

European Directorate for the Quality of Medicines & HealthCare

Council of Europe

* * * * ne 4

CombiStats online Training module 4

Part 1: single-dose assays

Part 2: combination of assay results

Content

- ★ Data entry
- ★ Statistical analysis
- ★ Examples
- ★ Dose selection

Data entry – quantitative data

E.g. immunogenicity test in mice

Preparations

		Information	Potency		Pre-dilution	
Table	Preparation	ID	Potency	Value	Diluted	Injected
1	Standard 🕶	Reference	Assigned	1 unit/dose	1 dose/2 ml	0.5 ml/mouse
2	Sample 1 ▼	Batch	Assumed ▼	1 unit/dose	1 dose/ml	0.5 ml/mouse

Table 1			
Preparation	Standard		
ID	Reference		
Potency	Assigned		
Potency value	1 unit/dose		
Diluted	1 dose/2 ml		
Injected	0.5 ml/mouse		
Dose	1/1		
Dose Rep.1	1/1 0.867		
Rep.1	0.867		
Rep.1 Rep.2	0.867 0.568		
Rep.1 Rep.2 Rep.3	0.867 0.568 0.674		

Table 2		
Preparation	Sample 1	
ID Batch		
Potency	Assumed	
Potency value	1 unit/dose	
Diluted	1 dose/ml	
Injected	0.5 ml/mouse	
Dose	1/1	
Rep.1	1.068	
Rep.1 Rep.2	1.068 0.845	
Rep.2	0.845	
Rep.2 Rep.3	0.845	

or

Raw data

Table 1			
Preparation	Standard		
ID	Reference		
Potency	Assigned		
Potency value	1 unit/dose		
Diluted	1 dose/2 ml		
Injected	0.5 ml/mouse		
Dose	1/1 1/1		
Rep.1	0.867 0.550		
Rep.2	0.568 0.598		
Rep.3	0.674 0.732		

	Table 2			
Preparation	tion Sample 1			
ID	Batch	Batch		
Potency	Assum	ed		
Potency value	1 unit/dose			
Diluted	1 dose/ml			
Injected 0.5 ml/mo				
Dose	1/1 1/1 1/1			
Rep.1	1.068	1.274	0.964	
Rep.2	0.845	0.686	1.160	

Unique dose repeated in different columns (or rows)

Data entry – quantal data

E.g. in vivo test

Preparations

		Information	Potency	
Table	Preparation	ID	Potency	Value
1	Standard 🕶	Reference	Assigned	8 IU/ml
2	Sample 1 ▼	Potent lot	Assumed ▼	2.5 IU/ml
3	Sample 2 ▼	Sub-potent lot	Assumed •	2.5 IU/ml

Aggregated data (r/n)

Raw data

Table 1		
Preparation	Standard	
ID	Reference	
Potency	Assigned	
Potency value	8 IU/ml	
Dose	Rep.1	
1/300	20/28	

Table	2	
Preparation	Sample 1	
ID	Potent lot	
Potency	Assumed	
Potency value	2.5 IU/ml	
Dose	Rep.1	
1/30	10/28	

Table 3		
Preparation	Sample 2	
ID	Sub-potent lot	
Potency	Assumed	
Potency value	2.5 IU/ml	
Dose	Rep.1	
1/30	15/28	

Individual data

Table 1			
Preparation	Standard		
ID	Reference		
Potency	Assigned		
Potency value	8 IU/ml		
Dose	1/300 1/300		
Rep.1	1 1		
Rep.2	1	0	
Rep.3	1	1	
Rep.4	0	1	
Rep.5	1	0	
Rep.6	1	1	
Rep.7	1	1	
Rep.8	0	0	
Rep.9	0	1	
Rep.10	1	1	
Rep.11	1	1	
Rep.12	0	1	
Rep.13	1	1	
Rep.14	1	0	
×/10	10/11	10/11	

■ Tab	Table 2			
Preparation	Sample	Sample 1		
ID	Potent	Potent lot		
Potency	Assum	ed		
Potency value	2.5 IU/	2.5 IU/ml		
Dose	1/30	1/30		
Rep.1	1	0		
Rep.2	0	1		
Rep.3	1	0		
Rep.4	0	0		
Rep.5	0	1		
Rep.6	1	0		
Rep.7	0	0		
Rep.8	0	0		
Rep.9	0	0		
Rep.10	0	1		
Rep.11	1	0		
Rep.12	1	0		
Rep.13	0	1		
Rep.14	1	0		
r/n	6/14	4/14		

Table 3			
Preparation	Sample 2		
ID	Sub-potent lot		
Potency	Assumed		
Potency value	2.5 IU/i	2.5 IU/ml	
Dose	1/30	1/30	
Rep.1	0	1	
Rep.2	1	0	
Rep.3	1	1	
Rep.4	0	0	
Rep.5	1	1	
Rep.6	0	0	
Rep.7	1	1	
Rep.8	1	1	
Rep.9	1	0	
Rep.10	0	0	
Rep.11	0	1	
Rep.12	1	1	
Rep.13	1	0	
Rep.14	0	0	
r/n	8/14	7/14	

"Show design" option

Quantitative data

Assay layout

Design	c1	c2	с3
r1	1 1 1	2 1 5	1 1 5
r2	2 1 3	1 1 3	1 1 2
r3	2 1 6	2 1 1	2 1 4
r4	2 1 2	1 1 4	1 1 6

Observ.	c1	c2	с3
r1	0.867	0.686	0.598
r2	0.964	0.674	0.568
r3	1.160	1.068	1.274
r4	0.845	0.550	0.732

Blank results

0.002	0.007	0.005	0.004	0.007

 Mean
 SD
 RSD%

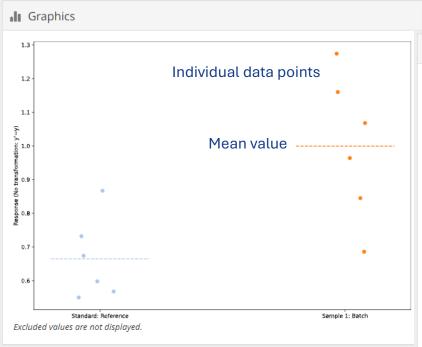
 0.005
 0.002
 42.4

Quantal data (e.g. individual data)

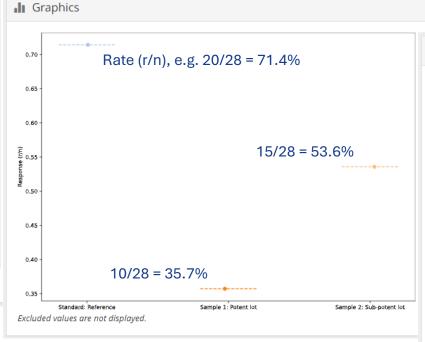
Assay layout

Design	c1	c2	c3	c4	c5	c6
r1	1 1 1	2 1 1	3 1 1	1 1 15	2 1 15	3 1 15
r2	1 1 2	2 1 2	3 1 2	1 1 16	2 1 16	3 1 16
r3	1 1 3	2 1 3	3 1 3	1 1 17	2 1 17	3 1 17
r4	1 1 4	2 1 4	3 1 4	1 1 18	2 1 18	3 1 18
r5	1 1 5	2 1 5	3 1 5	1 1 19	2 1 19	3 1 19
r6	1 1 6	2 1 6	3 1 6	1 1 20	2 1 20	3 1 20
r7	1 1 7	2 1 7	3 1 7	1 1 21	2 1 21	3 1 21
r8	1 1 8	2 1 8	3 1 8	1 1 22	2 1 22	3 1 22
r9	1 1 9	2 1 9	3 1 9	1 1 23	2 1 23	3 1 23
r10	1 1 10	2 1 10	3 1 10	1 1 24	2 1 24	3 1 24
r11	1 1 11	2 1 11	3 1 11	1 1 25	2 1 25	3 1 25
r12	1 1 12	2 1 12	3 1 12	1 1 26	2 1 26	3 1 26
r13	1 1 13	2 1 13	3 1 13	1 1 27	2 1 27	3 1 27
r14	1 1 14	2 1 14	3 1 14	1 1 28	2 1 28	3 1 28

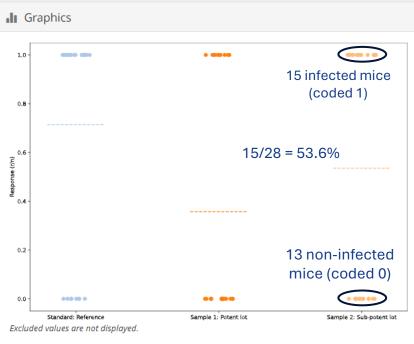
Observ.	c1	c2	c3	c4	с5	с6
r1	1	1	0	1	0	1
r2	1	0	1	0	1	0
r3	1	1	1	1	0	1
r4	0	0	0	1	0	0
r5	1	0	1	0	1	1
r6	1	1	0	1	0	0
r7	1	0	1	1	0	1
r8	0	0	1	0	0	1
r9	0	0	1	1	0	0
r10	1	0	0	1	1	0
r11	1	1	0	1	0	1
r12	0	1	1	1	0	1
r13	1	0	1	1	1	0
r14	1	1	0	0	0	0


Content

- ★ Data entry
- ★ Statistical analysis
- ★ Examples
- ★ Dose selection


Descriptive plot

Quantitative data



Jittering to prevent overplotting

Quantal data (aggregated)

Quantal data (individual)

Statistical test - quantitative data

A test comparing the location of the data of the preparations

Location = means → t-test (2 preps), multiple comparisons test (> 2 preps)

Assumption: data should be normally distributed (Gauss distributions)

May not be the case for some bioassays...

E.g. immunogenicity test in mice (antibody units) – normal distributions?

CombiStats approach: a test applicable to any distribution (distribution-free statistics); data from a completely randomised design

→ Wilcoxon-Mann-Whitney test

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1 IU/dose
Dose	1 dose
Rep.1	4.4
Rep.2	12.2
Rep.3	8.5
Rep.4	8.5
Rep.5	1.8
Rep.6	7.2
Rep.7	7.2
Rep.8	8.5
Rep.9	3.1
Rep.10	10.2

■ Table	2
Preparation	Sample 1
ID	Т
Potency	Assumed
Potency value	? IU/dose
Dose	1 dose
Rep.1	10.2
Rep.2	16.9
Rep.3	11.7
Rep.4	10.2
Rep.5	10.2
Rep.6	10.2
Rep.7	8.5
Rep.8	0.1
Rep.9	0.1
Rep.10	8.5

Wilcoxon-Mann-Whitney test

Compares the distributions of results from two preparations

Principle: the values, listed in ascending order, will alternate between the 2 preparations if their underlying distributions are equal

Tabl	e 1 :
Preparation	Standard
ID	Reference
Potency	Assigned
Potency value	1 unit/dose
Diluted	1 dose/2 ml
Injected	0.5 ml/mouse
Dose	1/1
Rep.1	0.867
Rep.2	0.568
Rep.3	0.674
Rep.4	0.550
Rep.5	0.598
Rep.6	0.732

Tabl	e 2
Preparation	Sample 1
ID	Batch
Potency	Assumed
Potency value	1 unit/dose
Diluted	1 dose/ml
Injected	0.5 ml/mouse
Dose	1/1
Rep.1	1.068
Rep.2	0.845
Rep.3	0.964
Rep.4	1.274
Rep.5	0.686
Rep.6	1.160

Data in ascending order. Do they alternate between the 2 prep? Not really... (have a look at the descriptive plot too)

Obser	v. c1	c2	с3	c4	c5	с6	c7	с8	c9	c10	c11	c12
r1	0.550	0.568	0.598	0.674	0.686	0.732	0.845	0.867	0.964	1.068	1.160	1.274

Rank approach

Std data in position (rank) 1, 2, 3, 4, 6 and 8 Sample data in position (rank) 5, 7, 9, 10, 11 and 12

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: Batch	unit/dose	0.5	0.007576	**

p-value \leq 0.05 (usual significance threshold) \rightarrow the 2 distributions of results differ significantly

Wilcoxon-Mann-Whitney test

Is useful in a case of skewed data: the **rank approach** relaxes the effects of extreme values

Vero cell assay: values < LOD set to 0

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	160 IU/vial
Dose	1 IU
Rep.1	0
Rep.2	0
Rep.3	
Rep.4	0.1
Rep.5	0.2
Rep.6	0
Rep.7	
Rep.8	0.168
Rep.9	0.084
Rep.10	0.059
Rep.11	0
Rep.12	0

Table	2 :
Preparation	Sample 1
ID	Т
Potency	Assigned
Potency value	80 IU/dose
Dose	2.5 IU
Rep.1	0.042
Rep.2	0.8
Rep.3	0.1
Rep.4	0.283
Rep.5	0.141
Rep.6	0.238
Rep.7	0.283
Rep.8	0.168
Rep.9	0
Rep.10	0
Rep.11	0.168
Rep.12	0.084

Has many advantages over parametric methods (e.g. t-test)

- No assumptions on normality nor homoscedasticity have to be made
- Applicable to various types of responses:

Quantal data (yes/no, e.g. lethal challenge)

Scores (e.g. intradermal challenge)

Quantitative data (e.g. ELISA absorbances)

Mixed data (e.g. quantitative data with a category "below detection limit")

- Not sensitive to outliers
- No transformation of responses is necessary
- In many practical cases, it is statistically more efficient than the t-test

However, for a single-dose assay to be valid, the condition of similarity of dose-response curves must be fulfilled

Limit tested

Limit test

		Limit tested			
Preparation	Units	Value	Probability	Level of significance	
Sample 1: Batch	unit/dose	0.5	0.007576	**	

p-value ≤ 0.05 (usual significance threshold) → the 2 distributions of results differ significantly

Table 1				
Preparation Standard				
ID	Reference			
Potency Assigned				
Potency value	1 unit/dose			
Diluted	1 dose/2 ml			
Injected 0.5 ml/mou				
Dose 1/1				

Tab	le 2
Preparation	Sample 1
ID	Batch
Potency	Assumed
Potency value	1 unit/dose
Diluted	1 dose/ml
Injected	0.5 ml/mouse
Dose	1/1

$$Limit \ value = \frac{1 \ unit}{1 \ dose} \times \frac{1 \ dose}{2 \ mL} \times \frac{0.5 \ mL}{1 \ mouse} \times \frac{1}{1} \times \left[\begin{array}{c} \text{From} \\ \text{Table 1} \end{array} \right]$$

$$\frac{1 \ dose}{1 \ unit} \times \frac{1 \ mL}{1 \ dose} \times \frac{1 \ mouse}{0.5 \ mL} \times \frac{1}{1} \left[\begin{array}{c} \text{From} \\ \text{Table 2} \end{array} \right]$$

 $Limit\ value = 0.5$

More precisely, Sample 1 has a potency significantly higher than 0.5 unit/dose

See the note for guidance, page 5 for further examples

Content

- ★ Data entry
- ★ Statistical analysis
- ★ Examples
- ★ Dose selection

Example 1

Multiple-dose assay

The signal increases with the dose (positive slope)

Table 1					
Preparation	Standard				
ID	S				
Potency	Assigned				
Potency value	5000 IU/mg				
Dose	1/45 1/30 1/20				
Rep.1	161	171	187		
Rep.2	150	172	192		
Rep.3	161	174	195		
Rep.4	163	184	194		
Rep.5	151	176	201		
Rep.6	166 182 198				

Table 2				
Preparation	reparation Sample 1			
ID	Т			
Potency	Assumed			
Potency value	5600 IU/mg			
Dose	1/45 1/30 1/20			
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171 196 203			

1	1/45 11.1111 IU	1/30 166.6667 IU		1/20 250 IU	_	
210 -	11.111110	200,000710		250 10	x x	
200 -		×		/	X	
mation: y'=y)		×		•		
Joseph 1907						
(No tra						
Response (No transformation: y'=y)	×	×				Potency
160 -	×		Preparation	Units		Potency (LCL, UCL)
	×	ŗ	Preparation Sample 1: T	Units IU/mg		-

Single-dose assay

positive slope

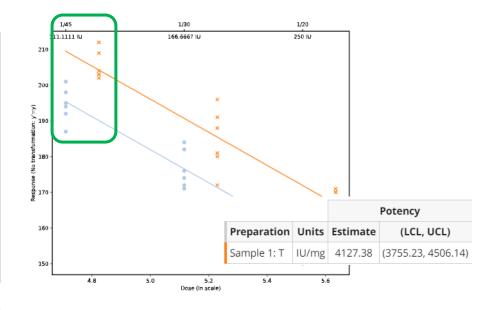
Table 1			
Preparation	paration Standard		
ID	S		
Potency	Assigned		
Potency value	5000 IU/mg		
Dose	1/45 1/30 1/20		
Rep.1	161	171	187
Rep.2	150 172 192		
Rep.3	161 174 195		
Rep.4	163	184	194
Rep.5	151	176	201
Rep.6	166	182	198

Table 2				
Preparation	Preparation Sample 1			
ID	Т			
Potency	Assumed			
Potency value	5600 IU/mg			
Dose	1/45	1/30	1/20	
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171	196	203	

The potency of Sample 1 is significantly **higher** (p=0.001) than 5000 IU/mg

Limit test

		Limit tested			
Preparation	Units	Value	Probability	Level of significance	
Sample 1: T	IU/mg	5000	0.001082	**	


Example 2

Multiple-dose assay

The signal decreases with the dose (negative slope)

Table 1				
Preparation	Preparation Standard			
ID	S			
Potency	Potency Assigned			
Potency value	5000 IU/mg			
Dose	1/20	1/30	1/45	
Rep.1	161	171	187	
Rep.2	150	172	192	
Rep.3	161	174	195	
Rep.4	163	184	194	
Rep.5	151	176	201	
Rep.6	166 182 198			

Table 2				
Preparation	eparation Sample 1			
ID	Т			
Potency	Assumed			
Potency value	5600 IU/mg			
Dose	1/20	1/30	1/45	
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171	196	203	

Single-dose assay

negative slope

Table 1				
Preparation	Standa	rd		
ID	S			
Potency	Assigne	ed		
Potency value	cency value 5000 IU/mg			
Dose	Dose 1/20 1/30 1/45			
Rep.1	161	171	187	
Rep.2	150	172	192	
Rep.3	161	174	195	
Rep.4	163	184	194	
Rep.5	151	176	201	
Rep.6	166	182	198	

Table 2				
Preparation	Sample	1		
ID	Т			
Potency	otency Assumed			
Potency value	ency value 5600 IU/mg			
Dose	Dose 1/20 1/30 1/4			
Rep.1	170	188	204	
Rep.2	161	180	202	
Rep.3	161	172	203	
Rep.4	170	181	209	
Rep.5	164	191	212	
Rep.6	171	196	203	

The potency of Sample 1 is significantly lower (p=0.001) than 5000 IU/mg

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: T	IU/mg	5000	0.001082	**

Limit test interpretation

It is only possible to determine if the potency of the test preparation is lower or higher than the limit value if the signal-dose relationship is known

	Signal-dose	relationship		
Response of the test preparation	Results decrease when dose increases (negative slope)	Results increase with the dose (positive slope)		
Lower than that of the standard	The potency of the test preparation is significantly higher than the limit value	The potency of the test preparation is significantly lower than the limit value		
Greater than that of the standard	The potency of the test preparation is significantly lower than the limit value	The potency of the test preparation is significantly higher than the limit value		

E.g. Immunodiffusion test:

Limit value = $16700 \text{ IU/vial (p-value } \le 0.001)$

Results of the test preparation are higher than those of the standard.

→ The test preparation contains significantly [more]/[less] (please choose) than 16700 IU/vial

Example 3

The Wilcoxon-Mann-Whitney test also applies to quantal data

(the test corresponds to the Fisher's Exact test)

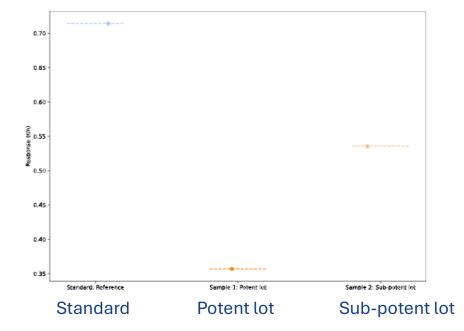

Table 1		
Preparation	Standard	
ID	Reference	
Potency	Assigned	
Potency value	8 IU/ml	
Dose	1/300	
Rep.1	20/28	

Table 2		
Preparation	Sample 1	
ID Potent I		
Potency	Assumed	
Potency value	2.5 IU/ml	
Dose	1/30	
Rep.1	10/28	

Table 3		
Preparation	Sample 2	
ID	Sub-potent lot	
Potency	Assumed	
Potency value	2.5 IU/ml	
Dose	1/30	
Rep.1 15/28		

Limit test

			Limit tested		
Preparation	Units	Value	Probability	Level of significance	
Sample 1: Potent lot	IU/ml	0.8	0.007562	**	
Sample 2: Sub-potent lot	IU/ml	0.8	0.134734	non-significant	

For which interpretation?

Example 4

The calculation time of the **exact p-value** increases significantly with the number of data

Table 1			
Preparation	Preparation Standard		
ID	S		
Potency	Assigne	ed	
Potency value	1 IU/dose		
Dose	1 dose 1 dose		
Rep.1	10.1	4.4	
Rep.2	8.5 12.2		
Rep.3	5.0 8.5		
Rep.4	6.0 8.5		
Rep.5	7.1	1.8	
Rep.6	14.3	7.2	
Rep.7	1.3	7.2	
Rep.8	8.5	8.5	
Rep.9	8.5 3.1		
Rep.10 14.3 10.2			

Table 2				
Preparation	Sample 1			
ID	Т			
Potency	Assume	ed		
Potency value	? IU/do:	se		
Dose	1 dose	1 dose		
Rep.1	0.1	10.2		
Rep.2	17.0	16.9		
Rep.3	12.0	11.7		
Rep.4	10.1	10.2		
Rep.5	3.0	10.2		
Rep.6	24.0	10.2		
Rep.7	20.2	8.4		
Rep.8	14.3	0.1		
Rep.9	8.5	0.1		
Rep.10	12.0	8.4		

An approximated p-value based on the normal approximation with correction for ties is reported

Limit test

		Limit tested		
Preparation	Units	Value	Probability	Level of significance
Sample 1: T	IU/dose	1	0.043519	*

Exact p-value = 0.043

Example 5 (1)

From multiple-dose assay...

single-dose assay... Lethal challenge (n=48 mice/lot)

Table 1		
Preparation	Standard	
ID	S	
Potency	Assigned	
Potency value	160 IU/vial	
Dose	Rep.1	
15.625 IU	11/11	
6.25 IU	12/12	
2.5 IU	8/12	
1 IU	4/10	

2
Sample 1
Т
Assigned
80 IU/dose
Rep.1
12/12
11/12
9/11
5/12

Potency estimates

		Potency			
Preparation	Units	Estimate	(LCL, UCL)		
Sample 1: T	IU/dose	85.6132	(41.3355,	175.150)	

Ph. Eur. monograph A lower confidence limit ≥ 32 IU/dose is required

to

Potency estimate & UCL not strictly needed and come at a high cost (48 mice/lot)

Is a single dose assay a better option?

Table	1 :	
Preparation	Standard	
ID	S	
Potency	Assigned	
Potency value	160 IU/vial	
Dose	Rep.1	
15.625 IU	11/11	
6.25 IU	12/12	
2.5 IU	8/12	
1 IU	4/10	

Table	2
Preparation	Sample 1
ID	Т
Potency	Assigned
Potency value	80 IU/dose
Dose	Rep.1
15.625 IU	12/12
6.25 IU	11/12
2.5 IU	9/11
1 IU	5/12

Limit test

		Limit tested						
Preparation	Units	Value	Probability	Level of significance				
Sample 1: T	IU/dose	32	0.063467	non-significant				

If the lethal challenge assay was restricted to one dose, more than 12 mice/lot would be needed, but not as much as 48...

Example 5 (2)

Expected rates: Standard 1 IU: 40%; Vaccine lot 2.5 IU: 75%

Let's run the single-dose assay with n = 24 mice/lot

	Std	Lot
n=24	$\pi = 40\%$	$\pi = 75\%$
r	P(R = r)	P(R ≤ r)
5	3%	0%
6	6%	0%
7	10%	0%
8	14%	0%
9	16%	0%
10	16%	0%
11	14%	0%
12	10%	1%
13	6%	1%
14	3%	3%
15	1%	7%
16	1%	11%
17	0%	16%
18	0%	19%
19	0%	18%
20	0%	13%
21	0%	8%
22	0%	3%

The most probable observed rates (Binomial dist.) are: Standard: 10/24 (42%) and Vaccine lot: 18/24 (75%)

		Limit tested							
Preparation	aration Units		Preparation Units		Units Value Probability		Probability	Level of significance	
Sample 1: T	IU/dose	32	0.019605	*					

40 rates with a higher probabilities of occurrence

1	10/24	18/24	9	11/24	19/24	17	9/24	16/24	25	8/24	16/24	33	7/24	16/24
2	9/24	18/24	10	8/24	19/24	18	11/24	20/24	26	7/24	17/24	34	10/24	15/24
3	10/24	19/24	11	11/24	17/24	19	8/24	20/24	27	12/24	20/24	35	9/24	15/24
4	9/24	19/24	12	8/24	17/24	20	7/24	18/24	28	7/24	20/24	36	13/24	19/24
5	10/24	17/24	13	10/24	20/24	21	12/24	19/24	29	10/24	21/24	37	6/24	18/24
6	9/24	17/24	14	9/24	20/24	22	7/24	19/24	30	9/24	21/24	38	11/24	21/24
7	11/24	18/24	15	12/24	18/24	23	12/24	17/24	31	13/24	18/24	39	8/24	21/24
8	8/24	18/24	16	10/24	16/24	24	11/24	16/24	32	12/24	16/24	40	6/24	19/24

Proba. of occurrence (10/24; 18/24 as ref.)

-	0.80	0.61	0.51	0.36
1.00	0.80	0.60	0.51	0.36
0.95	0.73	0.60	0.44	0.36
0.95	0.72	0.60	0.42	0.36
0.86	0.71	0.58	0.41	0.35
0.86	0.71	0.56	0.41	0.34
0.85	0.61	0.53	0.38	0.34
0.84	0.61	0.52	0.37	0.33

p-values are \leq 0.05 in 30/40 (75%) cases, \leq 0.10 in 35/40 (88%) cases

p-values

0.020	0.018	0.041	0.021	0.010
0.009	0.002	0.007	0.004	0.124
0.009	0.071	0.001	0.015	0.074
0.004	0.010	0.002	0.000	0.062
0.040	0.003	0.034	0.001	0.001
0.021	0.001	0.001	0.000	0.002
0.038	0.068	0.119	0.114	0.000
0.004	0.073	0.122	0.190	0.000

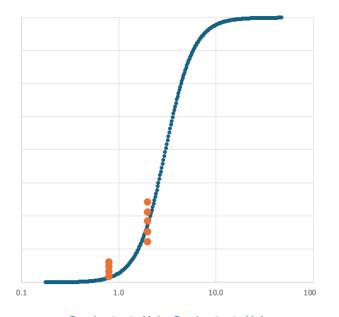
European Directorale | Direction européenne for the Quality | de la qualité of Medicines | du médicament & HealthCare | & soins de santé

Content

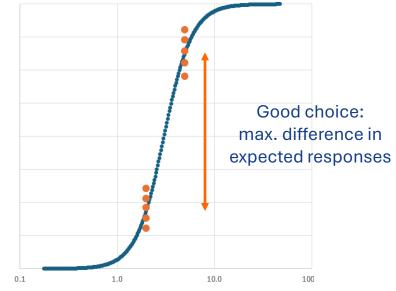
- ★ Data entry
- ★ Statistical analysis
- ★ Examples
- ★ Dose selection

Dose selection, limit test

1. Official requirements determine the best ratio between doses


"A lower confidence limit ≥ 32 IU/dose is required"

Preparations


		Information	Potency		
Table	Preparation	ID	Potency	Value	
1	Standard ▼	S	Assigned	160 IU/vial	
2	Sample 1 ▼	Т	Assigned ▼	80 IU/dose	

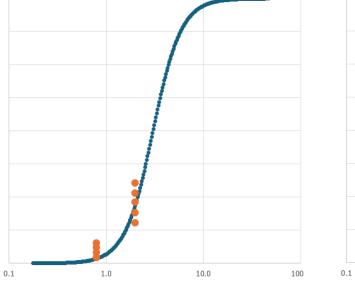
Assigned potency = 80 IU/dose Ratio = 80/32 = 2.5 2. Experience determines the best absolute doses

Std: 0.8 IU, Spl: 2.0 IU

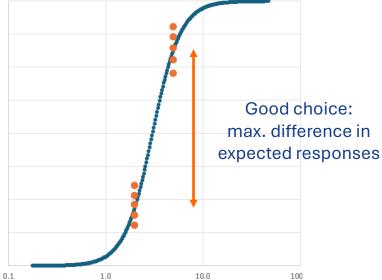
Std: 2.0 IU, Spl: 5.0 IU

Dose selection, limit test

1. Official requirements determine the best ratio between doses


"A lower confidence limit ≥ 32 IU/dose is required"

Preparations


		Information	Potency		
Table	Preparation	ID	Potency	Value	
1	Standard ▼	S	Assigned	160 IU/vial	
2	Sample 1 ▼	Т	Assigned ▼	80 IU/dose	

Assigned potency = 80 IU/dose Ratio = 80/32 = 2.5 2. Experience determines the best absolute doses

Std: 0.8 IU, Spl: 2.0 IU

Std: 2.0 IU, Spl: 5.0 IU

CombiStats online Training module 4

Part 1: single-dose assays

Part 2: combination of assay results

Combination of assay results

Purpose: from n valid assay results to one result

Are estimates derived from independent assays?

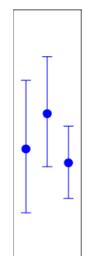
Execution of either <u>does not affect</u> the probabilities of the possible outcomes of the other e.g. different runs, different days, different working solutions, ...

Assays on successive days using the original and retained dilutions of the standard are not independent assays.

Combination approach differs for **independent** and **not independent** assays

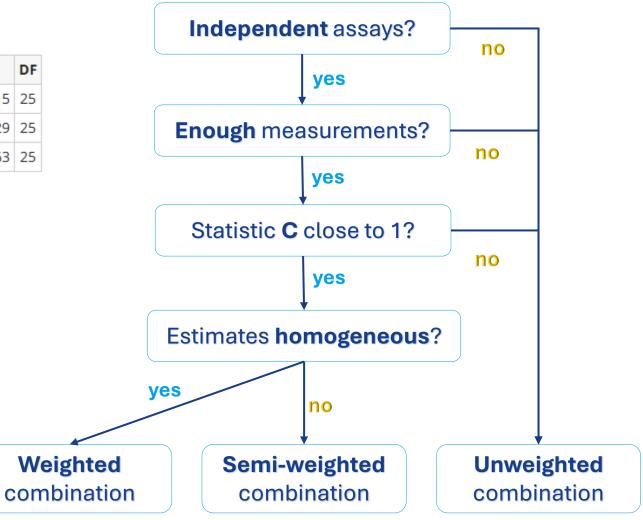
Ph. Eur. Chapter 5.3 Statistical analysis of results of biological assays and tests

- 1. introduction
- 2. randomisation and independence of individual treatments
- 3. assays depending upon quantitative responses
 - 3.2. the parallel-line model
 - 3.3. the slope-ratio model
 - 3.4. extended sigmoid dose-response curves
- 4. assays depending upon quantal responses
 - 4.2. the probit method
 - 4.3. the logit method
 - 4.5. the median effective dose
- 5. examples
- 6. combination of assay results
 - 6.2. combination of independent assay results
 - 6.3. unweighted combination of assay results
- 7. beyond this annex
- 8. tables and generating procedures
- 9. glossary of symbols
- 10. literature

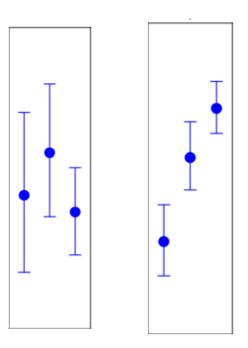


Three types of combination of assay results

Potency results


Entry	Preparation	ld.	Potency	Estimate	(LCL, UCL)	С	DF
1	Sample 1		1000 IU / mg	936.639	(874.648, 1003.23)	1.0107250215	25
2	Sample 1		1000 IU / mg	970.838	(919.331, 1026.05)	1.0068245229	25
3	Sample 1		1000 IU / mg	923.102	(888.590, 958.767)	1.0032881963	25

Homogeneity of assay results, p-value: 0.298


Geometric	Potency (1000 IU/mg)			
combination	Estimate	(LCL, UCL)		
Weighted	938.014	(912.564, 964.174)		
Semi-weighted	938.014	(912.465, 964.279)		
Unweighted	943.314	(884.424, 1006.12)		

95% confidence limits are reported.

Homogeneity test

The assay can be considered homogeneous if the variance between the individual estimates is not greater than those predicated by the individual confidence intervals

Evaluation based on p-value of χ^2 distribution:

- p-value >0.10 => potency estimates sufficiently homogeneous
- p-value ≤0.10 => potency estimates heterogeneous

Homogeneity of assay results, p-value: 0.298

Geometric	Potency (1000 IU/mg)				
combination	Estimate	(LCL, UCL)			
Weighted	938.014	(912.564, 964.174)			
Semi-weighted	938.014	(912.465, 964.279)			
Unweighted	943.314	(884.424, 1006.12)			

95% confidence limits are reported.

Unweighted combination

Unweighted combination

 $Mean \pm t * SE$

t Student's statistic for n-1 degree of freedom (n number of assays)

SE standard error of mean

$$SE = \frac{1}{n}SD$$

Critical values of the t-distribution

-	df 1	0 = 0.05	0.01	df	p = 0.05	p = 0.01
]	1	12.706	63.656	22	2.074	2.819
	2	4.303	9.925	24	2.064	2.797
3	3	3.182	5.841	26	2.056	2.779
4	4	2.776	4.604	28	2.048	2.763
5	5	2.571	4.032	30	2.042	2.750
6	6	2.447	3.707	35	2.030	2.724
7	7	2.365	3.499	40	2.021	2.704
8	8	2.306	3.355	45	2.014	2.690
9	9	2.262	3.250	50	2.009	2.678
]	10	2.228	3.169	60	2.000	2.660
]	12	2.179	3.055	70	1.994	2.648
]	14	2.145	2.977	80	1.990	2.639
1	16	2.120	2.921	90	1.987	2.632
1	18	2.101	2.878	100	1.984	2.626
2	20	2.086	2.845	00	1.960	2.576
			•			

Estimate	(LCL, UCL)	Confidence level	DF
936.639	(874.648, 1003.23)	95 %	25
970.838	(919.331, 1026.05)	95 %	25
923.102	(888.590, 958.767)	95 %	25

n is usually low

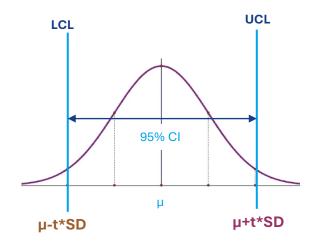
Large confidence interval

Arithmetic	Poteno	cy (1000 IU/mg)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	937.362	(911.560, 963.164)	100	(97.25, 102.75)	
Semi-weighted	937.362	(911.458, 963.266)	100	(97.24, 102.76)	
Unweighted	943.526	(882.411, 1004.64)	100	(93.52, 106.48)	

Weighted combination

Weighted combination

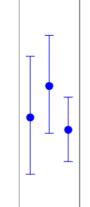
Weighted Mean
$$\pm t * \sqrt{\frac{1}{\sum W}}$$


W weight calculated based on individual confidence interval

$$W = \frac{4t^2}{(UCL - LCL)^2}$$

t Student's statistic with DF equal to the sum of DF of residual error

Estimation of weights


$$W = \frac{1}{variance} = \frac{1}{SD^2}$$

$$UCL - LCL = \mu + t * SD - (\mu - t * SD)$$

= $\mu + t * SD - \mu + t * SD$
= $2 * t * SD$

$$\frac{(ULC - LCL)}{2 * t} = SD$$

Estimate	(LCL, UCL)	Confidence level	DF
936.639	(874.648, 1003.23)	95 %	25
970.838	(919.331, 1026.05)	95 %	25
923.102	(888.590, 958.767)	95 %	25

More weight is given to the more precise results

W weight calculated based on individual confidence interval

Semi-weighted combination

Semi-weighted combination

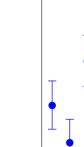
Weighted' Mean
$$\pm 2 * \sqrt{\frac{1}{\sum W'}}$$

W weight calculated based on intra- and inter-assay variation

$$W' = \frac{1}{intra^2 + inter^2}$$

intra-assay variation

$$intra^2 = \frac{1}{W}$$


same W as calculated for weighted combination

inter-assay variation

$$inter^{2} = \frac{\sum (M - \overline{M})^{2}}{n - 1} - \frac{\sum intra^{2}}{n}$$

n number of assays M assay estimate \overline{M} mean of estimates

Estimate	(LCL, UCL)	Confidence level	DF
774.169	(750.584, 798.498)	95 %	inf
737.265	(714.811, 760.428)	95 %	inf
817.927	(793.001, 843.639)	95 %	inf

Intra- and inter-assay variation

Enlarged confidence interval

Homogeneity of assay results, p-value: < 0.001

Arithmetic	Uni	ts (ug/ED50)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	773.656	(759.822, 787.491)	100	(98.21, 101.79)	
Semi-weighted	776.194	(729.570, 822.818)	100	(93.99, 106.01)	
Unweighted	776.454	(676.146, 876.761)	100	(87.08, 112.92)	

95% confidence limits are reported.

Unweighted RSD(%): 5.2

Three types of combination of assay results

Weighted $Mean \pm t * \sqrt{\frac{1}{\sum W}}$

t sum of DF of residual errorsW weight calculated based on individual result only

Semi-weighted combination

W' weight calculated based on intra-and inter assay variation

Unweighted combination

 $Mean \pm t * SE$

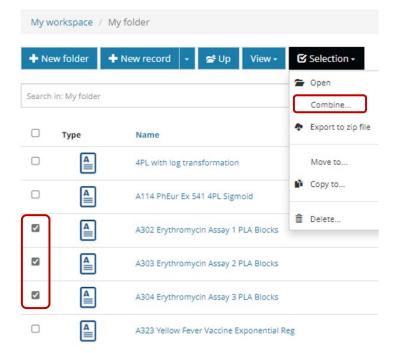
n number of results

t Student's statistic for n-1
degree of freedom
SE standard error of mean

Combined potency estimates are different (depending on weights)

Smaller confidence interval

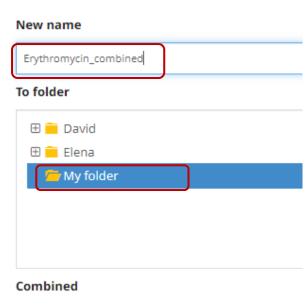
Enlarged confidence interval


Usually larger confidence interval

Combine assays in CombiStats online

Select the assays in a folder

Condition for combination:


- analysis results should be present
- assay must be published

For sigmoid curve models potency estimates or effective doses can be combined

Or combine opened assays

Combine assay results

- Potency estimates O Effective dose
- Assays that can be combined:
- A302 Erythromycin Assay 1 PLA Blocks
- A303 Erythromycin Assay 2 PLA Blocks
- A304 Erythromycin Assay 3 PLA Blocks

Available Options

Combination of assay results

I can write ...

Information about assays

Entry	Assay name	Project	Assay
1	A302 Erythromycin Assay 1 PLA Blocks	Erythromycin	1
2	A303 Erythromycin Assay 2 PLA Blocks	Erythromycin	2
3	A304 Erythromycin Assay 3 PLA Blocks	Erythromycin	3

Potency results

Entry	Preparation	ld.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	Т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1	U	1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

Combine by

Confidence level

95 %


Integer between 80 and 99

Only fields Remark, Combine by and Confidence level for combination can be **modified**

The content of Information about assays and Potency results **cannot be modified**

One or more potency results can be excluded by **double- click**

Once the options chosen, run the analysis

Arithmetic and geometric combination

Geometric combination

Potency results

Entry	Preparation	ld.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1		1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1		1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1		1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

CombiStats software

- ✓ applies log-transformation to estimates and confidence limits,
- ✓ performes calculations on the log-scale,
- ✓ appies anti-log-function on final results

Arithmetic combination

If the estimates are already on the log scale, no transformation prior to the combination

Effective dose results

Entry	Preparation	ld.	Units	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	Α	log10 ED50/vial	4.73374	(4.45322, 5.01399)	95 %	inf
1	Sample 2	Α	log10 ED50/vial	3.59821	(3.31617, 3.87813)	95 %	inf

CombiStats software

✓ performes calculations on the log-scale

If potency unit contains "**log**", <u>arithmetic combination only</u> is displayed. Otherwise, geometric combination presented by defaults. User has the possibility to change to arithmetic combination

Combined results

Combined by Preparation

Potency results

Entry	Preparation	Id.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	Т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1	U	1000 IU / mg	923.102	(888.590, 958.767)	95 %	25

Combine by

Confidence level

Preparation Sample 1

Geometric combination

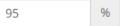
Homogeneity of assay results, p-value: 0.298

Geometric	Poten	cy (1000 IU/mg)	Rel. To Estimate (%)		Rel. To Assumed/Assigned (%)	
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)
Weighted	938.014	(912.564, 964.174)	100	(97.29, 102.79)	93.80	(91.26, 96.42)
Semi-weighted	938.014	(912.465, 964.279)	100	(97.28, 102.80)	93.80	(91.25, 96.43)
Unweighted	943.314	(884.424, 1006.12)	100	(93.76, 106.66)	94.33	(88.44, 100.61)

95% confidence limits are reported.

Unweighted gCV(%): 2.6

Potency **units** should be the same (case sensitive) If potency **values** not the same, no Rel. to Assumed/Assigned (%)


Potency results

Entry	Preparation	ld.	Potency	Estimate	(LCL, UCL)	Confidence level	DF
1	Sample 1	Т	1000 IU / mg	936.639	(874.648, 1003.23)	95 %	25
2	Sample 1	Т	1000 IU / mg	970.838	(919.331, 1026.05)	95 %	25
3	Sample 1	Т	? IU / mg	923.102	(888.590, 958.767)	95 %	25

Combine by

Confidence level

Preparation Sample 1

Geometric combination

Homogeneity of assay results, p-value: 0.298

Geometric	Pote	ency (IU/mg)	Rel. To Estimate (%)		
combination	Estimate	(LCL, UCL)	Estimate	(LCL, UCL)	
Weighted	938.014	(912.564, 964.174)	100	(97.29, 102.79)	
Semi-weighted	938.014	(912.465, 964.279)	100	(97.28, 102.80)	
Unweighted	943.314	(884.424, 1006.12)	100	(93.76, 106.66)	

95% confidence limits are reported.

Unweighted gCV(%): 2.6

Useful links

★ Helpdesk

https://helpdesk.edqm.eu/servicedesk/customer/user/login?destination=portals

★ Institutional website

https://www.edqm.eu/en/lp-combistats

★ FAQs, privacy, security notices

https://combistats.edqm.eu/help/

★ User guide (sign in first)

https://combistats.edqm.eu/user-manuals/combistats_user_guide.pdf/

@edqm_news

European Directorate | Direction européenn for the Quality | de la qualité of Medicines | du médicament & HealthCare | & soins de santé

© EDQM 2025