

European Directorate for the Quality of Medicines & HealthCare

Council of Europe

CombiStats online Training module 3

Assays based on quantitative responses

Content

- **★**Introduction
- ★ Parallel-line analysis
- **★**Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model


Indirect dilution assay

Regression models

in CombiStats

Common structure

★X = several preparations & doses

★Y = single or repeated measurements

Quantitative responses

Y = continuous/discrete data

E.g. ELISA (absorbance)

Doses	(1)	(2)
1/10	2.912	2.917
1/20	2.579	2.654
1/40	2.130	2.212
1/80	1.651	1.638
1/160	1.073	0.973
1/320	0.585	0.666
1/640	0.463	0.356
1/1280	0.266	0.234
1/2560	0.228	0.197
1/5120	0.176	0.215

Ph. Eur. Chapter 5.3 Statistical analysis of results of biological assays and tests

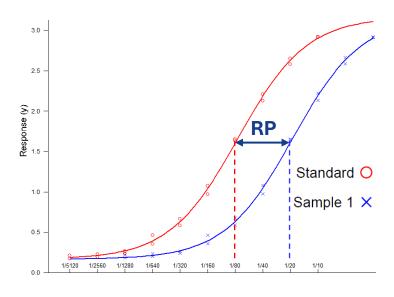
- 1. introduction
- 2. randomisation and independence of individual treatments
- 3. assays depending upon quantitative responses
 - 3.2. the parallel-line model
 - 3.3. the slope-ratio model
 - 3.4. extended sigmoid dose-response curves
- 4. assays depending upon quantal responses
 - 4.2. the probit method
 - 4.3. the logit method
 - 4.5. the median effective dose
- 5. examples
- 6. combination of assay results
 - 6.2. combination of independent assay results
 - 6.3. unweighted combination of assay results
- 7. beyond this annex
- 8. tables and generating procedures
- 9. glossary of symbols
- 10. literature

Application

Several preparations

Ref. preparation

known concentration

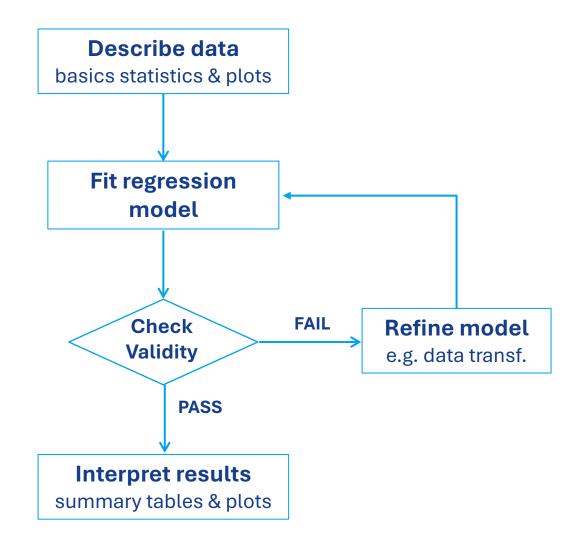

Sta			
Ass. pot.	0.4 IU/	ml	
Doses	(1)	(2)	
1/10	2.912	2.917	2.915
1/20	2.579	2.654	2.617
1/40	2.130	2.212	2.171
1/80	1.651	1.638	1.645
1/160	1.073	0.973	1.023
1/320	0.585	0.666	0.626
1/640	0.463	0.356	0.410
1/1280	0.266	0.234	0.250
1/2560	0.228	0.197	0.213
1/5120	0.176	0.215	0.196

Ref. prep.: international standard (IS), certified reference material (CRM), biological reference preparation (BRP), etc.

Test preparation(s) conc. to be determined

Sa			
Ass. pot.	?IU/m	I	
Doses	(1)	(2)	
1/2.5	2.914	2.921	2.918
1/5	2.586	2.662	2.624
1/10	2.133	2.220	2.177
1/20	1.654	1.640	1.647
1/40	1.078	0.974	1.026
1/80	0.587	0.674	0.631
1/160	0.465	0.361	0.413
1/320	0.268	0.238	0.253
1/640	0.232	0.200	0.216
1/1280	0.183	0.222	0.203

Test prep.: candidate IS, CRM or BRP, manufactured batches, etc.


Test Preparation

- Relative Potency (RP) ~ 1/4
- Potency ~ 0.1 IU/mL

Steps of statistical analysis

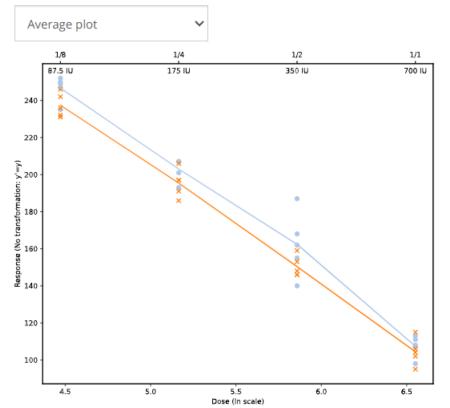
Data description

Purpose

- Check/correct any typos
- Assess data distribution (normal)
- Detect outliers, trend

How

- Overview of raw data table
- Basic statistics (mean, std, ...)
- Scatterplot


Data description

Raw data Combine Doses as columns Show statistics Resize all tables...

Raw data

		Table 1			:			
Preparation	Standa	rd						
ID	S							
Potency	Assigne	Assigned						
Potency value	700 IU/	vial						
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
Dose 1/8	Rep.1 252	Rep.2 249	Rep.3 247	Rep.4 250	Rep.5 235	Mean 247	SD	RSD% 2.7
		•	•	•				
1/8	252	249	247	250	235	247	7	2.7 3.0

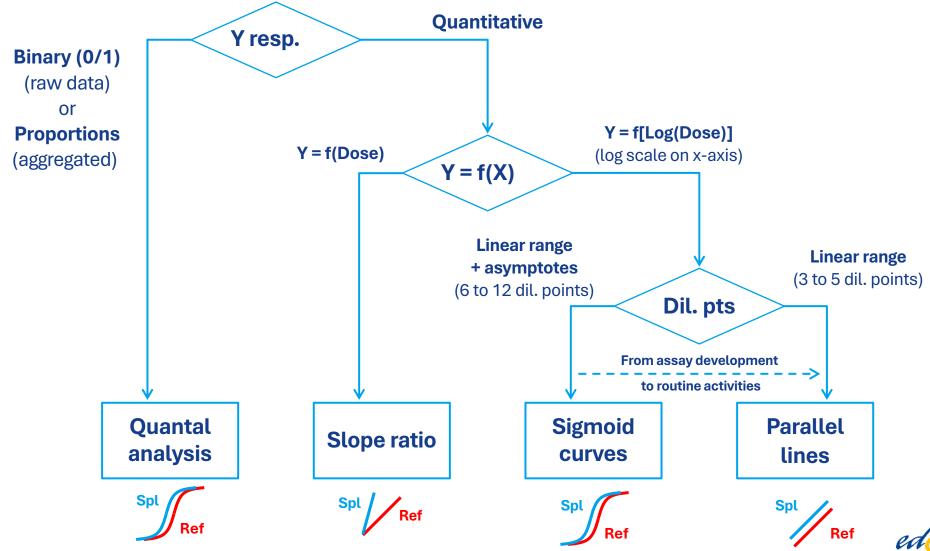
		Table 2			:			
Preparation	paration Sample 1							
ID	Т							
Potency	Assumed							
Potency value	? IU/via	al						
Dose	Rep.1	Rep.2	Rep.3	Rep.4	Rep.5	Mean	SD	RSD%
1/8	242	236	246	231	232	237	6	2.7
1/4	206	197	197	191	186	195	8	3.8
1/2	146	153	148	159	146	150	6	3.7
1/1	115	102	104	106	95	104	7	6.9

Excluded values are not displayed.

Blank results

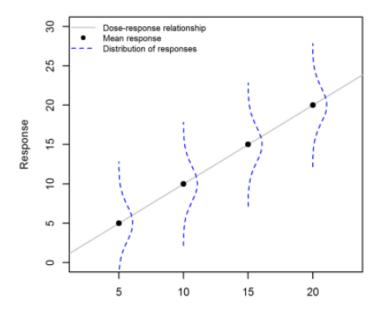
0.045	0.086	0.049	0.051	0.062
0.027	0.062	0.038	0.061	0.047

 Mean
 SD
 RSD%


 0.053
 0.016
 30.5

Standard: SX Sample 1: T

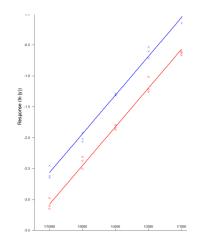
Regression models

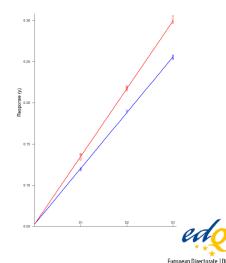


Model validity

PLA and SRA = linear regression lines (Y = a + b X + error)

Independent data, normally distributed with same variance across dose range

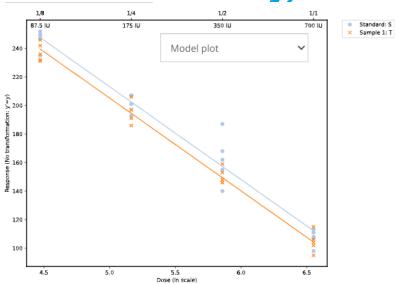


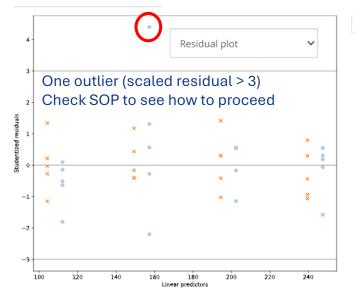

Significant regression required (see Anova)

Flat slope = higher uncertainty about potency results

"Good fit": the straight line best summarises data: visual check (regression plot, residual plot) and Anova (non-linearity contrast)

- PLA: common slope => "Good parallelism" between reg. lines (visual check + Anova non-parallelism)
- SRA: common intercept (visual check + Anova intercept contrast


Content


- **★**Introduction
- ★ Parallel-line analysis
- **★**Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model

Model validity, ex 1.1

Anova table

Normal

R ² All	0.974576
R ² Standard	0.965105

Source of variation	Degrees of freedom	Probability	Level of significance
Preparations	1	0.006507	**
Regression	1	< 0.000001	***
Non-parallelism	1	0.565069	
Non-linearity	4	0.493324	
Non-linearity Table 1	2	0.218293	
Non-linearity Table 2	2	0.869200	
Treatments	7	< 0.000001	***
Residual error	32		
Total	39		

Significant slope? Yes (***)Lack of parallelism? No (NS)

Lack of linearity? No (NS)

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Comparison of slopes: non-parallelism contrast (Anova) **or** equivalence testing approach (not both)

Equivalence of slopes

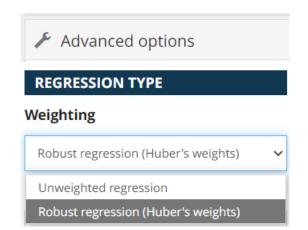
Standard: S Sample 1: T

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000
Sample 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)

Slopes: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Common Slope


Estimated value	-65.0800
Lower conf. Limit	-68.0645
Upper conf. Limit	-62.0955

90% confidence level

Model validity, ex 1.1

Robust regression: in-between solution when outliers are kept in the data set

Robust regression to alleviate the potential negative effect of the outlier

classical regression (with outlier)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-66.1043 (-70.3250, -61.8836)	0.000000	1.00000
Sample 1: T	-64.0557 (-68.2764, -59.8349)	2.04863 (-3.92037, 8.01762)	0.969009 (0.883797, 1.06215)

robust regression (with outlier)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-66.4107 (-70.0356, -62.7859)	0.000000	1.00000
Sample 1: T	-64.0538 (-67.6259, -60.4817)	2.35694 (-2.73224, 7.44613)	0.964510 (0.891960, 1.04282)

classical regression (without outlier)

Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	-67.0270 (-70.5932, -63.4608)	0.000000	1.00000
Sample 1: T	-64.0557 (-67.6031, -60.5082)	2.97134 (-2.05881, 8.00148)	0.955670 (0.884835, 1.03193)

Slopes: confidence limits (in brackets) calculated for a 90% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Common Slope

	•
Estimated value	-65.0800
Lower conf. Limit	-68.0645
Upper conf. Limit	-62.0955

R ² All	0.974576
R ² Standard	0.96510

Common Slope

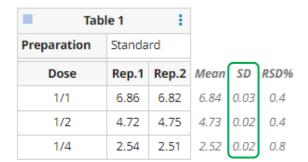
Estimated value	-65.2150
Lower conf. Limit	-67.7593
Upper conf. Limit	-62.6707

	0
R ² All	0.980847
R ² Standard	0.976214

weighted

Common Slope

Estimated value	-65.5335
Lower conf. Limit	-68.0485
Upper conf. Limit	-63.0184


 $\begin{array}{c} R^2 \ AII \\ R^2 \ Standard \end{array} \begin{array}{c} 0.983445 \\ 0.982764 \end{array}$

90% confidence level

Comparison of slopes (1)

Table 2					
Preparation	Sample 1				
Dose	Rep.1 Rep.2		Mean	SD	RSD%
1/1	7.20	7.19	7.20	0.01	0.1
1/2	5.12	5.14	5.13	0.01	0.3
1/4	3.00	2.99	3.00	0.01	0.2

Tab					
Preparation	Sample 2				
Dose	Rep.1 Rep.2				
1/1		7.05			
1/2	4.98	4.93	4.96		0.7
1/4	2.85	2.79	2.82	0.04	1.5

Average plot

1/4

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/

Low variability between rep. (very good repeatability) = over sensitive statistical tests (Anova) = detection of signals (non-lin, non-par) of no practical relevance...

	Variances (SD ²)				
Dose	Std	Spl1	Spl2		
1/1	0.00080	0.00005	0.00080		
1/2	0.00045	0.00020	0.00125		
1/4	0.00045	0.00005	0.00180		

Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	3.11261 (3.07101, 3.15422)	0.000000	1.00000
		-0.0829550 (-0.130632, -0.0352783)	1
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029	0.984936 (3.969848, 1.00026)

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Average plot > parallelism looks good
Individual slopes > ratios are indeed close to 1
Anova > however, non-parallelism is significant (*)
What is going wrong?

Anova table

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

Stat. test = $\frac{0.003325}{0.000650}$ = 5.11538

Comparison of slopes (2)

- **★ Option 1**: difference testing approach
 - = non-parallelism contrast (Anova table)

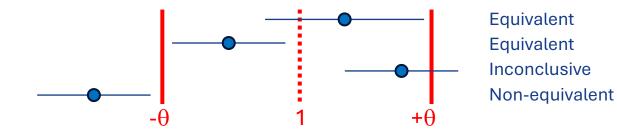
Anova table

Source of variation	Mean square	F-ratio	Probability	Level of significance
Preparations	0.252117	387.872	< 0.000001	***
Regression	54.3151	561.7	< 0.000001	***
Non-parallelism	0.003325	5.11538	0.032818	*
Non-linearity	0.00181389	2.7906	0.101596	
Residual error	0.00065			
Total	3.22572			

Tested against residual error, i.e. variance between replicates

Low variance (high repeatability)
=> stat test likely to wrongly reject an
assay where individual slopes are close

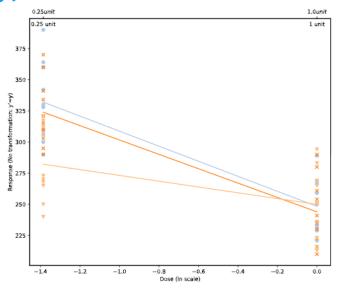
- **★ Option 2**: equivalence testing approach
- = requires **predefined** equivalence margins $(\pm \Theta)$


Equivalence of slopes

Preparation	Slope	Difference with Standard	Ratio with Standard	
Standard: S	3.11261 (3.07101, 3.15422)	0.00000	1.00000	
Sample 1: T	3.02966 (2.98806, 3.07126)	-0.0829550 (-0.130632, -0.0352783)	0.973349 (0.958347, 0.988579)	
Sample 2: U	3.06573 (3.02412, 3.10733)	-0.0468876 (-0.0945642, 0.000789029)	0.984936 (0.969848, 1.00026)	

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.


Use differences or ratios (not both)

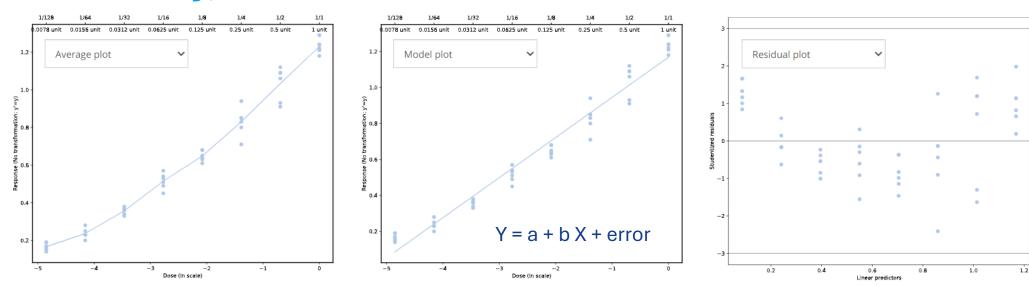
Model validity, ex 3

This assay is invalid... There is a lack of parallelism between the standard and one test preparation

Two products are similar if they act as dilution of the same substance, i.e. implies parallelism on log(dose)

Non-parallel lines may suggest problems with:

- Performance of the method, and/or
- Manufacturing process (product has changed!)



Model validity, ex 2.1

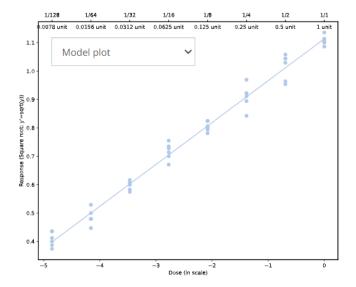
Total

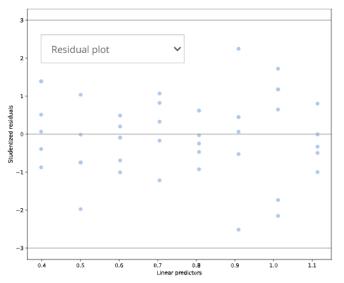
47

This linear regression model is invalid... I can see it from the graphical representations

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.000026	***
Quadratic curvature	1	< 0.000001	***
Lack of quadratic fit	5	0.840927	
Treatments	7	< 0.000001	***
Residual error	40		

Y: measurements; a: intercept; b: slope; X: log(dose); X²: [log(dose)]²; error: variability between replicates


Model validity, ex 2.20


How to improve model adequacy?

A data transformation can help

Transformation

Square root: y'=sqrt(y)

This linear regression model is valid... I can see it from the graphical representations

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.711973	
Quadratic curvature	1	0.920982	
Lack of quadratic fit	5	0.595436	
Treatments	7	< 0.000001	***
Residual error	40		
Total	47		

Anova.

The slope is significant and...

Non-linearity is NS

Quadratic term is NS

Potency results, ex 1

Preparations

		Information	Potency	
Table	Preparation	ID	Potency	Value
1	Standard →	S	Assigned	700 IU/vial
2	Sample 1 ▼	Т	Assumed ▼	800 IU/vial

Expected value, e.g. formulation target

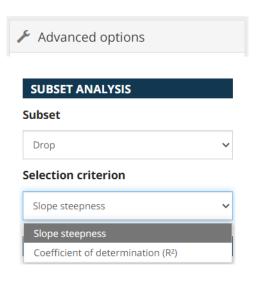
Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

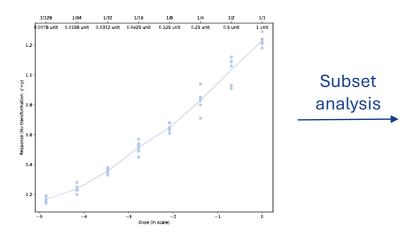
Pharm. Eur.

Precision. Unless otherwise stated in the monograph, the confidence limits (P = 0.95) are not less than XX per cent and not more than YY per cent of the estimated potency.

Recovery. The mean recovery must not be lower than XX per cent or above YY per cent.

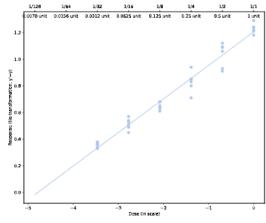
The amount is not less than XX per cent and not greater than YY per cent of the intended content.




Subset analysis (SA)

A new analysis option for PLA models

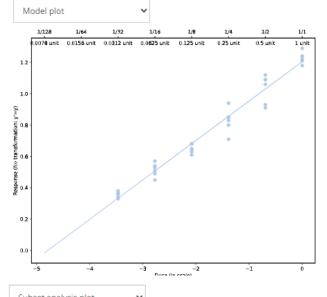
- ★Goal: find a subset of doses for which non-linearity and non-parallelism contrasts are NS (and the regression is significant...)
- ★When is it available? significant non-linearity and/or non-parallelism contrasts (all doses)

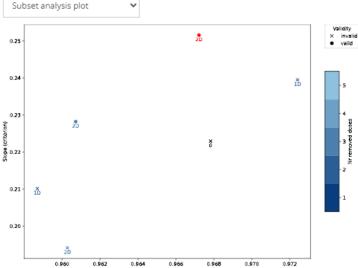


non-linearity issue (all doses)

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	< 0.000001	***
Non-linearity	6	0.000026	***

6 doses retained



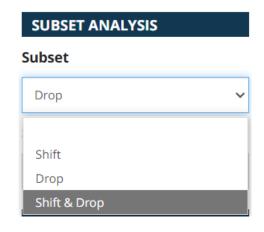

Probability	Level of significance
< 0.000001	***
0.218655	

SA > Export to Excel

Label	Removed doses	Sequence	Probability Regression	Probability Non-linearity	Slope (criterion)	R^2	Validity	Convergence	Kept
0	0	[12345678]	9.6E-38	0.000	0.223	0.968	invalid	converged	
1 D	1	1 Drop: [1234567-]	7.6E-30	0.001	0.210	0.959	invalid	converged	
1 D	1	1 Drop: [-2345678]	2.1E-31	0.029	0.240	0.972	invalid	converged	
2D	2	2 Drop: [123456]	1.2E-25	0.004	0.194	0.960	invalid	converged	
2D	2	2 Drop: [-234567-]	5.3E-24	0.154	0.228	0.961	valid	converged	
2D	2	2 Drop: [345678]	5.3E-25	0.219	0.252	0.967	valid	converged	х

Label 0: invalid regression model (all doses)

Label 1D: remove 1 dose (keep consecutive doses) => regression models remain invalid


Label 2D: remove 2 doses (keep consecutive doses) => 2 models are valid Final model? steepest slope or highest R² (user's decision)

Label 3D? The subset analysis stopped at 2D because a valid model was found

SA > several preparations

Drop: remove the same dose number

Shift: remove a different dose number

In any case, keep contiguous doses

Case		Other prep.
1	[12345]	[12345]
	statistical analy	sis, stop/continue
	SI	hift
2	[1234–]	[-2345]
3	[-2345]	[1234–]
	statistical analy	sis, stop/continue
6	[123—]	[-234-]
7	[-234-]	[123—]
8	[-234-]	[—345]
9	[—345]	[-234-]
	D	rop
4	[1234–]	[1234–]
5	[-2345]	[-2345]
	statistical analy	/sis, stop/continue
10	[123—]	[123—]
11	[-234-]	[-234-]
12	[—345]	[—345]

E.g. Shift & Drop
Label 1 (1 dose removed)
Cases 2, 3, 4, 5 will be tested
If one case is valid, then stop
Label 2 otherwise (cases 6 to 12)
...

Label k: a minimum of 3 doses

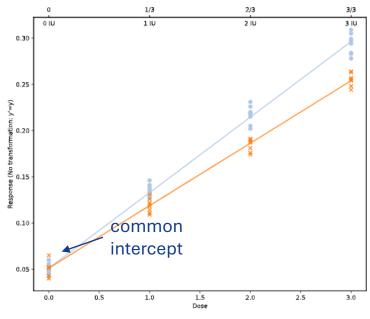
Further details in FAQ https://combistats.edqm.eu/faq/link/64/

When to use the subset analysis

- Assay development?
- Routine testing?

Content

- **★**Introduction
- **★** Parallel-line analysis
- ★Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model


Main differences with PLA

*x-axis: doses reported on an additive (arithmetic) scale

Table 1						
Preparation	Standard					
ID	S					
Potency	Assigned					
Potency value	3 IU/vo	lume				
Dose	0 1/3 2/3 3/3					
Rep.1	0.048 0.133 0.205 0.284					
Rep.2	0.056	0.146	0.218	0.305		

Doses > 0, 1, 2 and 3 IU

Zero-dose possible (on contrary to PLA)

Two products are similar if they act as dilution of the same substance, i.e. implies common intercepts when x-axis = doses

PLA SRA
Common slope → Common intercept
(parallelism) (intersection)

p-value	stars	meaning
> 0.05	no	no significant effect (NS)
≤ 0.05	*	significant effect
≤ 0.01	**	highly significant effet
≤ 0.001	***	very highly significant effet

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	2	< 0.000001	***
Zero-dose	1	0.307927	
Intersection	1	0.221299	
Non-linearity	2	0.620909	
Non-linearity Table 1	1	0.485277	
Non-linearity Table 2	1	0.496788	

Significant slopes? Yes (regression ***)

Common intercept ? Yes (intersection NS)

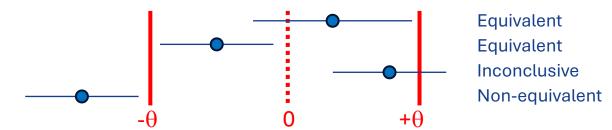
Lack of linearity? No (non-linearity NS)

Comparison of intercepts

- **★Option 1**: difference testing approach
- = intersection contrast in Anova table

	Source of variation	Degrees of freedom	Probability	Level of significance
	Regression	2	< 0.000001	***
	Zero-dose	1	0.307927	
\dashv	Intersection	1	0.221299	
	Non-linearity	2	0.620909	
	Non-linearity Table 1	1	0.485277	
	Non-linearity Table 2	1	0.496788	
	Treatments	6	< 0.000001	***
>	Residual error	57		

Tested against residual error, i.e. variance between replicates.


Low variance (high repeatability) => stat test likely to wrongly reject an assay where intercepts are quite close

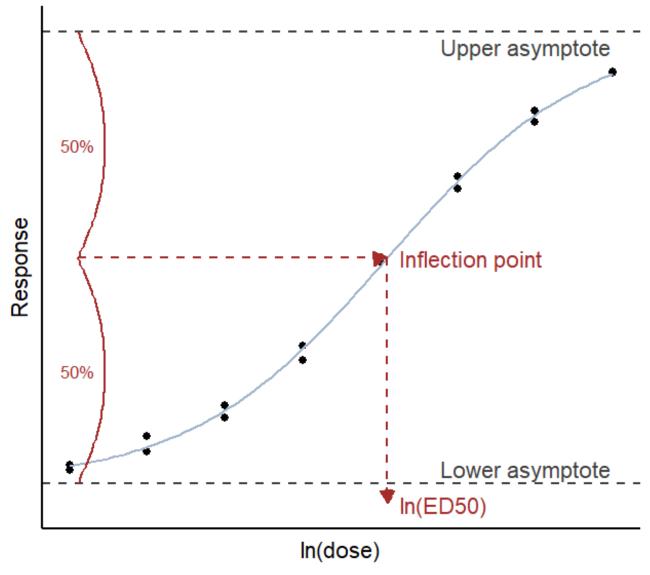
- **★Option 2**: equivalence testing approach
 - = requires **predefined** equivalence margins $(\pm \Theta)$

Equivalence of intercepts

Preparation	Intercept	Difference with Standard
Standard: S	0.0574167 (0.0503656, 0.0644677)	0.000000
Sample 1: T	0.0500417 (0.0429906, 0.0570927)	-0.00737500 (-0.0173467, 0.00259671)

Intercepts: confidence limits (in brackets) calculated for a 90% confidence level (advanced options). Differences of intercepts: confidence limits (in brackets) calculated for a 90% confidence level.

Use option 1 or option 2 (not both)


Content

- **★**Introduction
- ★ Parallel-line analysis
- **★**Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model

4PL - dose-response relationship

Symmetrical S-shaped curve

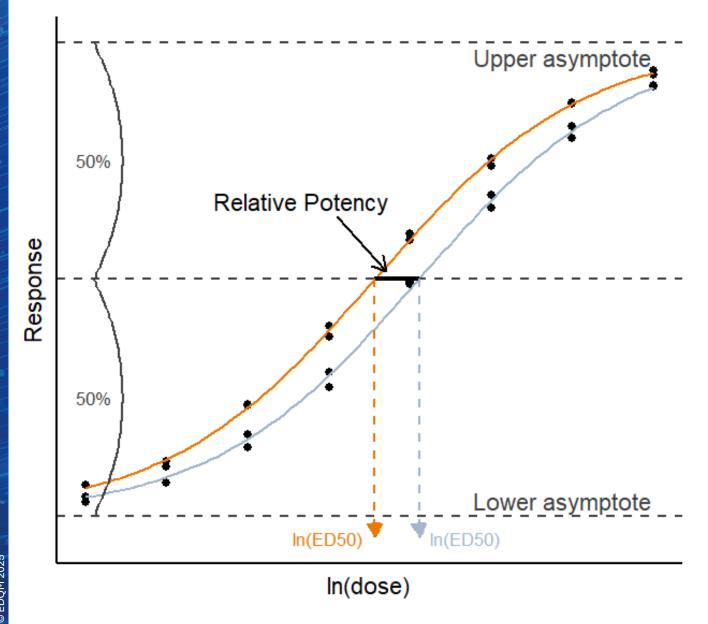
- ★ One to two concentrations for each asymptotes
- ★ Three to four concentrations for linear part of the curve

Response = D +
$$\frac{A - D}{1 + exp(B * (ln(dose) - C))}$$

where D: lower asymptote

A: upper asymptote

C: inflection point (=ED50)


B: slope parameter

Assays: ELISA or cell-based potency assays

4PL - Potency

Assumptions

Reference and **Test** have the same biological activity

 Common slope, lower and upper asymptotes are the same (constrained model)

Visual verification

• Similar behaviour across the whole range of doses

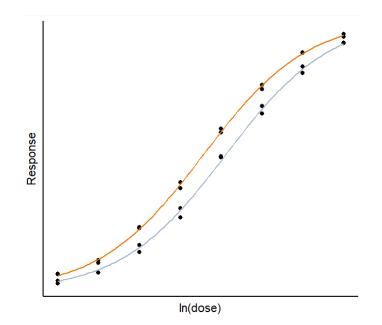
Check assay validity criteria

Variability of response data is the same for each dose and follows normal distribution

Check residual plot

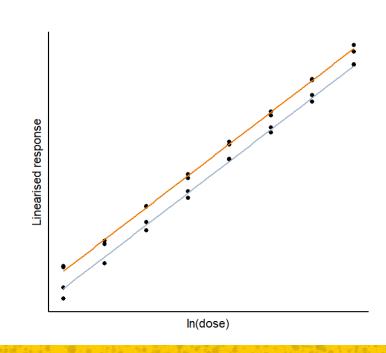
Relative Potency

largest distance between preparations



4PL – Assay validity criteria

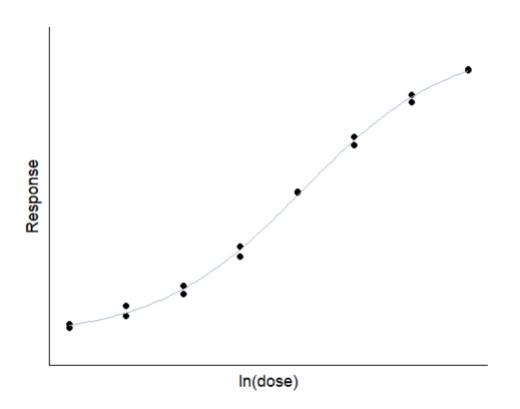
Validity criteria


- ★ The p-value for **regression** is significant
- ★ The p-value for non-parallelism is not significant
- ★ The p-value for **non-linearity** is not significant

Source of variation	Probability	Level of significance
Regression	< 0.000001	***
Non-parallelism	0.696804	
Non-linearity	0.937394	

Linearisation of dose-response relationship via logit transformation (default)

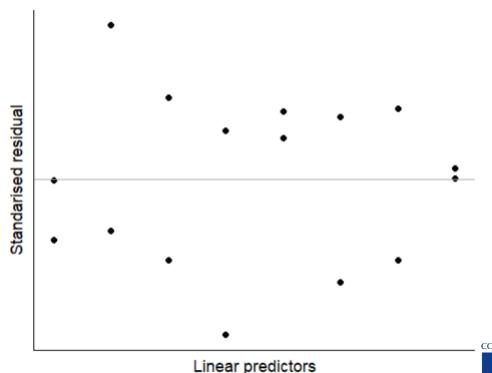
Analysis of variance (ANOVA) performed on linearised data to access assay validity



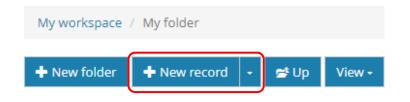
4PL assumption: constant variability at each dose

Assumption

Variability of response data is the **same**


for each dose and follows normal distribution

Verification


Similar variability over doses: inspect residual plot same dispersion of the points around the vertical line

Normal distribution not enough data to evaluate

4PL - create a record

1. Create a new record

Taskbar in editor

2. Enter the record name, select destination folder and set-up

New record	Assay	Type of design	Response variable	Model	
Assay	Multiple-dose 💙	Completely randomised 🗸	Quantitative	Sigmoid curves (4-PL, In dose)	~
Name					
Assay1_4PL	Preparations	Max doses	Max replicates		
To folder	2	5	3		
⊞ <u> </u> David					
⊕ 📋 Elena 🥟 My folder	Cancel Create				

4PL – data entry

Preparations

		Information		Potency		Pre-dilution	
Table	Preparation	ID	Long label	Potency	Value	Reconstitution	Stock solution
1	Standard +	S	standard	Assigned	100 IU/amp.	1 amp./mL	1 mL/10 mL
2	Sample 1 ▼	Т	test sample	Assumed ▼	80 IU/vial	1 vial/0.5 mL	0.5 mL/5 mL
3	Sample 2 ▼	C1	Control 1	Assumed ▼	25 IU/mL		
4	Sample 3 ▼	C2	Control 2	Assumed ▼	120 IU/mL		

Observ.	c1	c2	с3	c4	c5	с6	c7	с8	c9	c10	c11	c12
r1												
r2	0.031	0.044	0.027	0.032	0.028	0.051	0.117	0.097	0.104	0.093	0.112	0.047
r3	0.046	2.912	2.579	2.130	1.651	1.073	0.585	0.463	0.266	0.228	0.176	0.031
r4	0.024	2.917	2.654	2.212	1.638	0.973	0.666	0.356	0.234	0.197	0.215	0.050
r5	0.030	3.017	2.801	2.401	1.918	1.364	0.861	0.497	0.340	0.242	0.178	0.035
r6	0.045	2.987	2.808	2.450	1.963	1.299	0.854	0.496	0.344	0.217	0.125	0.024
r7	0.051	2.105	2.074	2.162	1.948	2.037	1.974	1.925	2.017	2.106	1.938	0.038
r8												

Blank results

0.031	0.046	0.024	0.030	0.045	0.051
0.047	0.031	0.050	0.035	0.024	0.038

 Mean
 SD
 RSD%

 0.038
 0.010
 26.2

https://combistats.edqm.eu/help/

EN01 Information And Remarks

EN02 Taskbar

EN05 Preparations Table

EN06 Rawdata Tables

EN07 Show Design

EN08 Table of Blank Results

1 mL/1	0 mL			
Rep.1	Rep.2	Mean	SD	RSD%
2.912	2.917	2.914	0.004	0.1
2.579	2.654	2.617	0.053	2.0
2.130	2.212	2.171	0.058	2.7
1.651	1.638	1.644	0.009	0.6
1.073	0.973	1.023	0.071	6.9
0.585	0.666	0.626	0.057	9.2
0.463	0.356	0.410	0.076	18.5
0.266	0.234	0.250	0.023	9.1
0.228	0.197	0.213	0.022	10.3
0.176	0.215	0.196	0.028	14.1
	Rep.1 2.912 2.579 2.130 1.651 1.073 0.585 0.463 0.266 0.228	2.912 2.917 2.579 2.654 2.130 2.212 1.651 1.638 1.073 0.973 0.585 0.666 0.463 0.356 0.266 0.234 0.228 0.197	Rep.1 Rep.2 Mean 2.912 2.917 2.914 2.579 2.654 2.617 2.130 2.212 2.171 1.651 1.638 1.644 1.073 0.973 1.023 0.585 0.666 0.626 0.463 0.356 0.410 0.266 0.234 0.250 0.228 0.197 0.213	T mL/10 mL Rep.1 Rep.2 Mean SD 2.912 2.917 2.914 0.004 2.579 2.654 2.617 0.053 2.130 2.212 2.171 0.058 1.651 1.638 1.644 0.009 1.073 0.973 1.023 0.071 0.585 0.666 0.626 0.057 0.463 0.356 0.410 0.076 0.266 0.234 0.250 0.023 0.228 0.197 0.213 0.022 0.176 0.215 0.196 0.028

Table 1

Potency value 100 IU/amp.

Reconstitution 1 amp./mL

Standard

standard

Assigned

S

Preparation

Long label

Potency

4PL - Summary statistics

Regression parameters

Global model: convergence reached

R² Standard: convergence reached

weighted unweighted

${\sf R}^2{\sf AII}$	0.991457	0.998112
R ² Standard	0.993511	0.998558

Common Slope

Estimated value	1.12452
Lower conf. Limit	1.08725
Jpper conf. Limit	1.16179

95% confidence level

Other model parameters

Lower asymptote	0.145458		
Upper asymptote	3.19599		

Equivalence of slopes

Preparation Slope		Difference with Standard	Ratio with Standard		
Standard: S	1.12755 (1.07426, 1.18084)	0.000000	1.00000		
Sample 1: T	1.12162 (1.06949, 1.17375)	-0.00593102 (-0.0684964, 0.0566344)	0.994740 (0.940903, 1.05171)		

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Anova table

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability	Level of significance
Preparations	3	0.813672	0.271224	301.79	< 0.000001	***
Regression	1	9.43054	9.43054	3497.77	< 0.000001	***
Non-parallelism	1	6.55525e-05	6.55525e-05	0.0243133	0.876090	
Non-linearity	16	0.0127084	0.000794275	4.71353	0.997004	
Non-linearity Table 1	8	0.00764179	0.000955224	2.83433	0.944320	
Non-linearity Table 2	8	0.00506661	0.000633326	1.8792	0.984494	
Treatments	21	10.257	0.488428	3804.3	< 0.000001	***
Residual error	28	0.0754923	0.00269615			
Total	49	10.3325	0.210867			

EN10 Regression Parameters

EN12 Equivalence of Slope

EN11 ANOVA Table

4PL - Potency and effective dose values

Potency estimates

Potency		Relative To Estimate (%)		Relative To Assumed/Assigned (%)			
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	Rel. To Ass.	(LCL, UCL)
Sample 1	IU/ml	0.583544	(0.556798, 0.611586)	100	(95.42, 104.81)	145.89	(139.20, 152.90)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

EN15 Potency Estimates
EN16 Effective Dose & Prediction

Advanced options

PREDICTED VALUES Effective dose 50 % Reported as Container / Effective Dose Y values 1.5;2 You can specify up to 6 response values, separated by semicolons.

Effective dose estimates

Precision

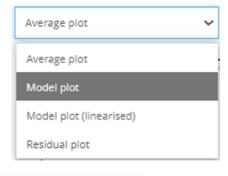
		Eff	ective Dose (ED)	Relative To Estimate (%)		
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	
Standard	IU/ED50	0.00539071	(0.00521456, 0.00557304)	100	(96.73, 103.38)	
Sample 1	IU/ED50	0.00369516	(0.00357478, 0.00381967)	100	(96.74, 103.37)	

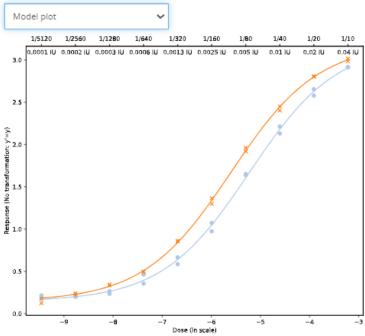
Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Recovery

Inverse predictions

		y-value(s)				
			1.5	2		
Preparation	Units	Estimate (LCL, UCL)		Estimate	(LCL, UCL)	
Standard	IU	0.00441394	(0.00426822, 0.00456375)	0.00796270	(0.00769247, 0.00824648)	
Sample 1	IU	0.00302561	(0.00292584, 0.00312811)	0.00545817	(0.00527405, 0.00565138)	


Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).



EN13 Graphical Representations

4PL - Graphical presentation

Model plot (linearised)

1/5120 1/2560 1/1280 1/640 1/320 1/160 1/80 1/40 1/20 1/10

0,0001 IU 0,0002 IU 0,0003 IU 0,0006 IU 0,0013 IU 0,0025 IU 0,005 IU 0,01 IU 0,02 IU 0,04 IU

2

-4

-5

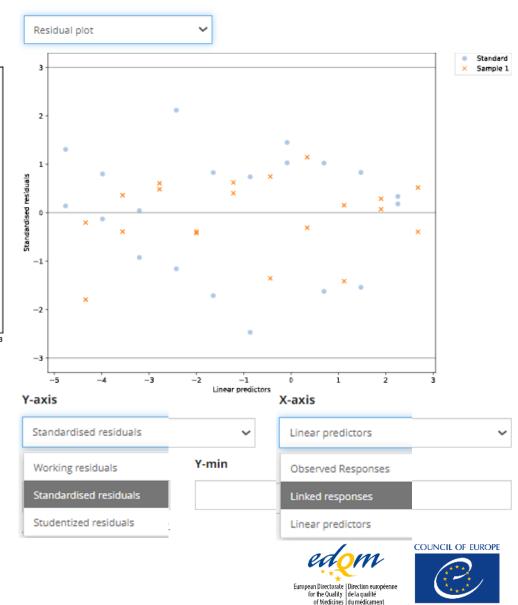
-6

-7

-6

-5

-4

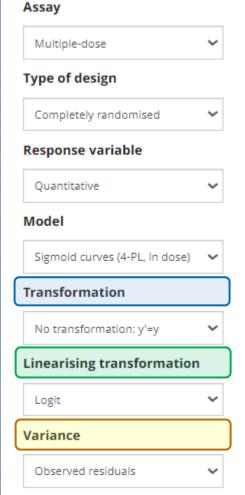

-3

Excluded values are not displayed.

Model plot (linearised) useful if non-linearity or non-parallelism criteria not met

Residual plot useful to check

- variability over the dose range
- outliers



© EDQM 20;

Excluded values are not displayed.

4PL - Wizard and Advanced options

Wizard

Variance

Observed residuals

Observed residuals

Deviation from linearity

Deviation from model

User-defined (s2)

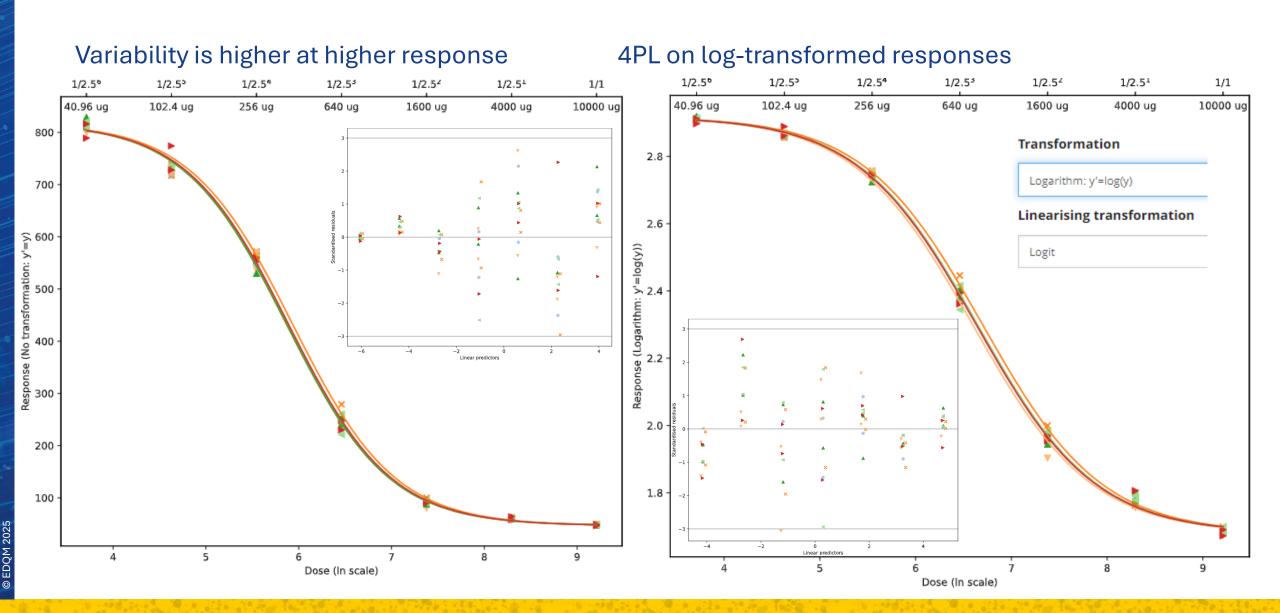
Responses can be transformed prior applying linearising transformation

Linearising transformation				
Logit 🗸				
Probit				
Logit				
Angular				
Rectangular				
Gompit				

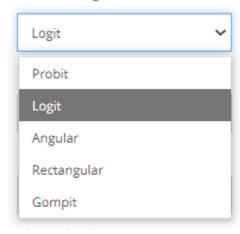
If observed residuals cannot be calculated or are not representative other options are available

Advanced options

FIXED PARAMETER					
Slope					
1.0	3 mod	del par	ameters can be fixed:		
Addition	Addition = lower asymptote Multiplication = upper – lower asymptote				
0.15					
Multiplication	•				
3.3					
CONFIDENCE LEVEL	\$				
Slope / intercept			Slope/intercept		
95	%	\triangle	New record: 95%		
Potency / Effective do	se / Inverse prediction	lmi	ported from Desktop: 90%		
95	%		Sorted Horri Desktop. 3070		



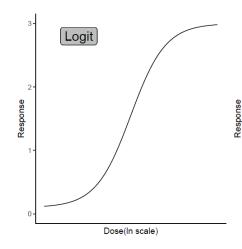
Weighing regression may help to stabilise the residuals over the range of responses.

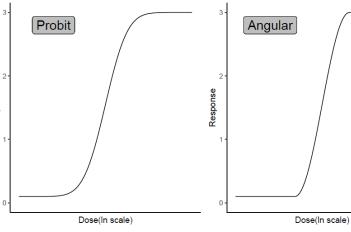


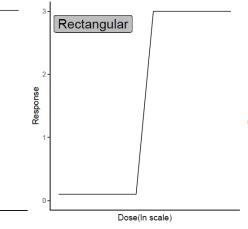
4PL example: log + logit transformation

Linearising transformations

Linearising transformation

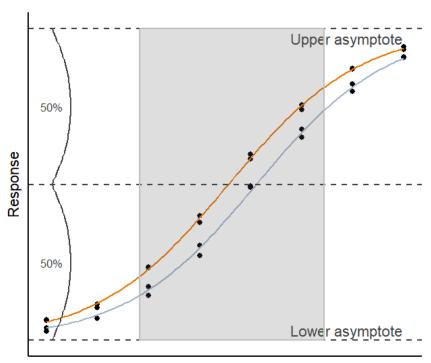

Logit: symmetrical with long tails (default for quantitative response)


Probit: symmetrical with short tails


Angular: symmetrical without tails

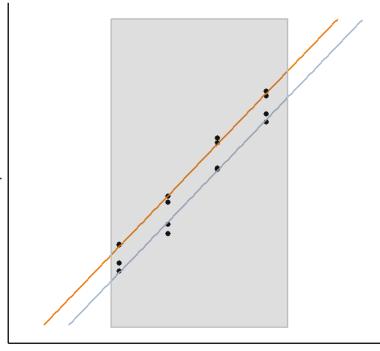
Rectangular: shaped like straight lines (not used anymore)

Gompit: asymmetrical with one long tail and one short tail



Parallel lines model as special case of 4PL

4PL model



In(dose)

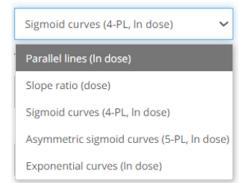
Potency estimates

			Potency
Preparation	Units	Estimate	(LCL, UCL)
Sample 1	IU/ml	0.584197	(0.555852, 0.614008)

Parallel line model

In(dose)

Potency estimates


			Potency
Preparation	Units	Estimate	(LCL, UCL)
Sample 1	IU/ml	0.572008	(0.533897, 0.613680)

New feature in Online version

Subset analysis

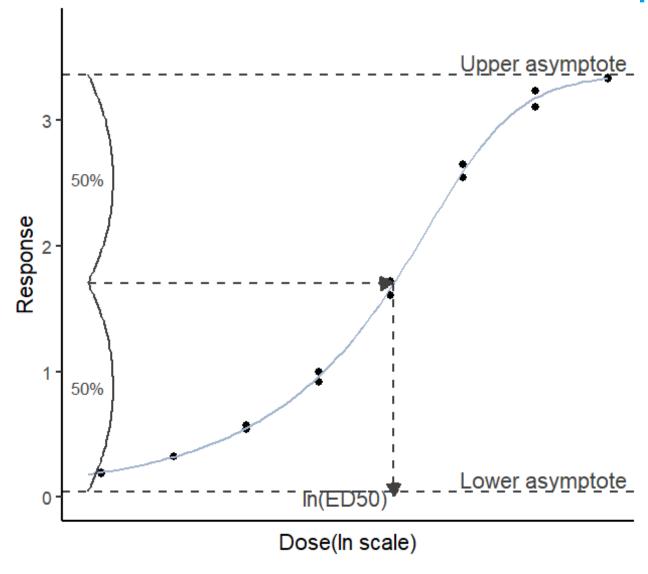
may help in dose selection

Model

Change model in Wizard

Subset

Subset set-up in Advance options


Content

- **★**Introduction
- **★**Parallel-line analysis
- **★**Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model

5PL - dose-response relationship

Asymmetrical S-shaped curve

- ★ One to two concentrations for each asymptotes
- ★ Three to four concentrations for middle part of the curve

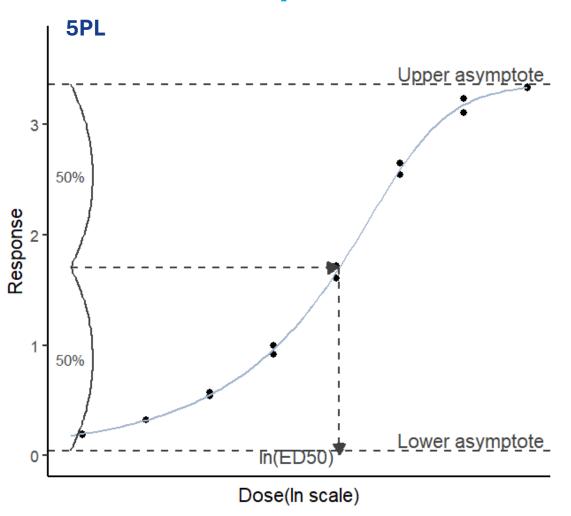
Response = D +
$$\frac{A - D}{\left[1 + exp(B * (ln(dose) - C))\right]^{G}}$$

where D: upper asymptote

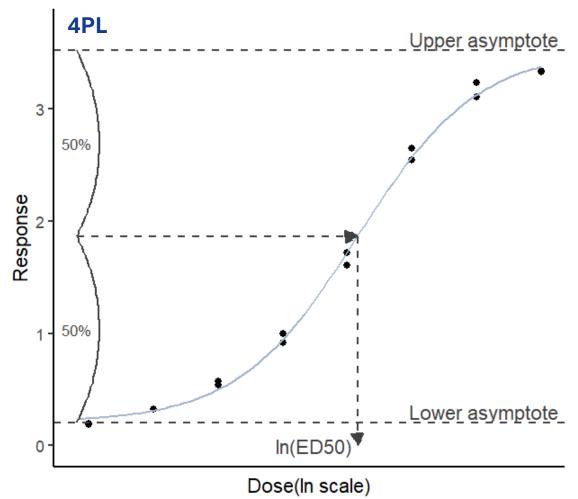
A: lower asymptote

C: location parameter(≠ ED50)

B: Slope parameter


G: Asymmetry factor

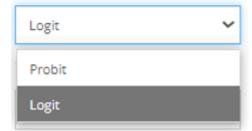
Assays: ELISA or cell-based potency assays



5PL – 4PL comparison

Model	R ²	Lower asymptote	Upper asymptote	ED50
5PL	0.994	0.048	3.36	0.244 IU
4PL	0.988	0.207	3.52	0.261 IU

5PL - Creation and evaluation in CombiStats online


New record

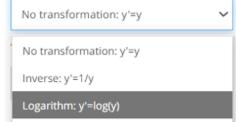
Model = Asymmetric sigmoid curves (In dose)

Туре				
Assay	Assay	Type of design	Response variable	Model
Name	Multiple-dose 🗸	Completely randomised 🗸	Quantitative	Asymmetric sigmoid curves (5-PL, In dos
Assay1_5PL				
To folder	Preparations	Max doses	Max replicates	
⊞ 📋 David	2	5	3	
⊕ 🛅 Elena				
My folder	Cancel Create			

Analysis options are the same as for 4PL model except for linearising transformation

Linearising transformation

Parallel line model for routine testing


Middle section (section of the steepest slope) is often not linear for asymmetrical sigmoid models. An appropriate transformation to be applied for parallel line model.

5PL - middle section not linear PL - transformed response Upper asymptote 0.5 50% In(Response) Response 0.0 -0.5 Lower asymptote In(ED50) Dose(In scale) Dose(In scale)

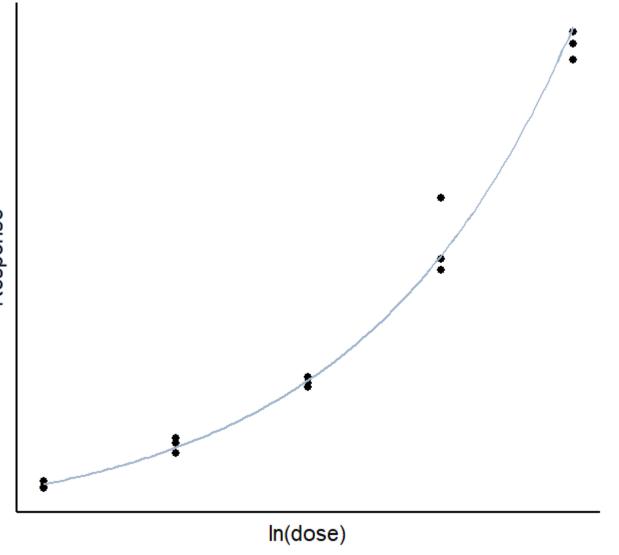
New feature **Subset analysis**may help in dose selection Model

Asymmetric sigmoid curves (5-PL, In dose)

Transformation

Change model and transformation in Wizard

Subset set-up in Advance options


Content

- **★**Introduction
- **★**Parallel-line analysis
- **★**Slope-ratio analysis
- ★4-parameter logistic model
- ★5-parameter logistic model
- ★3-parameter exponential model

3EXP - dose-response relationship

Modelling exponential growth

No upper asymptote as in 4PL and 5PL

$$Response = D + A * exp(B * (ln(dose) - C))$$

where D: addition

A: multiplication

C: location parameter

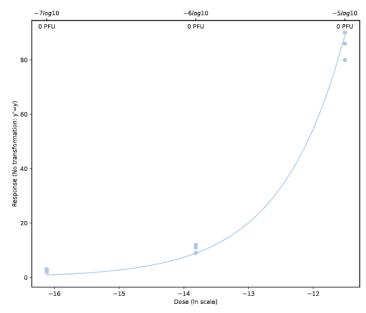
B: slope parameter

Assay:

Yellow fever vaccine (EX30_3EXP_counts), plaque forming units

Enzyme Immunoassay (EX31_3EXP_weights)

Hepatitis B vaccine


- ★ Yellow fever vaccine
- ★ Plaque assay quantifies the number of plaqueforming units (PFU) in a virus sample
- **A plate-forming unit (PFU)** is a measure used in virology to describe the number of virus particles capable of forming plaques per unit volume.
- ★ Particularity: no standard preparation
- ★ Variability of response increases with higher response values and needs to be stabilised
- ★ For count data: Poisson regression model => Weighted regression (1/m)

Preparations

		Information	Potency		Pre-dilution
Table	Preparation	ID	Potency	Value	Pre-dil. 1
1	Sample 1 →	S	Assumed →	? log10 PFU/ml	0.2 ml/well

Raw data

Table 1				
Preparation	Sample 1			
ID	S			
Potency	Assumed			
Potency value	? log10 PFU/ml			
Pre-dil. 1	0.2 ml/	well		
Dose	Rep.1	Rep.2	Rep.3	
-5log10	86	80	90	
-6log10	9 12 11			
-7log10	3 3 2			

Inverse predictions

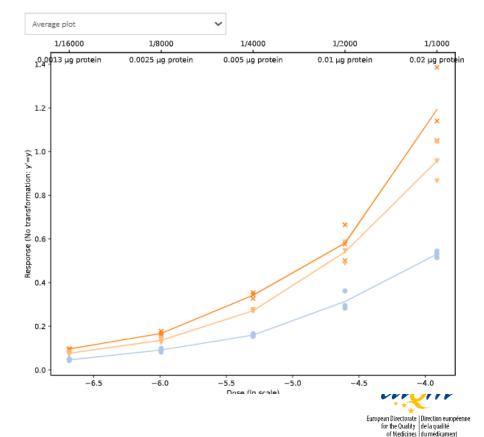
		y-value(s)		
		1		
Preparation	Units	Estimate	(LCL, UCL)	
Sample 1: S	1/ml, log10	7.64782	(7.59834, 7.69729)	

Confidence limits (in brackets) calculated for a 95% confidence level (advanced on

3EXP - Example: antigen content by ELISA

- ★ Hepatitis B vaccine
- ★ Standard and 2 Test preparations
- ★ Variability of response increases with higher response
- ★3EXP Weighted regression (1/m²)

Preparations


	Information		Potency		
Table	Preparation	ID	Sample	Potency	Value
1	Standard +		S	Assigned	20 μg protein / ml
2	Sample 1 ▼		Т	Assumed +	20 μg protein / ml
3	Sample 2 →		U	Assumed +	20 μg protein / ml

Raw data

Table 1			:	
Preparation	Standa	rd		
ID				
Sample	S			
Potency	Assigne	ed		
Potency value	20 μg protein / ml			
Dose	Rep.1	Rep.2	Rep.3	
1/1000	0.514	0.531	0.545	
1/2000	0.283	0.295	0.362	
1/4000	0.159 0.154 0.166			
1/8000	0.093	0.099	0.082	
1/16000	0.043	0.045	0.051	

Table 2				
Preparation	Sample	1		
ID				
Sample	Т			
Potency	Assumed			
Potency value	20 μg protein / ml			
Dose	Rep.1 Rep.2 Rep			
1/1000	1.140	1.386	1.051	
1/2000	0.501	0.665	0.576	
1/4000	0.327	0.355	0.345	
1/8000	0.167	0.157	0.178	
1/16000	0.097	0.097	0.094	

Table 3			:	
Preparation	Sample	2		
ID				
Sample	U			
Potency	Assumed			
Potency value	20 μg protein / ml			
Dose	Rep.1	Rep.2	Rep.3	
1/1000	0.957	0.866	1.045	
1/2000	0.586	0.489	0.546	
1/4000	0.277	0.268	0.269	
1/8000	0.127	0.146	0.133	
1/16000	0.086	0.071	0.073	

3EXP - modelling exponential growth

$$Response = D + A * exp(B * (ln(dose) - C))$$

If D=0 and A=1

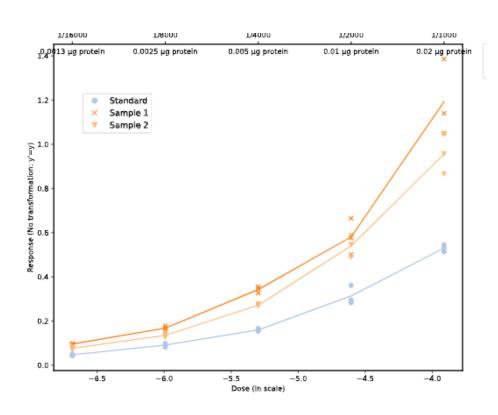
$$Response = exp(B * (ln(dose) - C))$$

$$ln(Response) = ln \left(exp(B * (ln(dose) - C)) \right)$$

$$= B * (ln(dose) - C)$$

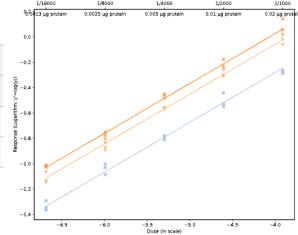
$$= B * ln(dose) - B * C$$

$$= -B * C + B * ln(dose)$$
intercept slope



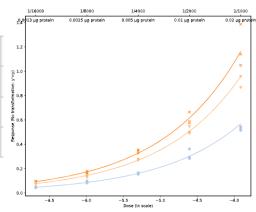
Example: alternative PL with log-transformation

Hepatitis B vaccine example


Average plot (no transformation)

PL model with log-transformation

Potency estimates


			Potency
Preparation	Units	Estimate	(LCL, UCL)
Sample 1	μg protein/ml	43.5762	(40.4020, 47.0668)
Sample 2	μg protein/ml	35.2553	(32.7374, 38.0062)

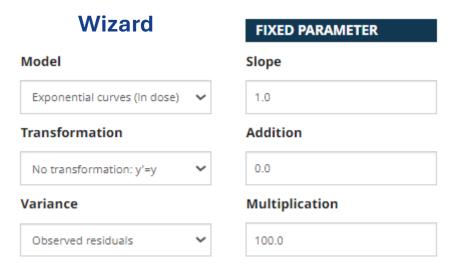
3PL weighted regression (D=0, A=1, weight=1/m²)

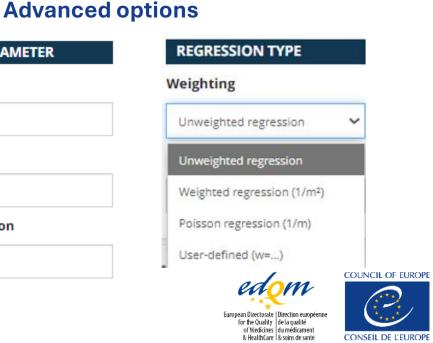
Potency estimates

		Potency	
Preparation	Units	Estimate	(LCL, UCL)
Sample 1	μg protein/ml	43.5676	(40.4720, 46.9635)
Sample 2	μg protein/ml	35.2206	(32.7673, 37.8948)

3EXP - Creation and evaluation in CombiStats online

Model = Exponential curves (In dose) New record Type Assay Type of design Response variable Model Assay ~ Multiple-dose Completely randomised Quantitative Exponential curves (In dose) Name Assay1_3PM Preparations Max doses Max replicates To folder 5 ⊕ David


Analysis options are similar to 4PL model without linearizing transformation choice


Cancel

Create

🕀 📋 Elena

My folder

Useful links

★ Helpdesk

https://helpdesk.edqm.eu/servicedesk/customer/user/login?destination=portals

★ Institutional website

https://www.edqm.eu/en/lp-combistats

★ FAQs, privacy, security notices

https://combistats.edqm.eu/help/

★ User guide (sign in first)

https://combistats.edqm.eu/user-manuals/combistats_user_guide.pdf/

Thank you for your attention

@edqm_news

F EDQMCouncilofEurope

European Directorate | Direction européenn for the Quality | de la qualité of Medicines | du médicament & HealthCare | & soins de santé

© EDQM 2025