

European Directorate for the Quality of Medicines & HealthCare

Council of Europe

CombiStats online Training module 2

Quantal data e.g. pass/fail results

© EDQM 2025

Content

- ★ Quantal data definition
- ★ Data entry: aggregated/individual data
- ★ Regression analysis: the 4PL model
- **★**Output statistics and tables
- ★Spearman-Kaerber method

Indirect dilution assay

Response observed at various doses

1

R positive wells out of N = 10 wells

5 doses (IU) per preparation

Ref.	Prepara	ition	Test	Prepara	ition
Dose	N	R	Dose	N	R
45	10	10	67.5	10	9
30	10	7	45	10	8
20	10	4	30	10	5
13.3	10	1	20	10	2
8.9	10	0	13.3	10	0
8.9	10	U	13.3	10	0

Fictitious data

Prep.	ED ₁₀₀	ED ₅₀
Ref.	About 45 IU	In-between 20-30 IU
Test	Greater than 67.5 IU	About 30 IU

Statistical regression models needed to estimate EDs and their uncertainty

Indirect dilution assay

Common structure

★X = several preparations & doses

★Y = single or repeated measurements

Quantal responses

Y = Proportion of respondents E.g. *in-vivo* & *in-vitro* assay

Doses	(1)	(2)	(3)	(4)	(5)	(6)
1 IU	-	-	-	-	ı	ı
1.6 IU	-	-	-	+	ı	-
2.5 IU	-	+	+	-	-	+
4.0 IU	+	+	+	-	+	+

Doses (1)

1 IU 0/6

1.6 IU 1/6

2.5 IU 3/6

4.0 IU 5/6

Raw data: pos./neg.

Aggregated

Binary

Proportions

Regression models

in CombiStats

1. introduction

2. randomisation and independence of individual treatments

Ph. Eur. Chapter 5.3 Statistical analysis of

3. assays depending upon quantitative responses

results of biological assays and tests

3.2. the parallel-line model

3.3. the slope-ratio model

3.4. extended sigmoid dose-response curves

4. assays depending upon quantal responses

4.2. the probit method

4.3. the logit method

4.5. the median effective dose

5. examples

6. combination of assay results

6.2. combination of independent assay results

6.3. unweighted combination of assay results

7. beyond this annex

8. tables and generating procedures

9. glossary of symbols

10. literature

Quantal data

- ★2 possible outcomes, e.g. positive/negative
 - → Binary, dichotomous, pass/fail results

Binomial distribution: probability of r respondents out of n tested (r/n) given a true rate π

Well	1	2	3	4	5	6
Seq.1	-	+	+	+	+	+
Seq.2	+	-	+	+	+	+
Seq.3	+	+	-	+	+	+
Seq.4	+	+	+	-	+	+
Seq.5	+	+	+	+	-	+
Seq.6	+	+	+	+	+	-

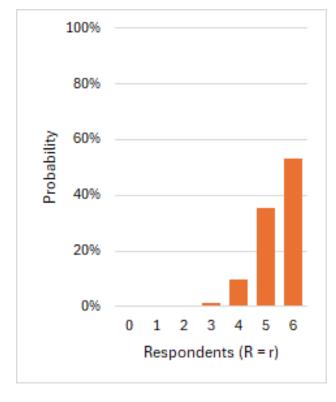
$$P(r) = C_n^r \cdot \pi^r \cdot (1 - \pi)^{n-r}$$

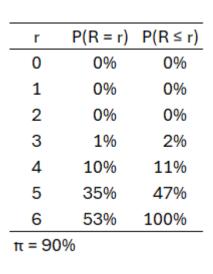
Probability of r = 5 positive wells out of n = 6, given π = 90%

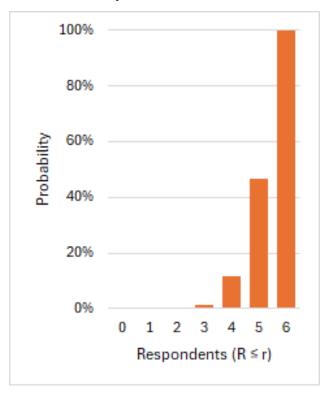
$$P(5) = C_6^5 \cdot 0.90^5 \cdot 0.10^{6-5} = 0.35$$
 (35% chance)

Proba of 1 negative well

Proba of 5 consecutive positive wells


At the bench, 6 sequences of 5 positive wells out of 6 are possible


Binomial distribution

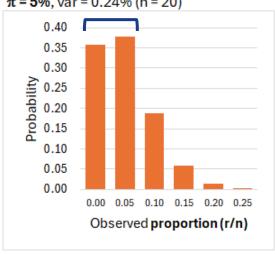

★ Individual probabilities

5 positive wells out of 6: 35% chance

★ Cumulative probabilities

0 to 4 positive wells: 11% chance More than 4 positive wells: 89% chance

Distribution parameters


★ Mean (location)

$$p = r/n$$

"observed proportion"

Dose: 1 IU

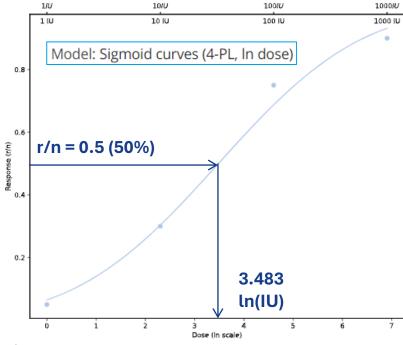
 $\pi = 5\%$, var = 0.24% (n = 20)

r/n = 0/20 and 1/20 are most likely

★ Variance (dispersion)

$$Var = p(1-p)/n$$

The variance depends on the mean


 \rightarrow weighted regression analysis ($w_i = 1/var_i$)

Dose-response curve

★ Using most probable rates

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1000 IU/vial
Dose	Rep.1
1 IU	1/20
10 IU	6/20
100 IU	15/20
1000 IU	18/20

Effective dose estimates

		Effec	tive Dose (ED)	Relative To	Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Standard: S	IU/ED50	32.5578	(14.2583, 74.5349)	100	(43.79, 228.93)

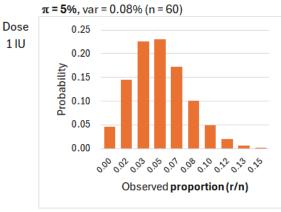
Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Dose	Most probable rates (r/n)
1 IU	0/20 - 1/20
10 IU	5/20 - 6/20 - 7/20
100 IU	14/20 - 15/20 - 16/20
1000 IU	18/20 - 19/20
	20 / 1: .:

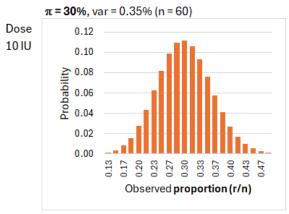
36 r/n combinations

Order	ED50	Order	ED50	Order	ED50
1	32.6	13	29.7	25	29.6
2	37.9	14	36.9	26	30.4
3	28.3	15	36.4	27	22.8
4	29.2	16	38.2	28	36.7
5	36.4	17	28.3	29	47.2
6	33.0	18	33.8	30	35.3
7	34.0	19	25.4	31	26.6
8	25.4	20	26.0	32	32.5
9	42.4	21	42.1	33	41.1
10	31.6	22	31.6	34	37.6
11	32.7	23	33.2	35	28.3
12	29.1	24	40.7	36	32.9

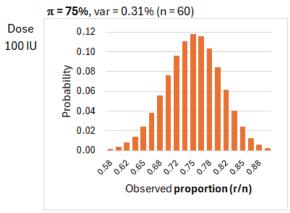
Min 22.8 Max 47.2 Rge 24.4

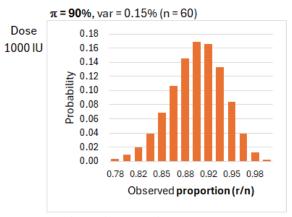

How to improve precision?

★Increase sample size


Dose	Most probable rates (r/n)
1 IU	2/60 - 3/60
10 IU	17/60 - 18/60 - 19/60
100 IU	44/60 - 45/60 - 46/60
1000 IU	54/60 - 55/60

36 r/n combinations


Order	ED50	Order	ED50	Order	ED50
1	32.6	13	31.5	25	31.5
2	34.2	14	33.9	26	31.8
3	31.1	15	34.2	27	28.9
4	31.4	16	31.1	28	33.9
5	33.8	17	33.8	29	36.8
6	32.7	18	32.9	30	33.5
7	33.0	19	30.0	31	30.4
8	30.0	20	30.2	32	32.5
9	35.5	21	32.7	33	35.2
10	32.3	22	35.5	34	34.2
11	32.6	23	32.3	35	31.1
12	31.3	24	35.1	36	32.6
Min	28.9	Max	36.8	Rge	7.9


r/n = 2/60 and 3/60 are most likely

r/n = 17/60, 18/60 and 19/60 are most likely

r/n = 44/60, 45/60 and 46/60 are most likely

r/n = 54/60 and 55/60 are most likely

How to improve precision?

- **★**Steep slope
 - * Assay development > optimal conditions for routine analyses
- **★**Appropriate dose range
 - *Response rates between 0.05 and 0.95 (probit), 0.10 and 0.90 (logit)
 - ★ Dose_{Test} = Dose_{Std} $ln(R_0)$ (R_0 = guessed value of relative potency)
- **Equal division of N subjects** between preparations/doses
- **Proper randomisation** (deviation from linearity is likely, otherwise)
- **★Block design** (e.g. mice from the same litter are more likely to vary less in their individual responses than are mice from different litters → litters = blocks)

Content

- **★** Quantal data definition
- ★ Data entry
- ★ Regression analysis: the 4PL model
- **★**Output statistics and tables
- **★**Spearman-Kaerber method

Data tables

★Aggregated results (r/n)

Raw data

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1000 IU/vial
Dose	Rep.1
Dose 1 IU	Rep.1 1/10
	•
1 IU	1/10

Table	2
Preparation	Sample 1
ID	Т
Potency	Assumed
Potency value	500 IU/vial
Dose	Rep.1
Dose 1/1000	Rep.1 0/10
	•
1/1000	0/10

★Individual results (0/1 or -/+)

Raw data

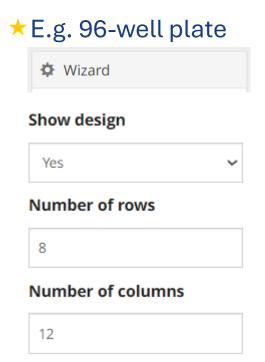

Table 1							
Preparation	Standard						
ID	S						
Potency	Assigne	ed					
Potency value	1000 IL	J/vial					
Dose	1 IU	1000 IU					
Rep.1	0	0	1	1			
Rep.2	0	0	0	1			
Rep.3	0	1	1	1			
Rep.4	0 0 1						
Rep.5	1 0 0						
Rep.6	0	0	1	1			
Rep.7	0	1	0	1			
Rep.8	0	0	1	1			
Rep.9	0	0	1	1			
Rep.10	0	1	1	1			
v/n	1/10	2/10	7/10	10/10			

Table 2								
Preparation	Sample 1							
ID	Т	Т						
Potency	Assumed							
Potency value	500 IU/vial							
Dose	1/1000	1/1000 1/100 1/10						
Rep.1	0	0	1	1				
Rep.2	0	1	1	1				
Rep.3	0	0	0	1				
Rep.4	0	0	1	0				
Rep.5	0	1						
Rep.6	0	0	0	1				
Rep.7	0	0	1	1				
Rep.8	0	0	1	1				
Rep.9	0	0	1	1				
Rep.10	0	1	0	1				
r/n	0/10	3/10	6/10	9/10				

"Show design" option

Prep|Dose|Rep coordinates

Individual results

Assay layout

Design	c1	c2	с3	c4	с5	с6	c7	с8	с9	c10	c11	c12
r1	Blank	1 1 1	1 1 2	1 1 3	1 1 4	1 1 5	1 1 6	1 1 7	1 1 8	1 1 9	1 1 10	Ctrl -
r2	Blank	1 2 1	1 2 2	1 2 3	1 2 4	1 2 5	1 2 6	1 2 7	1 2 8	1 2 9	1 2 10	Ctrl -
r3	Blank	1 3 1	1 3 2	1 3 3	1 3 4	1 3 5	1 3 6	1 3 7	1 3 8	1 3 9	1 3 10	Ctrl -
r4	Blank	1 4 1	1 4 2	1 4 3	1 4 4	1 4 5	1 4 6	1 4 7	1 4 8	1 4 9	1 4 10	Ctrl -
r5	Blank	2 1 1	2 1 2	2 1 3	2 1 4	2 1 5	2 1 6	2 1 7	2 1 8	2 1 9	2 1 10	Ctrl +
r6	Blank	2 2 1	2 2 2	2 2 3	2 2 4	2 2 5	2 2 6	2 2 7	2 2 8	2 2 9	2 2 10	Ctrl +
r7	Blank	2 3 1	2 3 2	2 3 3	2 3 4	2 3 5	2 3 6	2 3 7	2 3 8	2 3 9	2 3 10	Ctrl +
r8	Blank	2 4 1	2 4 2	2 4 3	2 4 4	2 4 5	2 4 6	2 4 7	2 4 8	2 4 9	2 4 10	Ctrl +

Observ.	c1	c2	с3	c4	c5	с6	c7	с8	с9	c10	c11	c12
r1		0	0	0	0	1	0	0	0	0	0	0
r2		0	0	1	0	0	0	1	0	0	1	0
r3		1	0	1	1	0	1	0	1	1	1	0
r4		1	1	1	1	1	1	1	1	1	1	0
r5		0	0	0	0	0	0	0	0	0	0	1
r6		0	1	0	0	1	0	0	0	0	1	1
r7		1	1	0	1	0	0	1	1	1	0	1
r8		1	1	1	0	1	1	1	1	1	1	1

Content

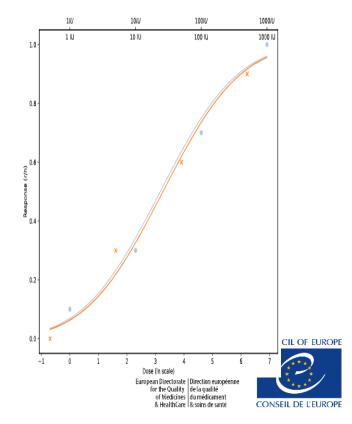
- **★** Quantal data definition
- ★ Data entry
- **★ Regression analysis**
- **★**Output statistics and tables
- **★**Spearman-Kaerber method

Indirect dilution assay

★ Rates observed at fixed doses (dilutions)

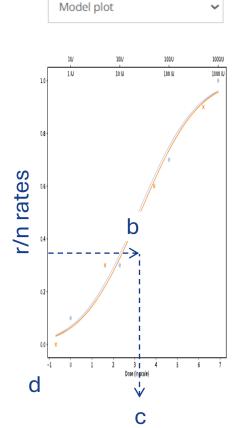
Resp.	Dose scale	X-axis
Quantal	Fold-ratio	Ln(Dose)

Table	1 :		
Preparation	Standard		
ID	S		
Potency	Assigned		
Potency value	1000 IU/vial		
Dose	Rep.1		
Dose 1 IU	Rep.1 1/10		
	•		
1 IU	1/10		

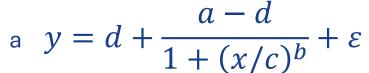

Table	2			
Preparation	Sample 1			
ID	Т			
Potency	Assumed			
Potency value	500 IU/vial			
Dose	Rep.1			
Dose 1/1000	Rep.1 0/10			
	•			
1/1000	0/10			

Standard: ED₅₀ between 10 and 100 IU

Sample: ED_{50} between dil. 1/10 and 1/100


Regression model → to estimate EDs & their precision

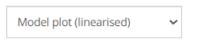
Shape	Model			
Sigmoid curve	4-PL			

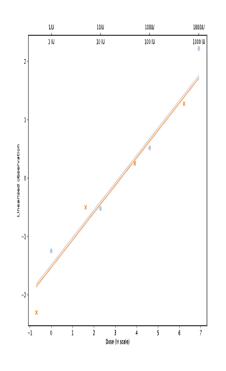


Regression approach

CombiStats applies a linearising transformation to the 4-PL equation, fits linear regression lines and back transform relevant/useful statistics

4-parameter logistic model


Lower asymptote: d = 0


Upper asymptote: a = 1

Inflexion point (ED₅₀): c

Slope factor (Hill's slope): b

x: ln(dose), y:r/n, ε: error term

Linear regression lines

The calculated slope corresponds to the Hill's slope of the 4-PL model

	Common Slope				
Estimated value	0.469493				
Lower conf. Limit	0.303044				
Upper conf. Limit	0.635941				

95% confidence level

in a separate table

		Effective Dose (ED)				
Preparation	Units	Estimate	(LCL, UCL)			
Standard: S	IU/ED50	23.7484	(7.70907, 71.7567)			
Sample 1: T	IU/ED50	26.1042	(8.67929, 81.2479)			

Processed data

1000 IU	10/10		Rates (r/n)		Linearised (e.g. probit)		Residuals		
			observed	calculated	observed	calculated	working	standardized	studentized
Table	Flag	Dose	NLinObs	NLinPred	LinObs	LinPred	WorkRes	StandRes	StudRes
1	1	0.000	0.10	0.07	-1.25	-1.49	0.24	0.47	0.48
1	1	2.303	0.30	0.34	-0.52	-0.41	-0.12	-0.37	-0.37
1	1	4.605	0.70	0.75	0.52	0.67	-0.16	-0.47	-0.47
1	1	6.908	1.00	0.96	2.22	1.76	0.46	1.08	0.99
2	1	-0.693	0.00	0.03	-2.30	-1.86	-0.45	-0.94	-0.88
2	1	1.609	0.30	0.22	-0.50	-0.78	0.27	0.77	0.79
2	1	3.912	0.60	0.62	0.25	0.31	-0.05	-0.17	-0.17
2	1	6.215	0.90	0.92	1.27	1.39	-0.11	-0.25	-0.25
Flag = 0 if c	lata is excl	uded		del plot gmoid)		el plot r reg.)	F	Residual plo	ot

Dose => ln(dose)

Linearising transformation: added value

→ Parallelism between regression lines can be assessed

Two products are similar if they act as dilution of the same substance, i.e. implies parallelism on log(Dose)

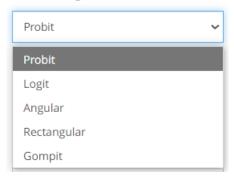
Lack of parallelism may suggest changes in:

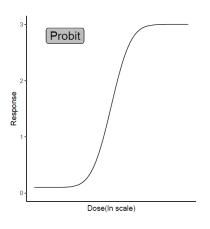
- Performance of the method, and/or
- Manufacturing process (product has changed!)

Assessment (see next section)

Option 1: significance test

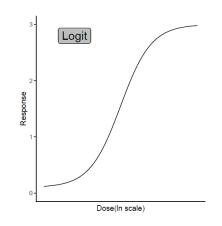
Option 2: equivalence test

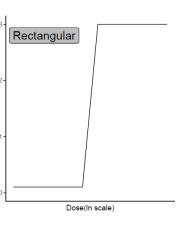

Any other proposal?



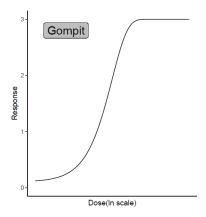
Linearising transformation: options

Linearising transformation




Probit and Logit are most frequently used

Dose(In scale)


Angular

Probit: symmetrical curves with short tails (asymptotes reached rapidly)

Logit: symmetrical curves with long tails (asymptotes reached slowly)

Angular and rectangular: symmetrical curves with very short tails (asymptotes reached very rapidly)

Gompit: asymmetrical curves with a shorter lower tail and longer upper tail

of Medicines | du médicament

Content

- **★** Quantal data definition
- ★ Data entry
- **★**Regression analysis
- **★Output statistics and tables**
- **★**Spearman-Kaerber method

Common slope model

Used to calculate output results (e.g. EDs, potencies)

→ Validity criterion: no difference between individual slopes

Option 1: equality of slopes (any statistically significant difference?)

Source of variation	Degrees of freedom	Probability	Level of significance
Preparations	1	0.874636	
Regression	1	0.000001	***
Non-parallelism	1	0.889121	

p-value 0.89 (>0.05) No significant difference between individual slopes

Regression parameters

Estimated Lower conf.

Upper conf.

Global model: convergence reached

R² Standard: convergence reached

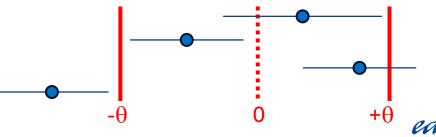
Common Slope

value	0.798385
Limit	0.477232
Limit	1.11954

95% confidence level

Option 2: equivalence of slopes (any difference of practical relevance?)

Equivalence of slopes


Preparation	Slope	Difference with Standard	Ratio with Standard
Standard: S	0.821108 (0.368129, 1.27409)	0.000000	1.00000
Sample 1: T	0.775419 (0.320032, 1.23081)	-0.0456893 (-0.584736, 0.493358)	0.944357 (0.436873, 1.96713)

Slopes: confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Differences and ratios of slopes: confidence limits (in brackets) calculated for a 90% confidence level.

Equivalence margins $(\pm \theta)$ to be set prior to do the test

Assessment using differences or ratios of slopes (not both)

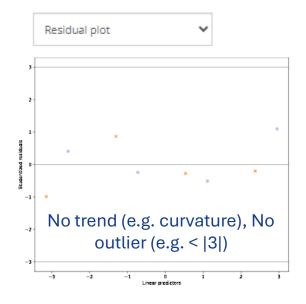
Equivalent
Equivalent
Inconclusive

Other validity criteria (cf. SOP)

Assay

Source of variation	Degrees of freedom	Probability	Level of significance
Preparations	1	0.874636	
Regression	1	0.000001	*** Signific
Non-parallelism	1	0.889121	Non-sig
Non-linearity	4	0.781511	Non-sig
Non-linearity Table 1	2	0.665302	
Non-linearity Table 2	2	0.626394	
Treatments	7	0.000609	***

	weighted
² All	0.930685


Coefficient of determination > X%

S	ignificant common slope (p ≤ 0.05)
N	on-significant deviation from parallelism (p > 0.05)

R² Standard 0.932548

gnificant deviation from linearity (p > 0.05)

Pos/neg control, control charts, ...

Potency results

Precise enough? On target?

Preparations

Potency	estimates

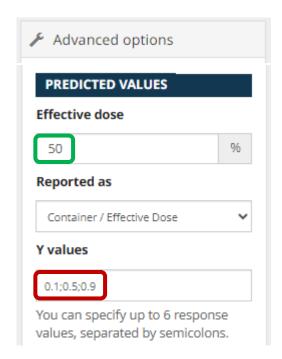
		Potency		Potency Relative To Estimate (%)		Relative To Assumed/Assigned (%)	
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	Rel. To Ass.	(LCL, UCL)
Sample 1: T	IU/vial	485.178	(89.5996, 2505.70)	100	(18.47, 516.45)	97.04	(17.92, 501.14)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

		Information Pote		ency
Table	Preparation	ID	Potency	Value
1	Standard +	S	Assigned	1000 IU/vial
2	Sample 1 •	Т	Assumed •	500 IU/vial

Pharm. Eur.

 R^2 . The coefficient of determination calculated for the reference standard dose-response curve (R2) is not less than XX.


Precision. Unless otherwise stated in the monograph, the confidence limits (P = 0.95) are not less than XX per cent and not more than XX per cent of the estimated potency.

Recovery. The mean recovery must not be lower than XX per cent or above XX per cent.

The amount is not less than XX per cent and not greater than XX per cent of the intended content.

uropean Directurale | Direction européenne for the Quality | de la qualité of Medicines du médicament & HealthCare | & soins de santé CONSEIL

Effective doses

 ED_{10} (r/n = 10%): 1.55 IU

 ED_{50} (r/n = 50%): 23.75 IU

 ED_{90} (r/n = 90%): 364 IU

Reported as "Container/ED": $ED_{50} = 23.75 \text{ IU}$

		Effec	tive Dose (ED)	Relative To	Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Standard: S	IU/ED50	23.7484	(7.70907, 71.7567)	100	(32.46, 302.15)
Sample 1: T	IU/ED50	26.1042	(8.67929, 81.2479)	100	(33.25, 311.24)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Reported as "ED/Container": 1 vial is equivalent to 42 ED_{50}

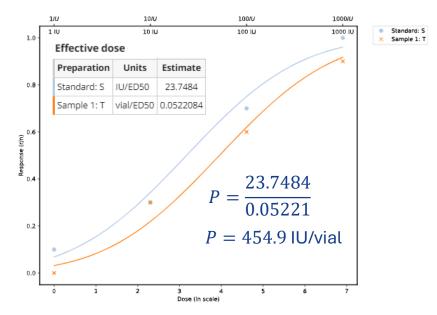
		Effec	tive Dose (ED)	Relative To	Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Standard: S	ED50/vial	42.1080	(13.9360, 129.717)	100	(33.10, 308.06)
Sample 1: T	ED50/vial	19.1540	(6.15401, 57.6084)	100	(32.13, 300.76)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Inverse predictions

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

		1/0	10/U	100/U	1000/U
	1.0	1 10	10 IU	100 JŲ	1000 IV
	0.8 -				×
0.5	0.6		_//	/*	
r/n = 0.5	0.4				
	0.2 -		*/		
	0.0 - ×	<i>'</i>	3.168 ln(IU)	= 23. II	I
	-1	o i	2 3 Dose (in sc	4 5	δ 7



Potency estimates

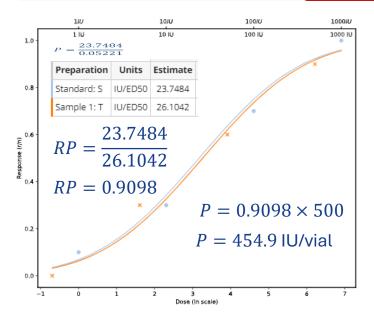

Table	1 :	
Preparation	Standard	
ID	S	
Potency	Assigned	
Potency value	1000 IU/vial	
Dose	Rep.1	
1 IU	1/10	
10 IU	3/10	
100 IU	7/10	

Table 2	2 :
Preparation	Sample 1
ID	Т
Potency	Assumed
Potency value	? IU/vial
Dose	Rep.1
1/1000	0/10
1/100	3/10
1/10	6/10
1/1	9/10

		Information	Pote	ency
Table	Preparation	ID	Potency	Value
1	Standard +	S	Assigned	1000 IU/vial
2	Sample 1 ▼	Т	Assumed +	? IU/vial

		Information	Pote	ency
Table	Preparation	ID	Potency	Value
1	Standard +	S	Assigned	1000 IU/vial
2	Sample 1 ▼	Т	Assumed +	500 IU/vial

Potency estimates

Precision

Recovery

			Potency	Relative To	Estimate (%)	Relative To Ass	umed/Assigned (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)	Rel. To Ass.	(LCL, UCL)
Sample 1: T	U/via	454.878	(91.1866, 2150.69)	100	(20.05, 472.81)	90.98	(18.24, 430.14)

Confidence limits (in brackets) calculated for a 35% confidence lever (advanced options).

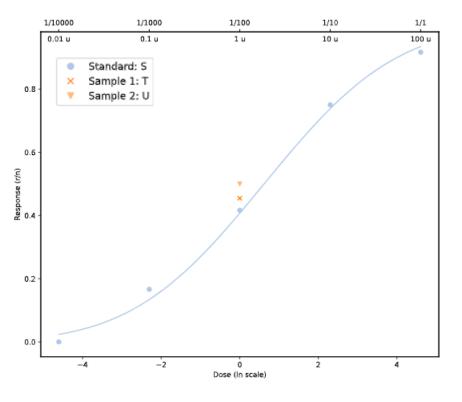
Multiple-dose standard only

Table 1	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	100 u/d
Dose	Rep.1
1/1	11/12
1/10	9/12
1/100	5/12
1/1000	2/12
1/10000	0/12

Table 2	2 :
Preparation	Sample 1
ID	Т
Potency	Assumed
Potency value	? u/d
Dose	Rep.1
1/100	5/11

Table :	3 :
Preparation	Sample 2
ID	U
Potency	Assumed
Potency value	? u/d
Dose	Rep.1
1/100	6/12

The regression outputs are those of the standard...


	Slope
Estimated value	0.378897
Lower conf. Limit	0.222646
Upper conf. Limit	0.535148

	weighted
R ² Standard	0.979272

Anova table

Source of variation	Degrees of freedom	Probability	Level of significance
Regression	1	0.000002	***
Non-linearity	3	0.923667	
Treatments	4	0.000123	***
Theoretical variance			
Total	4		

Single dose estimates

		Si	Single-dose		Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Sample 1: T	u/d	137.280	(41.3280, 427.834)	100	(30.10, 311.65)
Sample 2: U	u/d	185.562	(59.4401, 614.946)	100	(32.03, 331.40)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Content

- **★** Quantal data definition
- ★ Data entry
- ★ Regression analysis
- **★**Output statistics and tables
- **★**Spearman-Kaerber method

Empirical method (no regression analysis)

Used when no slope can be estimated

Example: (quasi)separation (not enough intermediate r/n rates)

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1000 IU/vial
Dose	Rep.1
Dose 1 IU	Rep.1 0/10
1 IU	0/10

Table 2				
Preparation	Sample 1			
ID	Т			
Potency	Assumed			
Potency value	? IU/vial			
Dose	Rep.1			
1/1000	0/10			
1/100	0/10			
1/10	6/10			
	10/10			

	100		10/0		00W	100010
1.0 -	1 10		10 10		00 IU	1000 IU
0.8 -					//	
Response (r/n)						
E 0.4 -						
0.2 -						
0.0 -	×					
	ò	i	ż	3 4 Dose (in scale)	5	6 7

Analysis options

Assay: Multiple-dose

Response: Quantal (e.g. pass/fail)

Model: Sigmoid curves (4-PL, In dose)

Design: Completely randomised

-Linearising transformation: Probit-

Most analysis options do not apply

Note: Spearman-Kaerber method used (no inverse prediction)

Potency estimates

			Potency	Relative To	Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Sample 1: T	IU/vial	794.328	(304.950, 2069.05)	100	(38.39, 260.48)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

Effective dose estimates

			Effective Dose (ED)		Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Standard: S	IU/ED50	63.0957	(32.8076, 121.346)	100	(52.00, 192.32)
Sample 1: T	vial/ED50	0.0794328	(0.0394788, 0.159822)	100	(49.70, 201.20)

Confidence limits (in brackets) calculated for a 95% confidence level (advanced options).

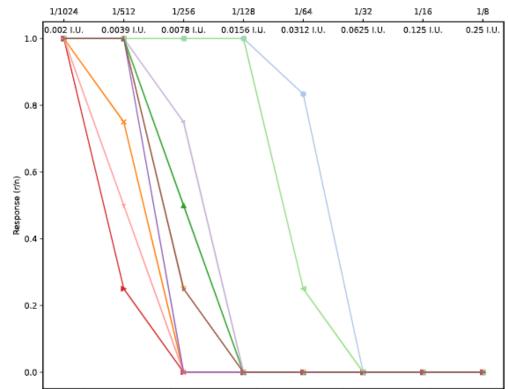

Example: SNT rabies mouse sera

Table	1 :
Preparation	Standard
ID	
Potency	Assigned
Potency value	2 I.U./Dosis
Dose	Rep.1
1/8	0/6
1/16	0/6
1/32	0/6
1/64	5/6
1/128	6/6
1/256	6/6
1/512	6/6
1/1024	6/6

Table	2
Preparation	Sample 1
ID	
Potency	Assumed
Potency value	? I.U./Dosis
Dose	Rep.1
1/8	0/4
1/16	0/4
1/32	0/4
1/64	0/4
1/128	0/4
1/256	0/4
1/512	3/4
1/1024	4/4

Table	3
Preparation	Sample 2
ID	
Potency	Assumed
Potency value	? I.U./Dosis
Dose	Rep.1
1/8	0/4
1/16	0/4
1/32	0/4
1/64	0/4
1/128	0/4
1/256	1/4
1/512	4/4
1/1024	4/4

Table	4
Preparation	Sample 3
ID	
Potency	Assumed
Potency value	? I.U./Dosis
Dose	Rep.1
1/8	0/4
1/16	0/4
1/32	0/4
1/64	0/4
1/128	0/4
1/256	2/4
1/512	4/4
1/1024	4/4

•	Standard
×	Sample 1
₩.	Sample 2
	Sample 3
- ◀	Sample 4
•	Sample 5
Y	Sample 6
	Sample 7
-<	Sample 8
-	Sample 9

Potency estimates

Note: Spearman-Kaerber method used

		Potency		Relative To	Estimate (%)
Preparation	Units	Estimate	(LCL, UCL)	Rel. To Est.	(LCL, UCL)
Sample 1	I.U./Dosis	16.9514	(11.8326, 24.2847)	100	(69.80, 143.26)
Sample 2	I.U./Dosis	11.9865	(8.36688, 17.1719)	100	(69.80, 143.26)
Sample 3	I.U./Dosis	10.0794	(6.77272, 15.0004)	100	(67.19, 148.82)
Sample 4	I.U./Dosis	2.99661	(2.09172, 4.29297)	100	(69.80, 143.26)
Sample 5	I.U./Dosis	23.9729	(16.7338, 34.3438)	100	(69.80, 143.26)
Sample 6	I.U./Dosis	20.1587	(13.5454, 30.0008)	100	(67.19, 148.82)
Sample 7	I.U./Dosis	14.2544	(11.5926, 17.5273)	100	(81.33, 122.96)
Sample 8	I.U./Dosis	8.47570	(5.91628, 12.1424)	100	(69.80, 143.26)
Sample 9	I.U./Dosis	11.9865	(8.36688, 17.1719)	100	(69.80, 143.26)

"If the transition occurs only in very few steps, the Spearman Kaerber method is applied automatically"

Dose (In scale)

-5

-2

-3

Requirements

- ★ Doses should be equidistant. If not, CombiStats uses the smallest distance between adjacent doses giving unequal responses
- **Doses should cover 0% and 100% rates.** If not, the previous or next dose, although not tested, is assumed to be 0% or 100%
- ★ Rates should be monotonic (e.g. increasing). See SOP for guidance, otherwise Requirements: met or not met?

Table	1 :
Preparation	Standard
ID	S
Potency	Assigned
Potency value	1000 IU/vial
Dose	Rep.1
1 IU	0/10
10 IU	0/10
100 IU	7/10
1000 IU	9/10

Table :	Table 2		
Preparation	Sample 1		
ID	Т		
Potency	Assumed		
Potency value	? IU/vial		
Dose	Rep.1		
1/1000	1/10		
1/100	0/10		
1/10	6/10		
1/1	10/10		

Table 3	
Preparation	Sample 2
ID	U
Potency	Assigned
Potency value	1000 IU/vial
Dose	Rep.1
1 IU	1/10
1 IU 10 IU	1/10 2/10
10 IU	2/10

Table 4	
Preparation	Sample 3
ID	V
Potency	Assumed
Potency value	? IU/vial
Dose	Rep.1
Dose 1/1000	Rep.1 0/10
	•
1/1000	0/10

Useful links

★ Helpdesk

https://helpdesk.edqm.eu/servicedesk/customer/user/login?destination=portals

★ Institutional website

https://www.edqm.eu/en/lp-combistats

★ FAQs, privacy, security notices

https://combistats.edqm.eu/help/

★ User guide (sign in first)

https://combistats.edqm.eu/user-manuals/combistats_user_guide.pdf/

Thank you for your attention

in <u>edqm</u>

@edqm_news

F EDQMCouncilofEurope

European Directorate | Direction européenn for the Quality | de la qualité of Medicines | du médicament & HealthCare | & soins de santé

