NMT 0.15%
3,5-lutidine	NMT 0.50%
Unspecified imp.	NMT 0.20%
Total	NMT 1.5%

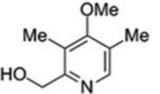
Any limit for unspecified impurities should be justified

Starting materials (3.2.S.2.3)

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
Precursor 1	Raw material. Found <0.05% in INT-C. Alerting structure (see mutagenic impurities).	0.13%	Controlled as specified impurity in the SM at NMT 0.30%
Precursor 2	Alerting structure (see mutagenic impurities). Found <0.05% in INT-C.	0.06%	Controlled as specified impurity in the SM at NMT 0.10%
CS ₂	Hydrolyzed in water to H ₂ S.	ND	No control is needed.

Fate: potential by-products, side-reactions should be considered as well!


Which specification?


SM₂

Impurity	Limit
Precursor 1	NMT 0.30%
Precursor 2	NMT 0.10%
Unspecified imp.	NMT 0.15%
Total	NMT 0.8%

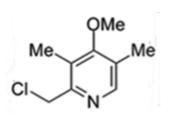
Intermediates (3.2.S.2.4)

Intermediate A

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
SM1	Mutagenic impurity . Tested ND in API (see mutagenic impurities).	11 ppm	Controlled as specified impurity at NMT 30ppm
4-methoxy derivative	In-situ intermediate, unreactive in the dowstream process. Alerting structure (see mutagenic impurities).	0.15%	Controlled as specified impurity at NMT 0.25%
Acetyl derivative	Non-isolated intermediate. Carryover in Int-B (0.15%).	0.53%	Controlled as specified impurity at NMT 1.0%
4-chloro impurity	Impurity by substitution of nitro derivative	0.18%	Controlled as specified impurity at NMT 0.25%

Fate: potential by-products, side-reactions should be considered as well!

Any limit for unspecified impurities should be justified


Which specification?

Impurity	Limit			
SM 1	NMT 30 ppm			
4-MeO derivative	NMT 0.25%			
Acetyl derivative	NMT 1.0%			
4-Cl derivative	NMT 0.25%			
Unspecified imp.	NMT 0.30%			
Total	NMT 1.5%			

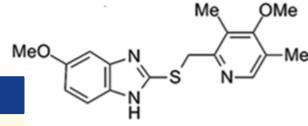
Intermediates (3.2.S.2.4)

Intermediate B

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
Acetyl derivative	Non-isolated intermediate. Carryover in Int-B (0.18%).	0.18%	Controlled as specified impurity at NMT 0.25%
INT-A	Unreacted intermediate carried over. Eliminated during crystallisation of INT-C. When spiked at 1.2%, found ND in INT-C	0.38%	Controlled as specified impurity at NMT 1.0% in INT-B
Unknown impurity	Present in all batches	0.14%	Controlled as unspecified impurity at NMT 0.20%

Which specification?

Į	
po privity.	


Impurity	Limit
Int-A	NMT 1.0%
Acetyl derivative	NMT 0.25%
Unspecified imp.	NMT 0.20%
Total	NMT 1.5%

Intermediates (3.2.S.2.4)

Intermediate C

Impurity	Origin, fate and carry over	Batch data	Limit/Control strategy
Ph. Eur. Imp A (SM2)	SM2 carryover. Removed during crystallisation stage.	0.38%	Controlled as specified impurity at NMT 0.50% in INT-C and at NMT 0.10% in API
INT-B	Unreacted intermediate. Removed workup. Found <0.05% in API.	0.17%	Controlled as specified impurity at NMT 0.40% in INT-C and as unspecified impurity in the API
Impurity RRT 1.10	Unidentified impurity. Found <0.05 – 0.06% in API.	0.13%	Controlled as specified impurity at NMT 0.20% in INT-C and in the API as unspecified impurity

Assuming Ph. Eur. Monograph analytical procedure for Related Substances is used to control the last intermediate

Which specification?

	Impurity	Limit
	Ph. Eur. Imp A	NMT 0.50%
	INT-B	NMT 0.40%
•	Impurity RRT 1.10	NMT 0.20%
	Unspecified imp.	NMT 0.10%
	Total	NMT 1.0%

Related substances. Liquid chromatography (2.2.29).

Omeprazole specification:

Limits:

- impurities D, E: for each impurity, not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.15 per cent);
- unspecified impurities: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.10 per cent);
- total: not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- disregard limit: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent).

Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15 %	0.05-0.08%	Ph. Eur. Current
Ph. Eur. Impurity E	NMT 0.15 %	<0.05-0.11%	edition
Unspecified impurity	NMT 0.10%	<0.05 - 0.06%	
Total impurities	NMT 0.5%	0.14-0.20%	

All related substances can be controlled by the analytical procedure of the monograph

→ No in-house impurity present in the API

Different situations...

- **★**If in-house impurities are present?
- ★ If you are using an in-house analytical procedure?
- **★** How to handle the situation?
- **★Which impurity to include in the specification?**

In-house impurities

CEP 2.0 Suitability of the Monograph to control the impurity profile of the In-house imp. Detected above final substance the reporting *If a control is implemented Yes threshold? No although not needed: Suitability of Ph. Eur. Detected by the The impurity is procedure to be absent and not monograph analytical controlled in the API, demonstrated no action needed* procedure? Yes No If not suitable, in-house analytical procedure to be Limit in line with GM appended Can the impurity 2034, in-house be controlled as analytical procedure unspecified? appended No Yes Maximum Qualification Report-Identification daily ing threshold threshold No need to Impurity to be threshold dose limited in line with report in the $\leq 2 \text{ g/day}$ > 0.05 per> 0.10 per > 0.15 per specification GM 2034 cent cent cent > 2 g/day > 0.03 per> 0.05 per cent > 0.05 percent cent

Do not forget ...

Suitability (or unsuitability) of the analytical procedure of the monograph to control all the related substances present/limited above the disregard limit should be demonstrated

Alternative analytical procedure

- When: Ph. Eur. analytical procedure is suitable to control in-house impurities, but in-house procedures may be used
- ★ Equivalent results comparing to the corresponding Ph. Eur. procedure(s): cross-validation data on the same batches, using spiked solutions if necessary
- ★ Validation in line with ICH Q2(R2)

Additional analytical procedure

- When: Ph. Eur. analytical procedure is not suitable to control in-house impurities
- To supplement monograph procedure(s)
- Unless absence of corresponding impurities is demonstrated, it will be reported on the CEP
- ★ Validation in line with ICH Q2(R2)

Other situations: specifications for in-house impurities 1, 2 and 3?

Impurity	Limit	Batch data	analytical procedure	
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC 2.2.29 & Ph. Eur.	2.2.29 &
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%		
In-house impurity 1	?	0.001-0.02%	0942	
In-house impurity 2		0.04-0.06%		
In-house impurity 3		0.08-0.12%		
Unspecified impurity	NMT 0.10%	0.01-0.06%		
Total impurities	NMT 0.5%	0.19-0.31%		
eporting threshold: 0.05%			Ye	

Impurity always found below the reporting threshold, can be considered absent.

No need to report in the specification

Impurity to be limited in line with GM 2034

Other situations: specifications for in-house impurities 1, 2 and 3?

Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%	2.2.29 & Ph. Eur.
In-house impurity 2	?	0.04-0.06%	0942
In-house impurity 3		0.08-0.12%	
Unspecified impurity	NMT 0.10%	0.01-0.06%	
Total impurities	NMT 0.5%	0.19-0.31%	
Reporting threshold: 0.05%			Yes

No need to

report in the

specification

Impurity to be limited in line with

GM 2034

Include the impurity in the specification is not required as it can be controlled as any unspecified impurity.

NMT 0.15%

Other situations: specifications for in-house impurities 1, 2 and 3?

0.05-0.08%

HPLC

0942

NMT 0.15% Ph. Eur. Impurity E 0.05-0.11%

In-house impurity 3 0.08-0.12%

Unspecified impurity NMT 0.10% 0.01-0.06%

Total impurities 0.19-0.31% NMT 0.5%

Reporting threshold: 0.05%

Ph. Eur. Impurity D

The in-house impurity should be individually specified in the specification with a limit set according to GM 2034:

Maximum daily dose	Report- ing threshold	Identification threshold	Qualification threshold
≤ 2 g/day	> 0.05 per	> 0.10 per	> 0.15 per
	cent	cent	cent

In-house imp 2.2.29 & Detected above the reporting Ph. Eur. threshold? Yes No Detected by the The impurity is absent and not controlled in monograph analytical the API, no action procedure? needed Yes No Impurity to be limited Can the impurity be in line with GM 2034. controlled as In-house analytical unspecified? procedure appended No Yes No need to Impurity to be report in the limited in line with specification GM 2034

If above 0.15%, the impurity should be qualified at its level

Other situations: specifications for in-house impurities 1, 2 and 3?

No

The impurity is absent

and not controlled in

the API, no action

needed

In-house imp Detected above the reporting threshold?

No

Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%	2.2.29 & Ph. Eur.
In-house impurity 3	NMT 0.15 %	0.08-0.12%	0942
Unspecified impurity	NMT 0.10%	0.01-0.06%	
Total impurities	NMT 0.5%	0.19-0.31%	

Reporting threshold: 0.05%

The in-house impurity should be individually specified in the specification with a limit set according to GM 2034:

Maximum daily dose	Report- ing threshold	Identification threshold	Qualification threshold
≤ 2 g/day	> 0.05 per	> 0.10 per	> 0.15 per
	cent	cent	cent

Impurity to be limited Can the impurity be in line with GM 2034. controlled as In-house analytical unspecified? procedure appended No Impurity to be limited in line with

Yes

Yes

No need to

report in the

specification

Yes

Detected by the

monograph

analytical

procedure?

GM 2034

If above 0.15%, the impurity should be qualified at its level

ORGANIC

Specification for related substances:

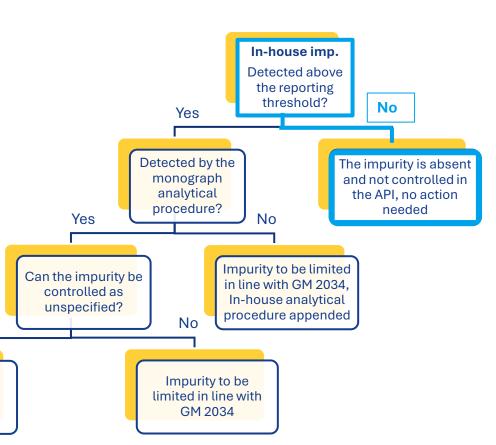
Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05 - 0.08%	
Ph. Eur. Impurity E	NMT 0.15%	0.05 - 0.11%	Ph. Eur.
In-house impurity 3	NMT 0.15%	0.08 - 0.12%	current edition
Unspecified impurity	NMT 0.10%	0.01 - 0.06%	
Total impurities	NMT 0.5%	0.19 - 0.31%	

CEP 2.0

Specification for the final substance in section 3.2.S.4.1 should make reference to the analytical procedures of the monograph.

Other situations: specifications for in-house impurities 4 and 5?

Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC 2.2.29 &
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%	Ph. Eur. 0942
Unspecified impurity	NMT 0.10%	0.01-0.06%	
Total impurities	NMT 0.5%	0.19-0.31%	
In-house impurity 4	?	0.01-0.03%	In-house HPLC
In-house impurity 5		0.05-0.11%	


Reporting threshold: 0.05%

Impurity always found below the reporting threshold, can be considered absent.

If control is implemented although not needed:

- Suitability of Ph. Eur. to be demonstrated
- If not suitable, in-house analytical procedure to be appended

Yes

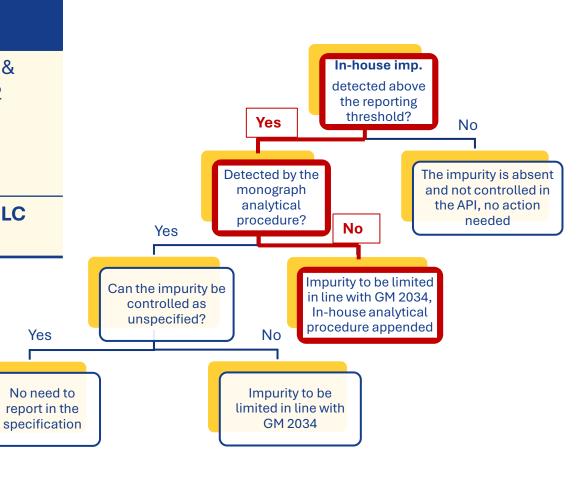
No need to

report in the

specification

CEP 2.0

Other situations: specifications for in-house impurities 4 and 5?


Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC 2.2.29 &
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%	Ph. Eur. 0942
Unspecified impurity	NMT 0.10%	0.01-0.06%	
Total impurities	NMT 0.5%	0.19-0.31%	
In-house impurity 5 (RRT 1.10)	?	0.05-0.11%	In-house HPLC

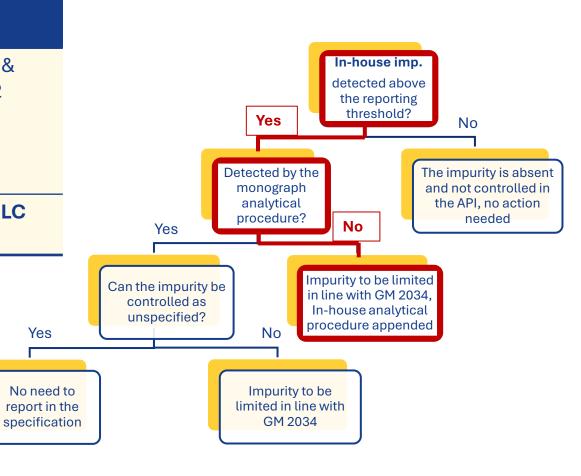
Reporting threshold: 0.05%

Impurity detected above the identification threshold:

- The in-house impurity should be individually specified in the specification with a limit set according to GM 2034
- The in-house analytical procedure will be appended to the CEP.

Yes

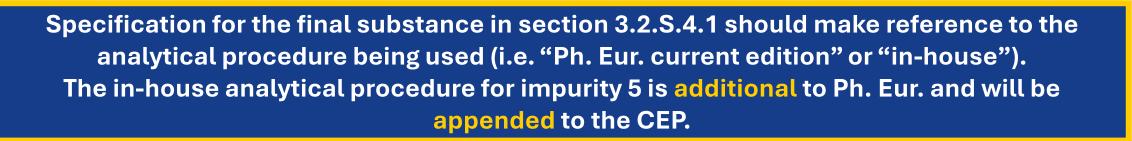
Other situations: specifications for in-house impurities 4 and 5?

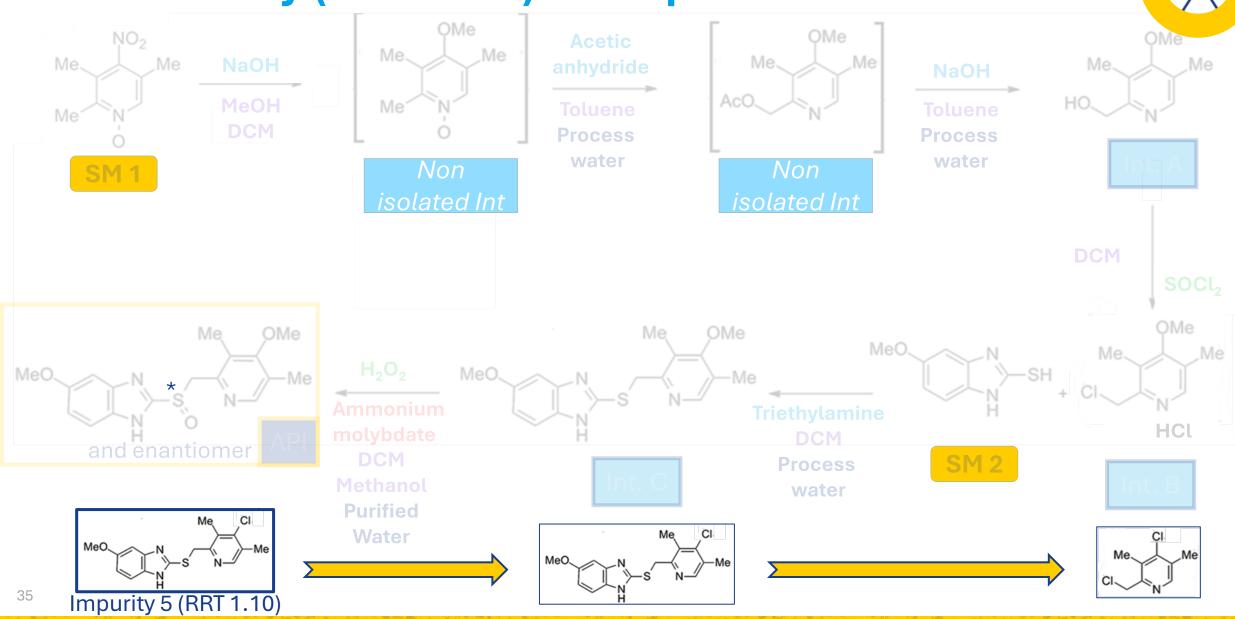

Impurity	Limit	Batch data	analytical procedure
Ph. Eur. Impurity D	NMT 0.15%	0.05-0.08%	HPLC 2.2.29 &
Ph. Eur. Impurity E	NMT 0.15%	0.05-0.11%	Ph. Eur. 0942
Unspecified impurity	NMT 0.10%	0.01-0.06%	
Total impurities	NMT 0.5%	0.19-0.31%	
In-house impurity 5 (RRT 1.10)	NMT 0.15%	0.05-0.11%	In-house HPLC

Reporting threshold: 0.05%

Impurity detected above the identification threshold:

- The in-house impurity should be individually specified in the specification with a limit set according to GM 2034
- The in-house analytical procedure will be appended to the CEP.


Yes


No need to

Specification for related substances:

Impurity	Limit	Batch data	analytical procedures
Ph. Eur. Impurity D	NMT 0.15%	0.05 - 0.08%	
Ph. Eur. Impurity E	NMT 0.15%	0.01 - 0.03%	Ph. Eur.
Unspecified impurity	NMT 0.10%	0.01 - 0.06%	current edition
Total impurities	NMT 0.5%	0.18 - 0.23%	
In-house impurity 5 (RRT 1.10)	NMT 0.15%	0.05 – 0.11%	In-house

- ★ Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★**Elemental impurities
- **★**Inorganic impurities

Reference guideline:

ICH M7(R2) Guideline on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

- ★ICH M7(R2) Addendum on application of the principles of the ICH M7 guideline to calculation of compound-specific acceptable intake
- ★ICH M7(R2) Questions and Answers on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

<u>For veterinary products:</u> Guideline on assessment and control of DNA reactive (mutagenic) impurities in veterinary medicinal products (EMA/CVMP/SWP/377245/2016)

<u>Definition of mutagenic</u>: Inducing or capable of inducing genetic mutation.

1. Active substance assessment for mutagenic impurities

Actual impurities

Potential impurities

2) Hazard assessment and classification as per ICH M7

Known mutagens

Structural alert for mutagenicity

3) Setting acceptable limits and propose a control strategy

Threshold of Toxicological Concern: TTC limit

Other specific acceptable limits

1) Active substance assessment

Actual and potential impurities that are likely to arise during the synthesis (synthetic impurities) and storage (degradation products) of a drug substance are to be assessed for **MUTAGENIC POTENTIAL**

Actual impurities

Identified, known structure

Impurities found above ICH Q3A reporting threshold

Potential impurities

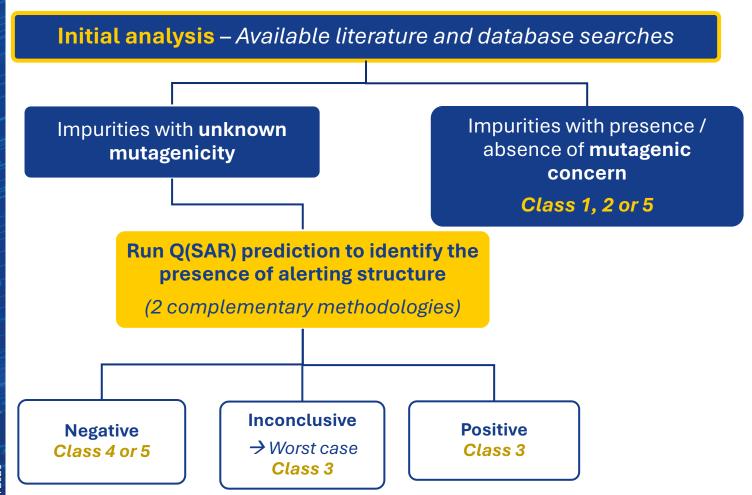
Likely to be present in the final substance

Starting materials (its impurities & depending on where introduced in the process, also their synthesis), reagents, intermediates and byproducts in the route of synthesis from the starting material to the active substance

2) Hazard assessment and classification as per ICH M7

ICH M7

ICH M7:


- **★Initial analysis from database and literature** searches for classification into class 1, 2 or 5
- ★If no data available, identification of an alerting structure using computational in silico assessment to predict the mutagenicity of the impurity, based on Quantitative Structure-Activity Relationships (Q)SAR principles
- → Absence of structural alerts from two complementary (Q)SAR methodologies (expert rule- based and statistical) is sufficient to conclude that the impurity is not of mutagenic concern.

Class	Definition	Proposed action for control (details in Section 7 and 8)			
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limi			
2	Known mutagens with unknown carcinogenic potential (bacterial mutagenicity positive*, no rodent carcinogenicity data)	Control at or below acceptable limits (appropriate TTC)			
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2			
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity			
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of mutagenicity or carcinogenicity	Treat as non-mutagenic impurity			

ICH M7 Table 1 Classification of impurities with respect to mutagenic and carcinogenic potential

2) Hazard assessment and classification as per ICH M7

Class	Definition	Proposed action for control (details in Section 7 and 8)
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit
2	Known mutagens with unknown carcinogenic potential (bacterial mutagenicity positive*, no rodent carcinogenicity data)	Control at or below acceptable limits (appropriate TTC)
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (appropriate TTC) or conduct bacterial mutagenicity assay; If non-mutagenic = Class 5 If mutagenic = Class 2
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non- mutagenic	Treat as non-mutagenic impurity
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of mutagenicity or carcinogenicity	Treat as non-mutagenic impurity

ICH M7 Table 1 Classification of impurities with respect to mutagenic and carcinogenic potential

3) Setting acceptable limits and propose a control strategy

For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements.

Compound-specific limit (Class 1)

Defined according to the specific acceptable intake (ICH M7 addendum)

Compound	CAS#	Chemical Structure	AI or PDE (μg/day)	Comment
Linear extrapolation fro	m TD50			
Acrylonitrile	107-13-1	H ₂ C	6	TD50 linear extrapolation
Benzyl chloride	100-44-7	CI	41	TD50 linear extrapolation

TTC Limit (Class 2 and 3)

Defined according to the duration of treatment

Duration of treatment			>1 - 10 Years	>10 years to lifetime
Daily intake [μg/day]	120	20	10	1.5

3) Setting acceptable limits and propose a control strategy

For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements.

MDD and information regarding the use of the substance to be included in 3.2.S.1.3 along with route of administration and treatment duration considered for development of the control strategy and specification.

3) Setting acceptable limits and propose a control strategy

For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements.

Control ≤ acceptable limit in the final substance

Option 1

Option 2

Control ≤ acceptable limit in a raw material, SM or intermediate or as an IPC

Control > acceptable limit in a raw material, SM or intermediate or as an IPC.

Option 3

Option 4

Absence of control, based on process understanding

3) Setting acceptable limits and propose a control strategy

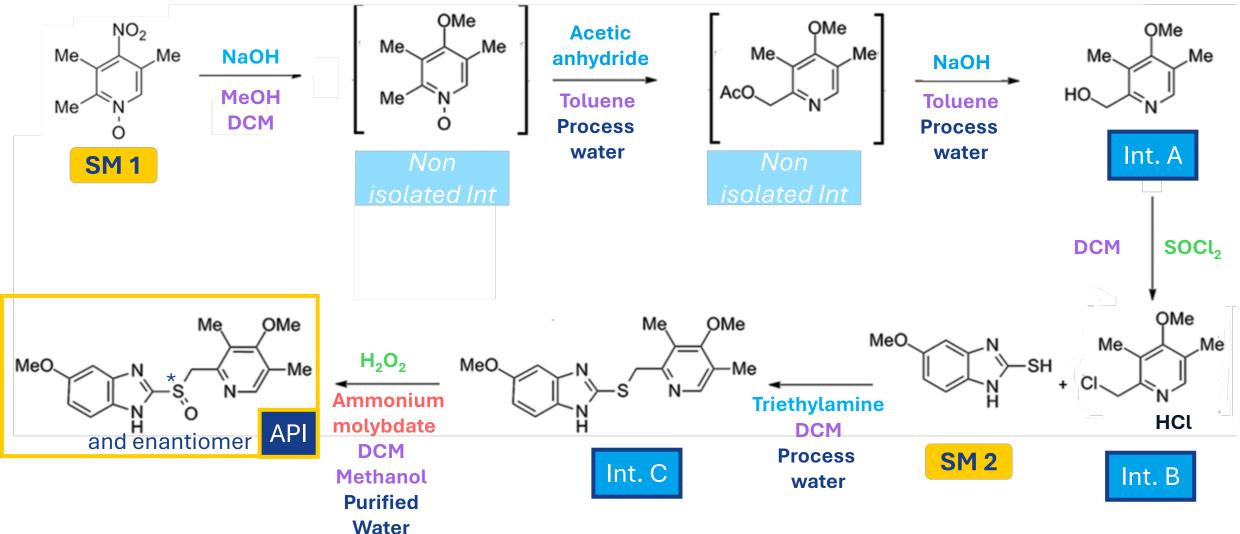
For class 1, 2 and 3 impurities, control strategy in line with ICH M7 requirements.

Option 1	Control ≤ acceptable limit in the final substance Impurities introduced in the last step of the synthesis, unless otherwise justified (Refer to ICH M7 Q&A document)
Option 2	Control ≤ acceptable limit in a raw material, SM or intermediate or as an IPC. No further justification needed.
Option 3	Control > acceptable limit in a raw material, SM or intermediate or as an IPC.
Option 3	Suitability of the proposed limit is to be justified by demonstrating levels of the impurity being <30% acceptable limit in the API. Spike-purge studies are highly encouraged.
Ontion 4	Understanding the process and its effects on impurities , with sufficient confidence that the level of the impurity in the drug substance will be below the acceptable limit.
Option 4	Option to be supported by predictive purge calculations and if relevant batch data (if introduced or formed late in the process). For impurities inherently unstable, introduced early and well purged etc.

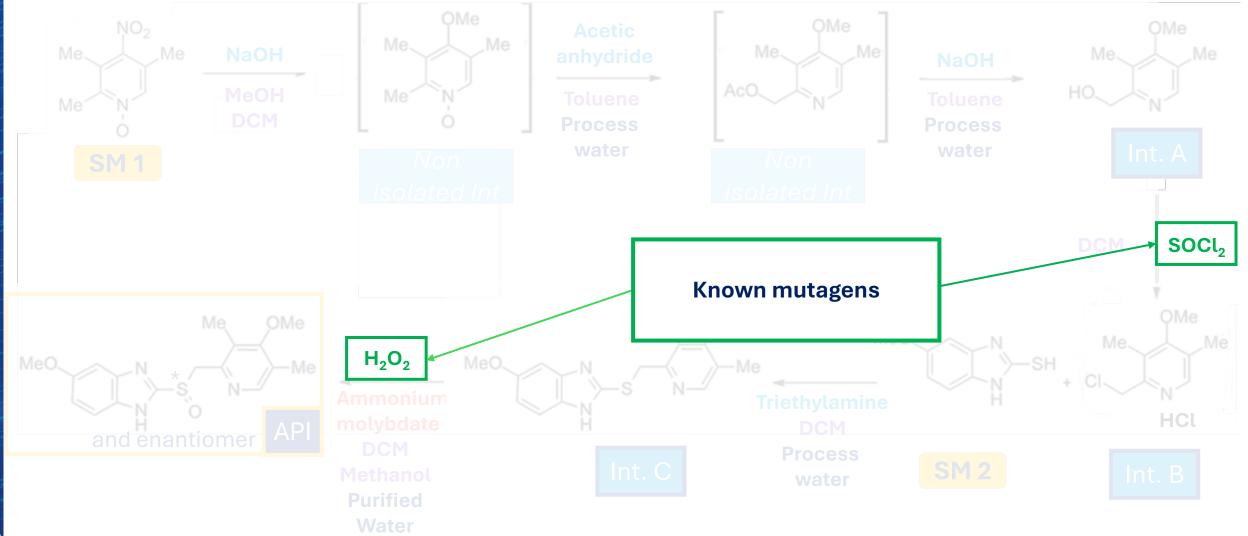
3) Setting acceptable limits and propose a control strategy

If three or more class 2 or class 3 impurities are controlled in the API:

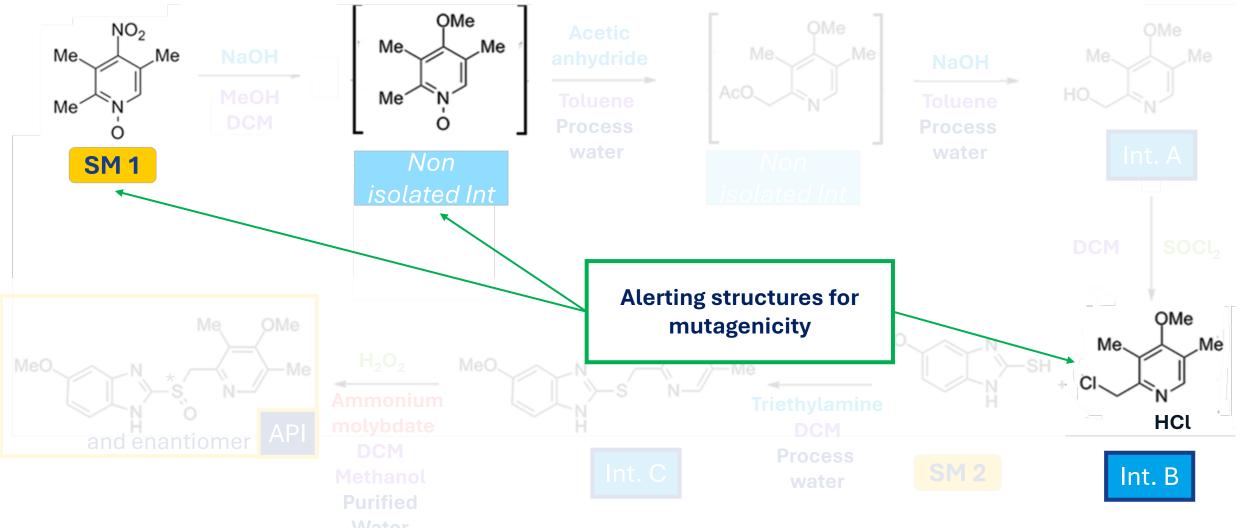
→ Implement a limit for **total mutagenic impurities** in addition to individual limits (ICH M7 table 3)

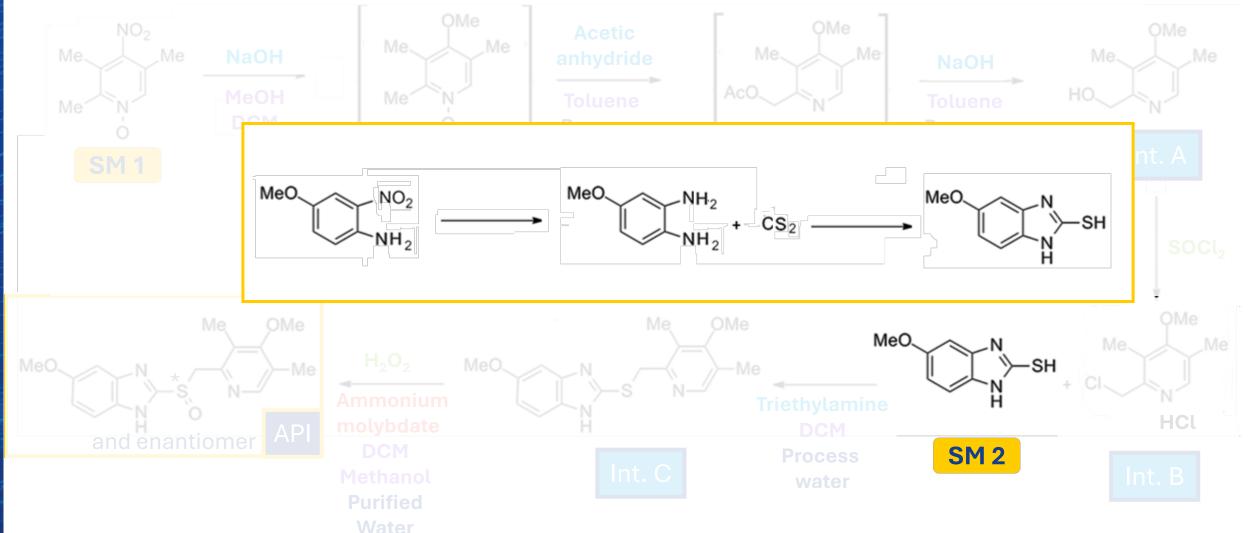

Regarding periodic verification testing (i.e. testing on pre-selected batches or at predetermined intervals instead of on a batch-to-batch basis):

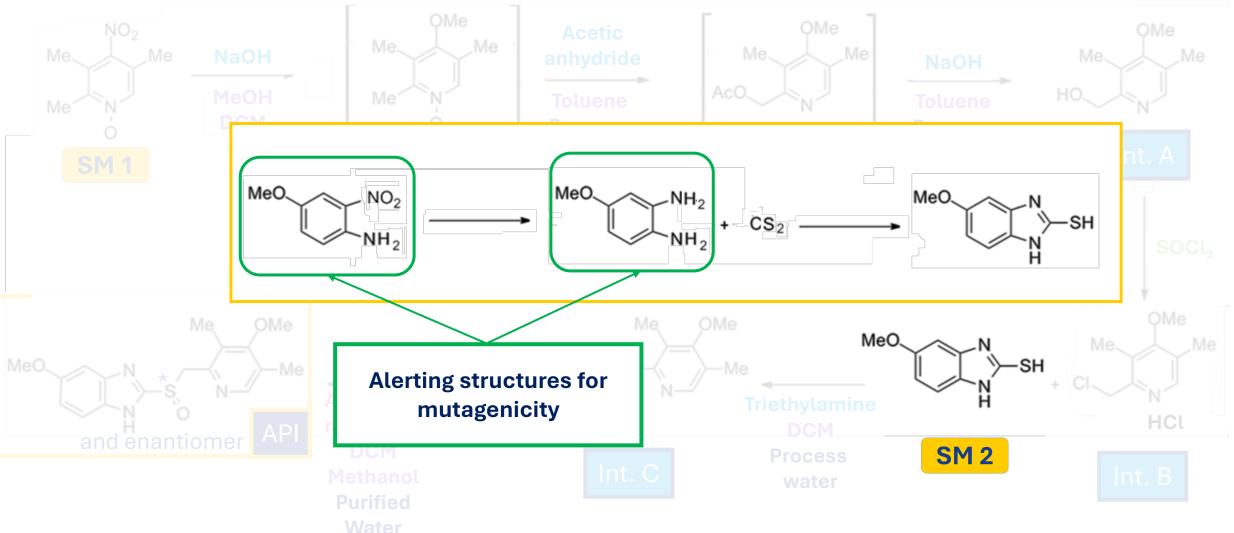
→ To be applied only when option 1 control strategy is in place
 → Not appropriate for options 2 and 3



For all carry-over studies, suitable and relevant validation data in line with ICH Q2 (R2) of the analytical procedure used have to be provided.







2) Hazard assessment and classification as per ICH M7

Impurity	Origin	Hazard assessment	Class
Thionyl chloride	2	Known mutagenic carcinogen. Database / literature data, ICH M7.	Class 1
Hydrogen peroxide	4	Known mutagenic carcinogen. Database / literature data, ICH M7	Class 1
SM1 1		Nitro aromatic alerting structure → In-vitro bacterial mutagenicity assay (e.g. AMES test). Positive. Mutagenic	Class 2
<i>In-situ</i> intermediate	1	N-oxide alerting structure. → (Q)SAR study: Inconclusive outcome (positive and negative).	Class 3
Intermediate B 2		Alkyl chloride alerting structure. In-vitro bacterial mutagenicity assay (e.g. AMES test). Negative. Non-mutagenic.	Class 5
Precursor 1 SM2 SM2		Nitro aromatic alerting structure → (Q)SAR study & Expert review: Negative. Non-mutagenic.	Class 5
Precursor 2 SM2	SM2	Diamine alerting structure → (Q)SAR study: Positive outcome from 2 methodologies.	Class 3

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification
Thionyl chloride	Class 1	?	?
Hydrogen peroxide	Class 1	?	?
SM1	Class 2	?	?
<i>In-situ</i> intermediate	Class 3	?	?
Precursor SM2	Class 3	?	?

Acceptable limit (ppm) =
$$\frac{PDE (\mu g/day)}{MDD (g/day)}$$

Information regarding the substance:

→ MDD: 40 mg/d

→ Route of administration: Oral

→ <u>Treatment duration</u>: >10 years to lifetime

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water
Hydrogen peroxide	Class 1	?	?
SM1	Class 2	?	?
<i>In-situ</i> intermediate	Class 3	?	?
Precursor SM2	Class 3	?	?

Acceptable limit (ppm) =
$$\frac{PDE (\mu g/day)}{MDD (g/day)}$$

Information regarding the substance:

→ <u>MDD</u>: 40 mg/d

→ Route of administration: Oral

→ <u>Treatment duration</u>: >10 years to lifetime

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water
Hydrogen peroxide	Class 1	?	?
SM1	Class 2	?	?
<i>In-situ</i> intermediate	Class 3	?	?
Precursor SM2	Class 3	?	?

$$H_2O_2$$
 Acceptable limit (ppm) = $\frac{68,000 \text{ (µg/day)}}{0.040 \text{ (g/day)}} = 170\%$

H₂O₂ to be limited at <u>NMT 0.5%</u> (>ICH Q3A treshold)

→ Option 4 control strategy proposed

Acceptable intakes (AIs) or Permissible Daily Exposures (PDEs)

Compound	CAS#	Chemical Structure	AI or PDE (μg/day)	Comment
Hydrogen peroxide	7722-84-1	НО-ОН	68,000 or 0.5%, whichever is lower	68 mg/day is 1% of estimated endogenous production

MUTAGEN

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + Carry-over data
SM1	Class 2	?	?
<i>In-situ</i> intermediate	Class 3	?	?
Precursor SM2	Class 3	?	?

$$H_2O_2$$
 Acceptable limit (ppm) = $\frac{68,000 \text{ (µg/day)}}{0.040 \text{ (g/day)}} = 170\%$

H₂O₂ to be limited at <u>NMT 0.5%</u> (>ICH Q3A treshold)

→ Option 4 control strategy proposed

Acceptable intakes (AIs) or Permissible Daily Exposures (PDEs)

Compound	CAS#	Chemical Structure	AI or PDE (μg/day)	Comment
Hydrogen peroxide	7722-84-1	НО-ОН	68,000 or 0.5%, whichever is lower	68 mg/day is 1% of estimated endogenous production

<u>Justification</u>: Understanding of purge + Carry-over data H_2O_2 not detected (LOD 0.012%) in three API batches (last synthetic step)

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification	
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water	
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data	
SM1	Class 2	?	?	
<i>In-situ</i> intermediate	Class 3	?	?	
Precursor SM2	Class 3	?	?	

TTC limit (ppm) =
$$\frac{1.5 \, (\mu g/day)}{0.040 \, (g/day)} = 37.5 \, ppm$$

NMT 30 ppm in the specification for Intermediate A. The SM1 was not detected (LOD 1 ppm) in the API.

ICH M7 option 2 → No further justification needed.

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification		
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water		
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data		
SM1	Class 2	Option 2	No further justification needed.		
<i>In-situ</i> intermediate	Class 3	?	?		
Precursor SM2	Class 3	2	2		

TTC limit (ppm) =
$$\frac{1.5 \, (\mu g/day)}{0.040 \, (g/day)} = 37.5 \, ppm$$

NMT 30 ppm in the specification for Intermediate A. The SM1 was not detected (LOD 1 ppm) in the API.

ICH M7 option 2 → No further justification needed.

MUTAGEN

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification		
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water		
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data No further justification needed.		
SM1	Class 2	Option 2			
<i>In-situ</i> intermediate	Class 3	?	?		
Precursor SM2	Class 3	?	?		

TTC limit (ppm) =
$$\frac{1.5 \,(\mu g/day)}{0.040 \,(g/day)} = 37.5 \,ppm$$

Proposed control:
NMT 0.25% in intermediate A

ICH M7 option 3 → Spike/purge studies

Justification:

a) Spiking Intermediate A with 0.5% of *in-situ* intermediate Results: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in the final substance by LC-MS

→ Found <30% of the TTC limit

b) <u>Carry-over data to the API</u>:
Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in three batches

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification	
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water	
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data No further justification needed.	
SM1	Class 2	Option 2		
<i>In-situ</i> intermediate	Class 3	Option 3	Spiking study + Carry-over data	
Precursor SM2	Class 3	?	?	

TTC limit (ppm) =
$$\frac{1.5 \,(\mu g/day)}{0.040 \,(g/day)} = 37.5 \,ppm$$

Proposed control: NMT 0.25% in intermediate A

ICH M7 option 3 → Spike/purge studies

Justification:

a) Spiking Intermediate A with 0.5% of *in-situ* intermediate Results: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in the final substance by LC-MS

→ Found <30% of the TTC limit

b) <u>Carry-over data to the API</u>: Not detected (LOD 0.1 ppm; LOQ 0.9 ppm) in three batches

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification		
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water		
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data No further justification needed. Spiking study + Carry-over data		
SM1	Class 2	Option 2			
<i>In-situ</i> intermediate	Class 3	Option 3			
Precursor SM2	Class 3	?	?		

TTC limit (ppm) =
$$\frac{1.5 \,(\mu g/day)}{0.040 \,(g/day)} = 37.5 \,ppm$$

Proposed control: NMT 0.10% in SM2

ICH M7 option 3 → Spike/purge studies

Justification:

a) Spiking SM2 with 0.15% of precursor 2

Results: Not detected (LOD 1.8 ppm; LOQ 3.0 ppm)

in **Intermediate C** by LC-MS

→ Found <30% of the TTC limit

b) Carry-over data:

Not detected (LOD 1.8 ppm; LOQ 3.0 ppm) in Intermediate C

3) Setting acceptable limits and propose a control strategy

Impurity	Classification	Control as per ICH M7	Justification		
Thionyl chloride	Class 1	Option 4	Reactivity: Highly reactive with water		
Hydrogen peroxide	Class 1	Option 4	Understanding of purge + carry-over data No further justification needed. Spiking study + Carry-over data		
SM1	Class 2	Option 2			
<i>In-situ</i> intermediate	Class 3	Option 3			
Precursor SM2	Class 3	Option 3	Spiking study + Carry-over data		

TTC limit (ppm) =
$$\frac{1.5 \,(\mu g/day)}{0.040 \,(g/day)} = 37.5 \,ppm$$

Proposed control: NMT 0.10% in SM2

ICH M7 option 3 → Spike/purge studies

Justification:

a) Spiking SM2 with 0.15% of precursor 2

Results: Not detected (LOD 1.8 ppm; LOQ 3.0 ppm)

in **Intermediate C** by LC-MS

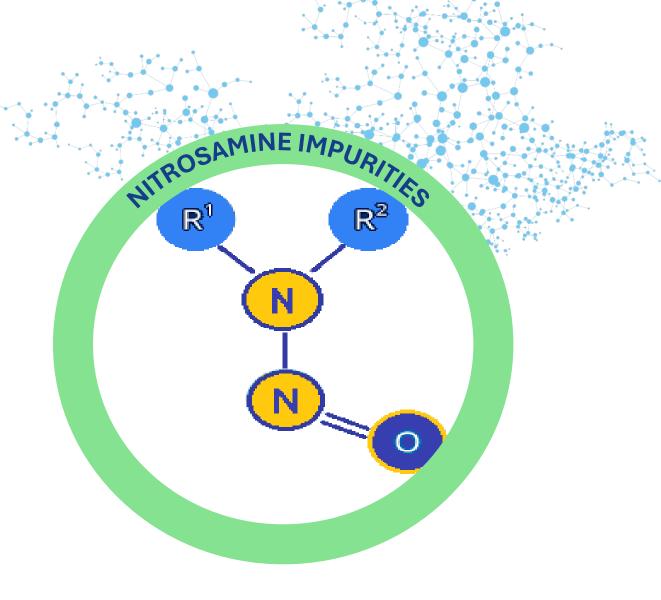
→ Found <30% of the TTC limit

b) Carry-over data:

Not detected (LOD 1.8 ppm; LOQ 3.0 ppm) in Intermediate C

Impurity	Origin	Classification	Control as per ICH M7	Justification	
Thionyl chloride	2	Class 1	Option 4	Reactivity: Highly reactive with water	
Hydrogen peroxide	4	Class 1	Option 4	Understanding of purge + carry-over data No further justification needed	
SM1	1	Class 2	Option 2		
<i>In-situ</i> intermediate	1	Class 3	Option 3	Spiking study + Carry-over data	
Intermediate B	2	Class 5	Not applicable	Treat as non-mutagenic	
Precursor 1 SM2	SM2	Class 5	Not applicable	Treat as non-mutagenic	
Precursor 2 SM2	SM2	Class 3	Option 3	Spiking study + Carry-over data	

Control strategy and the outcome of discussion to be summarised in section 3.2.S.3.2 – Mutagenic impurities (QSARs data may be provided to support classification as per ICH M7)


Overview of the control strategy

		SM1	Int-A	Int-B	SM2	Int-C	API	Origin, fate and carry over	Limit/Control strategy
	Precursor A	0.26%	ND					Precursor SM1. Removed during crystallisation.	Controlled in SM1 at NMT 0.50%.
SM1	Precursor B	0.08%	ND	ND			ND	Precursor SM1. Eliminated in the mother liquor.	Controlled in SM1 at NMT 0.15%.
	3,5-Lutidine	0.24%	ND					By-product,not reactive in the downstream process	Controlled in SM1 at NMT 0.50%, as unsp. in INT-A.
	SM1		11 ppm				ND	Unreacted SM1, mutagenic impurity (Class 2), tested ND (LOD 1 ppm) in API.	Controlled in INT-A at 30 ppm as per ICH M7 option 2 .
t-A	4-OMe		0.15%				ND	In-situ intermediate, potential mutagenic impurity (Class 3).	Controlled in Int-A at NMT 0.25 % as per ICH M7 option 3 based on spiking and carry-over data.
Int-	4-Cl derivative		0.18%				Unsp	By-product, precursor of Ph. Eur. Impurity H	Controlled in Int-A at NMT 0.25%. If carried over, its fate impuirty is controlled as unsp. In the API.
	Acetyl derivative		0.53%	ND		Q _U	an be	Pincluded in the place during 2%, ND in Int-C	Controlled in Int-A at NMT 1.0%, and at NMT 0.25% in Int-B.
8	INT-A			0.38%		ND	Tuty (Dincluded in the 2%, ND in Int-C	Controlled in INT-B as specified at NMT 1.0 %.
발	Acetyl derivative			0.18%		ND		In-situ International Internat	Controlled in INT-B as specified at NMT 0.25 %.
	4-Cl Cl-impurity			0.14%		ND		Process impurity.	Controlled in INT-B as unspecified at NMT 0.15 %.
12	Precursor 1				0.13%	ND		Precursor of SM2, discussed as mutagenic impurity (Class 5), absent (<0.05%) in Int-C.	Controlled in SM2 at NMT 0.30 %.
SP	Precursor 2				0.06%	ND		Precursor of SM2, potential mutagenic impurity (Class 3), ND (LOD 1.8 ppm) in Int-C	Controlled in SM2 at NMT 0.10% as per ICH M7 option 3, based on spiking and carry-over data.
	INT-B					0.17%	Unsp	Int. carried in Int-C. Eliminated during crystallization of API. Found <0.05% in the API.	Controlled in INT-C as specified at NMT 0.40 % and as unspec. impurity in API.
Int-C	Ph. Eur. Imp A (SM2)					0.38%	Unsp	Unreacted SM2, removed during crystallisation.	Controlled in Int-C as specified at NMT 0.50 %, in API as unspecified impurity.
	RRT 1.10					0.12%	Unsp	Unidentified impurity, found 0.05-0.13% in the API.	Controlled in Int-C at NMT 0.20% , in API as unspec. impurity.

© EDQM 2025

- ★ Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★**Elemental impurities
- **★**Inorganic impurities

Nitrosamine impurities

ICH M7: structural groups identified to be of such high potency that intakes even below the TTC would theoretically be associated with a potential for a significant carcinogenic risk. This group is referred to as the "cohort of concern", comprises aflatoxin-like-, <u>N-nitroso</u>-, and alkyl-azoxy compounds.

Specific references for nitrosamine impurities:

- → Ph. Eur. 2.5.42
- → EMA assessment report of the CHMP's Article 5(3) of Regulation (EC) No 726/2004 opinion on nitrosamine

impurities in human medicinal products (EMA/369136/2020): General guidance

→ Corresponding Q&A document:

Questions and answers document
(EMA/409815/2020)

Appendix 1:

Acceptable intakes established for N-nitrosamines

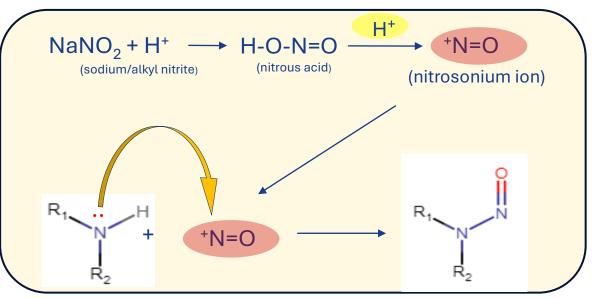
Appendix 2:

Carcinogenic Potency Categorisation Approach for N-nitrosamines

Appendix 3:

Enhanced AMES test conditions for Nnitrosamines

Risk assessment in CEP dossiers - EMA Principles



Step

Comprehensive risk assessment

Nitrosating agent + secondary/tertiary amine + favourable conditions

- Manufacturing process conditions (same synthetic step or in different steps)
- Contaminated starting materials, intermediates, recovered or recycled materials, cross-contamination
- Degradation of API, intermediates, reagents or solvents etc.



*Special attention for the potential formation of nitroso-API (containing secondary amine + favourable conditions or if a risk is known i.e. reported in appendix 1). <u>Case-by-case</u>.

© EDQM 2025

Risk assessment in CEP dossiers - EMA Principles

Risk identified? If yes →

Step

Step

Comprehensive risk assessment

Perform confirmatory testing

Nitrosating agent + secondary/tertiary amine + favourable conditions

- Manufacturing process conditions (same synthetic step or in different steps)
- Contaminated starting materials, intermediates, recovered or recycled materials, cross-contamination
- Degradation of API, intermediates, reagents or solvents etc.

To confirm or refute the presence of nitrosamines

- Omission of control justified only if <u>levels</u> found <u>are below 10%</u> of the acceptable limit
- Using a suitably validated analytical procedure with adequate LOQ (description and full validation data should be provided)

Analytical procedure
should be sufficiently
sensitive:
the LOQ should be ≤ 10%
of the acceptable limit to
omit a control in the API

© EDQM 2025

Risk assessment in CEP dossiers - EMA Principles

Step

Risk identified? If yes →

Step

Presence confirmed? If yes →

Step

Comprehensive risk assessment

Perform confirmatory testing

Control strategy

Nitrosating agent + secondary/tertiary amine + favourable conditions

- Manufacturing process conditions (same synthetic step or in different steps)
- Contaminated starting materials, intermediates, recovered or recycled materials, cross-contamination
- Degradation of API, intermediates, reagents or solvents etc.

To confirm or refute the presence of nitrosamines

- Omission of control justified only if levels found are below 10% of the acceptable limit,
- Using a suitably validated analytical procedure with adequate LOQ (description and full validation data should be provided)

In case levels of nitrosamine impurity is found above 10% of the acceptable limit

- Control at the acceptable <u>limit in</u> the final substance
- Root cause analysis to be performed
- Implement effective risk mitigating measures - CAPA (e.g. changes in manufacturing process)

Same principles to be used for Veterinary products

Nitrosamine impurities - Acceptable limit

How to define an acceptable limit for a nitrosamine impurity?

Questions and answers document (EMA/409815/2020 Rev.21)

Appendix 1:

Acceptable intakes established for N-nitrosamines

Summarizes specific acceptable intake (AI) for a specific nitrosamine to be used for limit calculation

Appendix 2:

Carcinogenic Potency Categorisation
Appraoch for N-nitrosamines

Describes "CPCA"
approach to find the
acceptable intake (AI) to
be applied for the limit
calculation

Appendix 3:

Enhanced AMES test conditions for N-nitrosamines

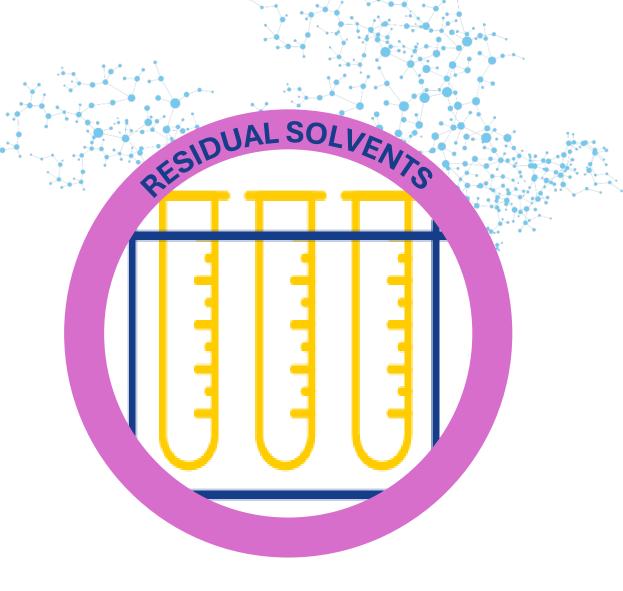
Calculation of applicable limit:

Acceptable limit (ppm) = $\frac{AI \text{ (ng/day)}}{MDD \text{ (mg/day)}}$

Nitrosamine impurities – Key point

The EDQM relies on the EMA Q&A for the assessment of the risk nitrosamine impurities.

Frequent revision of the Q&A or its corresponding appendixes:



- Specific acceptable intakes (AI) for nitrosamines may be updated following toxicological assessment (e.g. Bacterial Reverse Mutation Test, in vivo studies etc.)
- > Additional nitrosamine impurities are frequently newly included in appendix 1.
- CEP holders are expected to perform the risk assessment for nitrosamine impurities, and if relevant propose a control strategy according to most recent EU requirements.

Risk assessment to be included in 3.2.S.3.2 – Nitrosamine impurities

- ★ Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★**Elemental impurities
- **★**Inorganic impurities

Residual solvents

- ICH Q3C / Ph.Eur. 5.4 classification and recommended limits
- CPMP/QWP/450/03 -Rev.1 (Annex I)

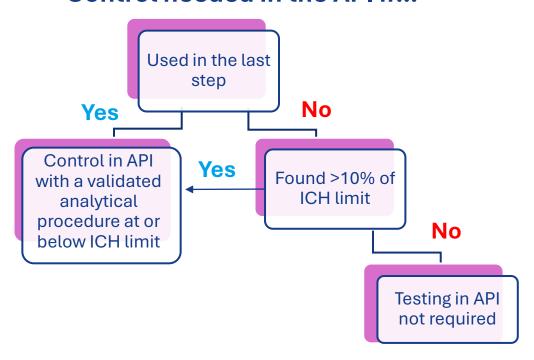
ICH Class 1 solvent

(as contaminants of other solvents)

Solvents to be avoided, usually contaminants of solvents (e.g. benzene is a potential contaminant of acetone, toluene, methanol,...)

Control needed in the API unless...

Option 1


 Limit in originator solvent ensuring class 1 solvent in the API <30% ICH limit based on a rationale.

Option 2

 Demonstrated < 30% ICH limit in intermediate or API by a validated analytical procedure on 3 consecutive batches (or 6 pilot batches).

ICH Class 2 solvent (solvents to be limited)

Control needed in the API if...


Non-classified ICH Q3C Solvents: toxicological justification for any proposed limit.

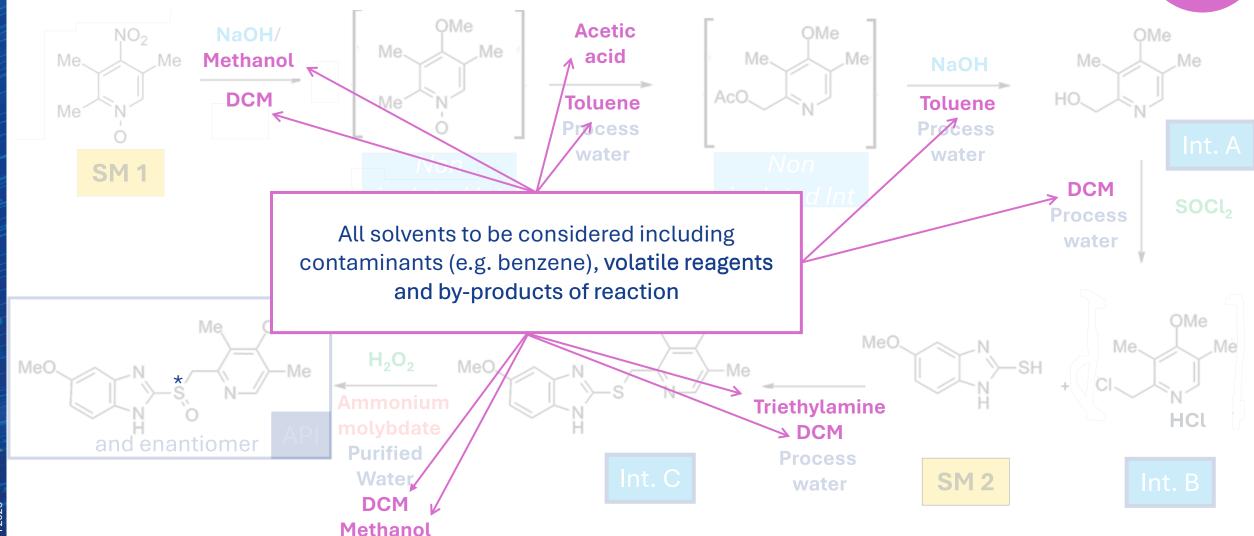
Class 3 solvents & Certification Procedure

PA/PH/CEP (04) 1, 7R:

Content of the dossier for <u>chemical</u> <u>purity</u> and microbiological quality

Low toxicity solvents (Class 3) can be limited by a test for loss on drying with a limit of not more than 0.5%, when appropriate. If the limit of the loss on drying test of the monograph is higher than 0.5%, then a specific test for residual solvents should be introduced.

Control in API with a validated analytical procedure at **NMT 5000 ppm**


Class-3 solvents controlled by loss on drying at NMT 0.5%

DMSO is a high boiling point solvent and loss on drying test is not sufficient to control it

Case study (fictitious)

Solvent	Used in stage X / 4	ICH classification	Typical levels in API	LOD (ppm)	Limit in API
Methanol	Stages 1 & 4	Class 2 NMT 3000 ppm	88 – 184 ppm	7	?
Toluene	Stage 1	Class 2 NMT 890 ppm	BDL	16	?
Dichloromethane	Stages 2, 3 & 4	Class 2 NMT 600 ppm	54 – 102 ppm	54	?
Acetic acid	Stage 1	Class 3 NMT 5000 ppm	BDL	6	?
Triethylamine	Stage 3	Class 3 NMT 5000 ppm	ND – 16 ppm	12	?
Benzene	As contaminant	Class 1 NMT 2 ppm	BDL	0.5	?

Data obtained from controls in intermediates may also be used to show absence.

Testing using GC analytical procedures (or other suitable) validated in line with ICH Q2 (R2).

Solvent	Used in stage X / 4	ICH classification	Typical levels in API	LOD (ppm)	Limit in API
Methanol	Stages 1 & 4	Class 2 NMT 3000 ppm	88 – 184 ppm	7	?
Toluene	Stage 1	Class 2 NMT 890 ppm	BDL	16	
Dichloromethane	Stages 2, 3 & 4	Class 2 NMT 600 ppm	54 – 102 ppm	54	?
Acetic acid	Stage 1	Class 3 NMT 5000 ppm	BDL	6	X
Triethylamine	Stage 3	Class 3 NMT 5000 ppm	ND – 16 ppm	12	X
Benzene	As contaminant	Class 1 NMT 2 ppm	BDL	0.5	?

<10%ICH, not used last step

No control in the API requested

Solvent	Used in stage X / 4	ICH classification	Typical levels in API	LOD (ppm)	Limit in API	
Methanol	Stages 1 & 4	Class 2 NMT 3000 ppm	188 – 1284 ppm	7	?	
Toluene	Stage 1	Class 2 NMT 890 ppm	BDL	16	-	Used in the last step, Class 2
Dichloromethane	Stages 2, 3 & 4	Class 2 NMT 600 ppm	54 – 102 ppm	54	?	solvents
Acetic acid	Stage 1	Class 3 NMT 5000 ppm	BDL	6	-	Control in API using a validated analytical
Triethylamine	Stage 3	Class 3 NMT 5000 ppm	ND – 16 ppm	12	-	analytical procedure
Benzene	As contaminant	Class 1 NMT 2 ppm	BDL	0.5	?	

Solvent	Used in stage X / 4	ICH classification	Typical levels in API	LOD (ppm)	Limit in API	
Methanol	Stages 1 & 4	Class 2 NMT 3000 ppm	188 – 1284 ppm	7		
Toluene	Stage 1	Class 2 NMT 890 ppm	BDL	16	-	U
Dichloromethane	Stages 2, 3 & 4	Class 2 NMT 600 ppm	54 – 102 ppm	54	NMT 600 ppm	
Acetic acid	Stage 1	Class 3 NMT 5000 ppm	BDL	6	-	Contr valid
Triethylamine	Stage 3	Class 3 NMT 5000 ppm	ND – 16 ppm	12	-	analy
Benzene	As contaminant	Class 1 NMT 2 ppm	BDL	0.5	?	

sed in the last step, Class 2 solvents

Control in API using a validated analytical analytical procedure

Specification limit according to ICH Q3C

Solvent	Used in stage X / 4	ICH classification	Typical levels in API	LOD (ppm)	Limit in API
Methanol	Stages 1 & 4	Class 2 NMT 3000 ppm	188 – 1284 ppm	7	NMT 3000ppm
Toluene	Stage 1	Class 2 NMT 890 ppm	BDL	16	-
Dichloromethane	Stages 2, 3 & 4	Class 2 NMT 600 ppm	54 – 102 ppm	54	NMT 600ppm
Acetic acid	Stage 1	Class 3 NMT 5000 ppm	BDL	6	-
Triethylamine	Stage 3	Class 3 NMT 5000 ppm	ND – 16 ppm	12	-
Benzene	As contaminant	Class 1 NMT 2 ppm	BDL	0.5	X

No control in API requested

Class 1 solvent as contaminant, <30% ICH limit

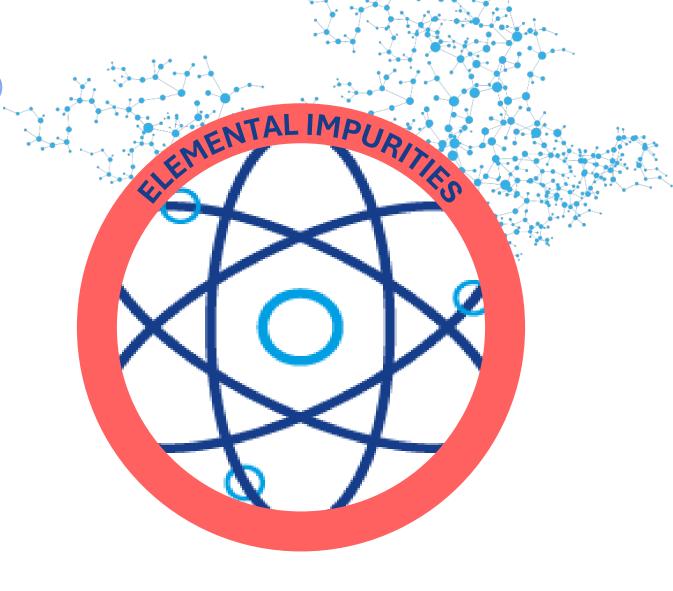
Specification of the active substance

Solvent	ICH classification	Limit in API
Methanol	Class 2 NMT 3000 ppm	NMT 3000 ppm
Dichloromethane	Class 2 NMT 600 ppm	NMT 600 ppm

If other solvents are included in section 3.2.S.4.1, it will be transparent on the CEP and the analytical procedure(s) used to detect them will be appended to the CEP.

Used in the

last step


Used in the

last step

Exercise to be summarised in section 3.2.S.3.2 - Residual solvents

- ★ Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★** Elemental impurities
- **★**Inorganic impurities

Elemental impurities: references and control strategy

ICH Q3D

- Covers **24** elements classified as : Class-1, Class-2A, Class-2B and Class-3
- Gives permitted daily exposure (PDE) according to the route of administration.

PA/PH/CEP (16) 23, 2R

- Risk assessment requirements to control elemental impurities
- Component Approach as per ICH Q3D (contribution of each component is identified, evaluated and summarized)

The control strategy should focus on <u>presence</u> or <u>absence</u> of elemental impurities in the API

Presence in API of intentionally added elemental impurity:

- a justified **specification** should be applied
- Analytical procedure(s) should be described in 3.2.S.4.2, validation in line with ICH Q2(R2)

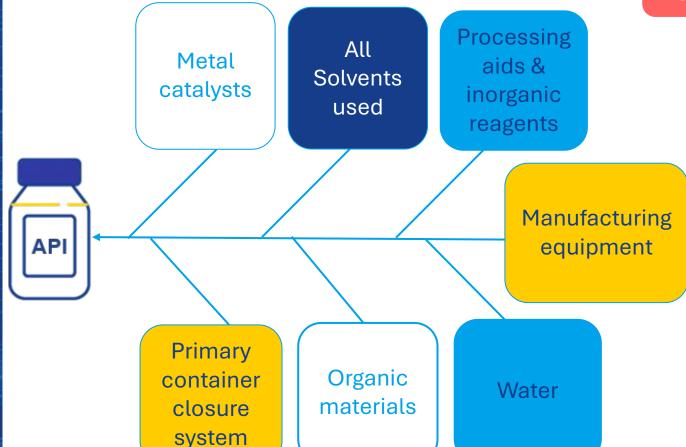
Absence in the API of intentionally added elemental impurity i.e. purged to a level consistently **below 30% of the defined limit** :

- the indicated route of administration
- the ICH Q3D **option 1** (API daily intake of NMT 10g) or **option 2a** when justified,
- Analytical procedure identified (ICP/MS, ICP/OES,...), at least sensitivity (**LOD/LOQ**) to be provided

If elemental impurities are introduced in the *last synthetic step*, specification limit in the API is usually expected

Implementation of ICH Q3D in the CEP procedure

Two possible approaches:



No Risk management summary is prepared.

- Any elemental impurity used after the introduction of the SMs should be declared and will be reported on the CEP
- If introduced in the last synthetic step, a control in the specification of the API should be included unless otherwise justified (e.g. levels below 30% of ICH Q3D limit)
- If controlled in the final API, validation of the analytical procedure according to ICH Q2 (R2) should be provided and the analytical procedure will be appended to the CEP
- ★ If no elemental impurity is intentionally added, this will be reported on the CEP.

Implementation of ICH Q3D in the CEP procedure

Two possible approaches:

A Risk management summary for elemental impurities (RMS) is prepared:

- Besides the intentionally added elements, the assessment should also cover all other potential elemental impurities from other sources
- Risk Management Summary report should detail the rationale of the study:
 - why impurities are considered
 - ★ justify the chosen control strategy
 - ★ intended route of administration
- ★ To be completed with a RMS table → intended to be annexed to the CEP

Batch screening data do not replace a risk management summary

Implementation of ICH Q3D in the CEP procedure

Two possible approaches:

- elemental impurity after introduction of the SMs should be declared and will be reported on the CEP
- If introduced in the last synthetic step, a control in the specification of the API should be included unless otherwise justified (levels below 30% of ICH Q3D limit)
- If control in the final API, validation of the analytical procedure according to ICH Q2 (R2) should be provided and the analytical procedure will be appended to the CEP
- If **no elemental impurity** is intentionally added, this will be reported on the CEP.

A Risk management summary for elemental impurities (RMS) is prepared:

- rdes the intentionally addes

 ne assessment should also cover appotential elemental impurities from
 sources

 Risk Management Summable of about the rationale of about the rationale of about the interprior of the option of the o Besides the intentionally added element Resilitates to the CF as a seening data do no sment summary

management summary

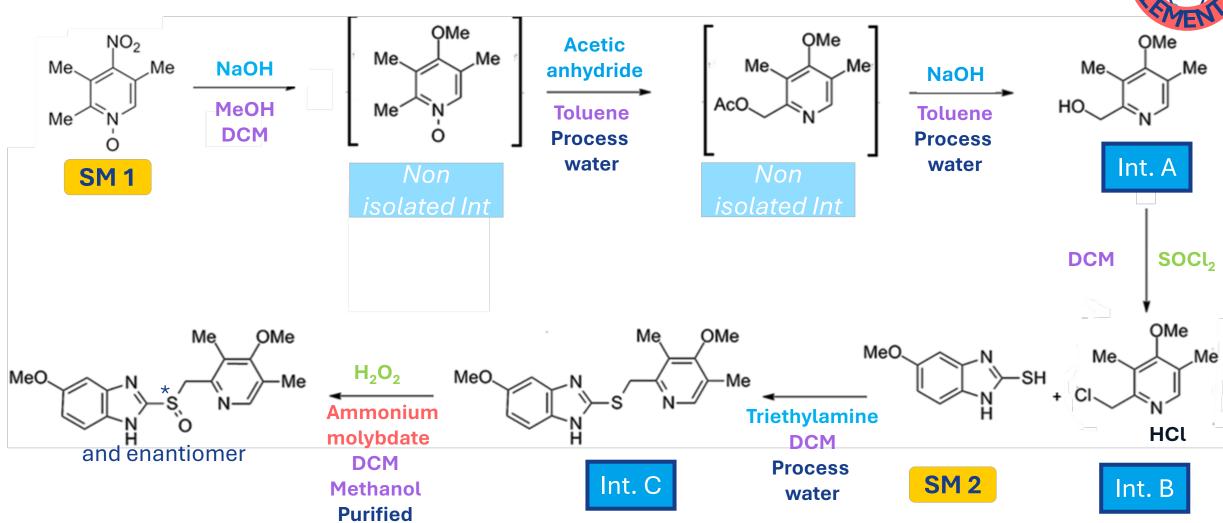
RMS approach:

Elements to be considered:

Elemental impurities derived from intentionally added catalysts and inorganic reagents whatever the route of administration

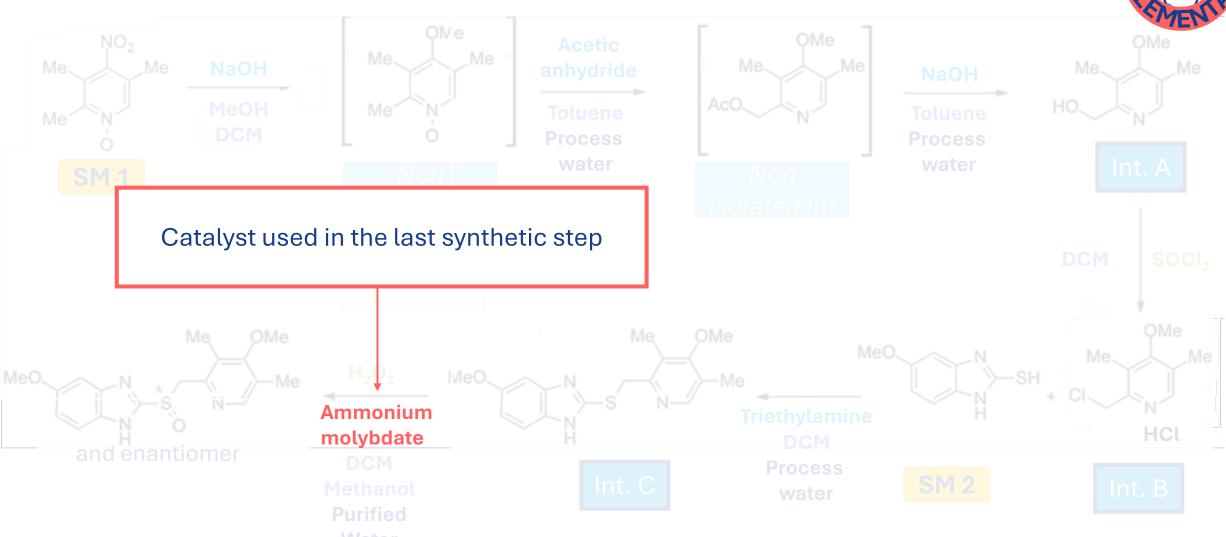
Potential elemental impurities not intentionally added depending on the route of administration

Potential elemental impurities derived from manufacturing equipment, water, leached from container closure system...


<u>∧</u>

When multiple routes of administration possible for an API, the worst-case scenario has to be considered

			If not intention				
Element	Class	If intentionally added	Oral	Parenteral	Inhalation	Topic	
		(all routes)	5		3	A CM	
Cd	1	Yes	Yes	Yes	Yes	Yes	
Pb	1	Yes	Yes	Yes	Yes	Yes	
As	1	Yes	Yes	Yes	Yes	Yes	
Hg	1	Yes	Yes	Yes	Yes	Yes	
Со	2A	Yes	Yes	Yes	Yes	Yes	
V	2A	Yes	Yes	Yes	Yes	Yes	
Ni	2A	Yes	Yes	Yes	Yes	Yes	
Tl	2B	Yes	No	No	No	No	
Au	2B	Yes	No	No	No	No	
Pd	2B	Yes	No	No	No	No	
Ir	2B	Yes	No	No	No	No	
Os	2B	Yes	No	No	No	No	
Rh	2B	Yes	No	No	No	No	
Ru	2B	Yes	No	No	No	No	
Se	2B	Yes	No	No	No	No	
Ag	2B	Yes	No	No	No	No	
Pt	2B	Yes	No	No	No	No	
Li	3	Yes	No	Yes	Yes	No	
Sb	3	Yes	No	Yes	Yes	No	
Ва	3	Yes	No	No	Yes	No	
Мо	3	Yes	No	No	Yes	No	
Cu	3	Yes	No	Yes	Yes	No	
Sn	3	Yes	No	No	Yes	No	
Cr	3	Yes	No	No	Yes	No	


Case study (fictitious): Omeprazole

Water

© EDQM 202

Case study (fictitious): Omeprazole

Moreover, **Chromium** has been considered as coming from the equipment used

RMS Table included in section 3.2.S.3.2

Impurity	Limit	Batch data	Origin
Chromium	300 ppm	< 10 ppm	Equipment
Molybdenum	1100 ppm	< 100 ppm	Catalyst in the last step

Option 1 limit for oral administration

The control strategy followed should be clear and mentioned on the RMS:

- « Absent » should be defined
 (e.g. « less than 30% of ICHQ3D limit »)
- Or « NMT limit in ppm »
 calculated based on option 1
 (or alternatively if justified,
 based on option 2a),
- Or « No risk identified ».

Route of administration.

Elements considered or not

Elements intentionally introduced or not

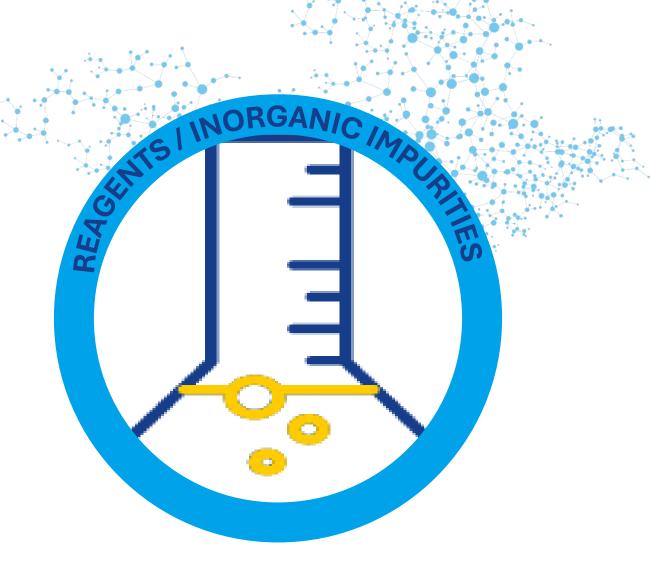
Report a conclusion on absence or control

If term « Absent » is used its definition is required

	Route of administration onsidered in the risk assessment: Oral						
	_		Intentionally	Considered in risk	- WEN		
L	Element	Class	added?	management?	Conclusion		
L	Cd		No	Yes	Absent		
L	Pb	1	No	Yes	Absent		
L	As	1	No	Yes	Absent		
1	Hg	1	No	Yes	Absent		
L	Co	2A	No	Yes	Absent		
L	V	2A	No	Yes	Absent		
1	Ni	2A	2	Yes	Absent		
	Τl	2B	No	No	Not applicable		
	Au	2B	No	No	Not applicable		

RMS table will be appended to the CEP

Rh	2B	No	No	Not applicable		
Ru	2B	No	No	Not applicable		
Se	2B	No	No	Not applicable		
Ag	2B	No	No	Not applicable		
Pt	2B	No	No	Not applicable		
Li	3	No	No	Not applicable		
Sb	3	No	No	Not applicable		
Ва	3	No	No	Not applicable		
Mo	3	Yes	Yes	Absent		
Cu	3	No	No	Not applicable		
Sn	3	No	No	Not applicable		
Cr	3	No	Yes	Absent		
N. II. III. III. III. III. III. III. II						


Note: "absent" means less than 30% of ICH Q3D option 1 limit

Skip testing to be justified in line with ICH Q3D

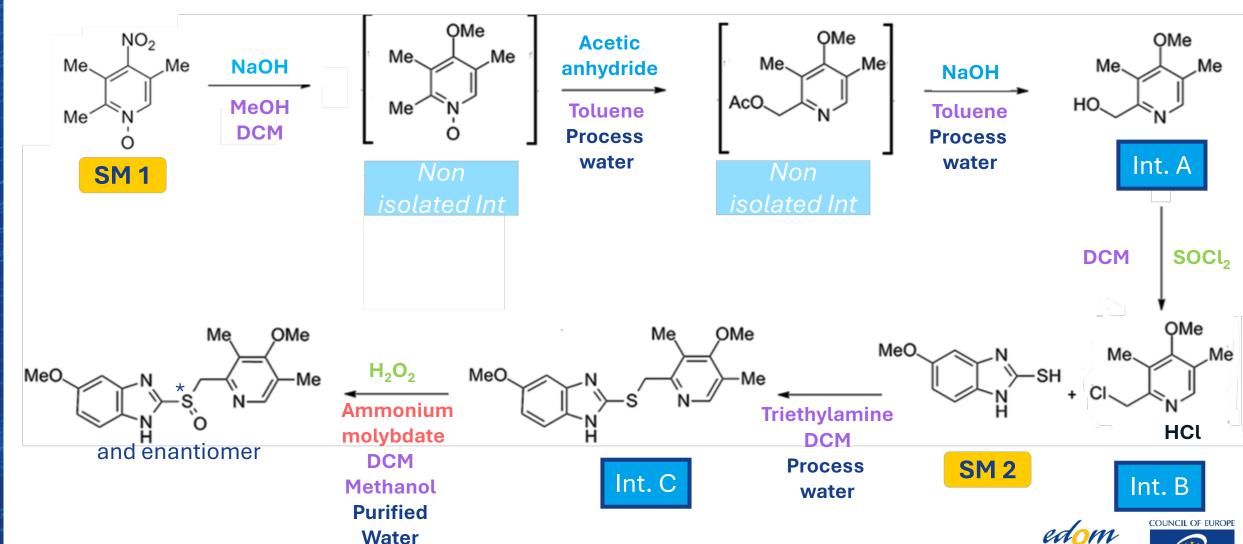
- ★ Related Substances (Organic impurities)
- **★**Mutagenic impurities
- **★**Nitrosamine impurities
- **★**Residual solvents
- **★**Elemental impurities
- **★**Reagents and Inorganic impurities

Reagents and inorganic impurities

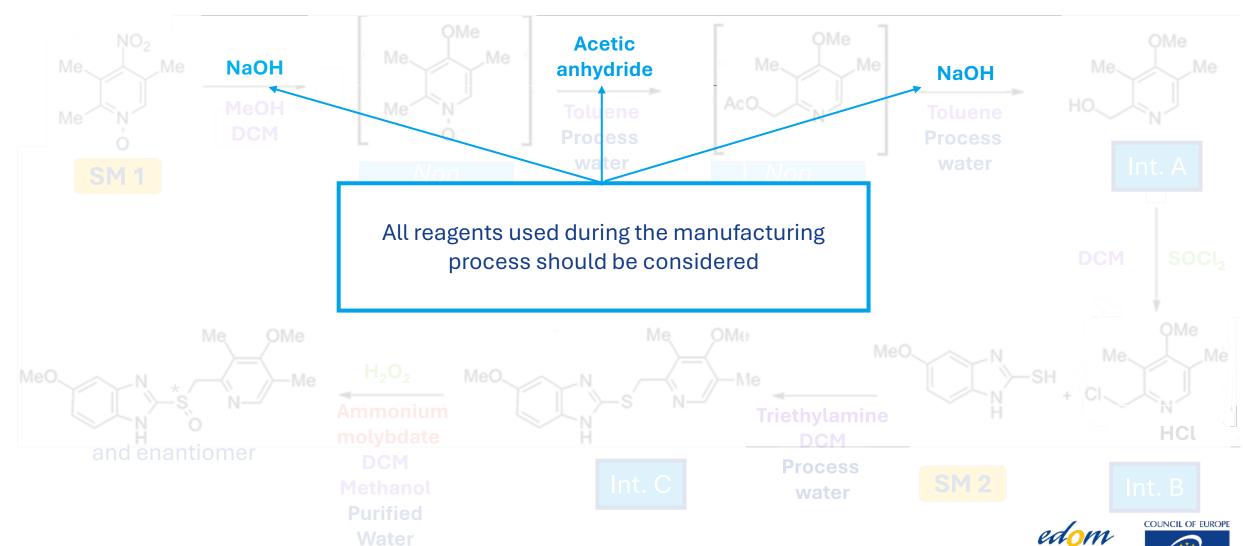
Carry-over of reagents, in particular toxic reagents, to the final substance should be discussed, as applicable. (e.g. TBAB)

*Absence of carry-over into the API is demonstrated using a validated analytical

procedure against a limit justified based on toxicological data


OR

*Routine control to be implemented in a suitable intermediate or final substance


Case study (fictitious): Omeprazole

European Directorate | Direction européenne for the Quality | de la qualité of Medicines | du médicament

CONSEIL DE L'EUROPE

Case study (fictitious): Omeprazole

of Medicines | du médicament

CONSEIL DE L'EUROPI

Reagents and inorganic impurities

	Origin, fate and carry over	Batch data	Limit
Sodium hydroxide	Washed along with water used in the manufacturing process.	X	None
Acetic anhydride	Hydrolyzed to acetic acid, itself not detected in the API. Refer to residual sovents.	ND (LOD 15 ppm)	None

Inorganic residues controlled by test of sulfated ash of the monograph.

Discussion to be included in 3.2.S.3.2 – Inorganic reagents / impurities.

Specification for the final API:

Test	Specification	n	Analytical procedure reference	
Appearance	White or almost White powder		Ph. Eur. Current edition	
Solubility	Very slightly soluble in water, soluble in sparingly soluble in ethanol (96 per cer		Ph. Eur. Current edition	
Identification	IR spectrum should comply with that o	f the standard	Ph. Eur. Current edition	
Appearance of solution	Solution S is clear		Ph. Eur. Current edition	
Impurity F and Impurity G by UV	· ·	Maximum 350 ppm for the sum of impurity F & G. The absorbance of solution S determined at 440 nm is not greater than 0.10.		
Related substances	Ph. Eur Impurity D Ph. Eur. Impurity E Unspecified impurities (each) Total impurities	NMT 0.15% NMT 0.15% NMT 0.10% NMT 0.5%	Ph. Eur. Current edition	
Loss on drying	Maximum 0.2%		Ph. Eur. Current edition	
Sulfated ash	Maximum 0.1%	Maximum 0.1% 99.0 per cent to 101.0 per cent		
Assay (dried substance)	99.0 per cent to 101.0 per cent			
Residual solvents	Methanol Dichloromethane	NMT 3000 ppm NMT 600 ppm	In-house	

© EDQM 2025

Take home message...

Show knowledge and understanding of your specific process and resulting impurity profile

Show you have identified the risks for the quality of your active substance

Show your control strategy mitigates the risks you have identified for the quality of your active substance

Thank you for your attention

More information

www.edqm.eu

https://go.edqm.eu/Newsletter

Follow us on

<u> @edqm_news</u>

EDQMCouncilofEurope

