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Benefits of chemometrics for OMCLs 

 
1. Objectives 
The aim of this paper is to introduce the basic principles of chemometrics, providing a list of applications 
suitable for OMCLs and giving examples of projects where the use of chemometrics was considered 
successful, as well as suggestions for further reading. It also outlines some chemometric methods 
currently applied for pharmaceutical analysis and provides a fundamental description of the figures and 
plots which can facilitate the evaluation of the quality of the corresponding models. 
This paper may also help to raise OMCLs’ awareness of possibilities to improve some aspects of their 
work with chemometrics. For example: development, optimisation and validation (robustness testing) 
of analytical methods, distinguishing differences within sets of data, verification of authenticity of 
suspect samples, assessment of analytical dossiers, implementing a quality by design (QbD) approach 
for pharmaceutical development, overall approach to implement a chemometric model, evaluation of 
chemometric results, etc. 
 
2. Introduction 
Quality control of pharmaceutical products is a very important topic which can be rather complex in 
certain situations. There are many analytical techniques (qualitative and quantitative) which produce a 
lot of information. Moreover, the use of modern analytical techniques has increased the amount and 
the complexity of experimental data. The situation becomes even more complex when, along with 
compliance testing, a broader analytical window needs to be applied, for example to identify 
characteristic analytical features of substances – in particular active pharmaceutical ingredients (APIs), 
to classify similar products, to detect the source of a substance/product, etc. 
The analysis of a large set of analytical data for several samples is complex and is different from 
evaluating individual variables separately; the univariate approach cannot represent the true 
characteristics of a group of samples. The analysis of several variables for different samples makes it 
possible to understand the chemical characteristics associated with different groups. To do this, a 
multivariate analysis is conducted on a dataset composed of several different variables for all samples. 
This is the basic principle of the chemometric approach. 
The main purpose of multivariate methods would be information extraction, particularly for large data 
sets with multiple dependent variables. This means that there is limited use to apply multivariate 
methods when the number of samples is low and/or just one or few parameters are measured. On the 
other hand, for large sample sets and/or many different measured parameters, multivariate methods 
will simplify data evaluation and possibly detect “hidden” characteristics like similarity between samples 
and/or analysis data. 
Chemometric methods utilise algorithms that are able to analyse a whole set of data in order to extract 
the information of interest. Depending on the intended purpose, there are numerous chemometric 
methods available: exploratory methods (e.g. PCA), clustering methods (e.g. HCA), classification 
methods (e.g. k-NN, SIMCA, PLS-DA), regression methods (e.g. MLR, PLS), decomposition methods 
(e.g. MCR-ALS), etc. Chemometric methods are extensively described in the European 
Pharmacopoeia within the dedicated chapter 5.21. Chemometric Methods applied to analytical Data. 
Chemometrics should be seen as an analytical tool and the strategy selected for chemometric analysis 
should be based on the available data set. Different types of analytical data can be assessed using 
chemometrics (spectroscopic techniques (IR, NIR, Raman, XRF, NMR), separation techniques (HPLC, 
GC, CE), mass spectrometry, diffraction methods (XRD), etc.). Generally, any data that can be 
arranged in a table are suitable for chemometric analysis. Several dedicated commercially available 
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(e.g. Unscrumbler, SIMCA-P, R, MATLAB) and free-of-charge (e.g. R-Project, ChemFlow online, Excel 
Add-In) software packages are available1. These software packages should generate reproducible 
results. 
The EDQM has been supporting the introduction of chemometrics in OMCLs by organising dedicated 
training sessions, applying chemometrics within hands-on training for the detection of falsified 
medicines, incorporating chemometrics in API Fingerprinting projects and conducting surveys in order 
to meet the needs of OMCLs on this matter. The majority of the participants from different OMCLs who 
completed such training acknowledged the possibilities to share knowledge and experience among the 
Network. Therefore, it was recognised that some additional information on the practical use of 
chemometrics in OMCLs is needed. 
Considering the complexity of the subject, as well as the opportunity to obtain added value from the 
regular analyses performed by the OMCLs, a dedicated group was established in order to promote the 
use of chemometrics and to disseminate the knowledge established so far to facilitate its use.  
 
3. Main areas of possible use of chemometrics within OMCLs 
There are many possibilities to use chemometrics in OMCLs. Some of the applications which are 
already performed within the GEON, and which have been proven to be beneficial for the analysis and 
interpretation of analytical data, are described below. A more detailed discussion of each topic, as well 
as suggestions for further reading, are included in the Annexes. 

 
3.1. Development, optimisation and validation (robustness verification) of analytical 

methods 
This may be useful whenever an OMCL is developing in house methods or when they are involved in 
the evaluation of monograph methods. The chemometric methods applied for this purpose are called 
Design of Experiments (DoE). DoE allows the factors significantly influencing the performance of the 
analytical method to be selected, developed and optimised. In the same way, the influence on 
performance of small changes in these factors can be explored during validation, providing an objective 
approach for robustness testing.  

 
3.2. Detection of illegal and falsified medical products 

Several OMCLs have applied different pattern recognition methods to data generated using various 
techniques; this allows distinction among samples, verification of the authenticity of suspect samples 
and successful detection of falsified medicines.  
Some pattern recognition techniques have also been used to successfully detect inter- and intra-batch 
composition variability of medicinal products.  
 

3.3. Identification of chemical substances in medical products 
Chemical imaging is a state-of-the-art technique that perform numerous measurements at the surface 
of a sample. The use of multivariate analysis on resulting spectra give access to the identification of 
chemical substances in a solid dosage form.   
It was then possible to identify excipients of authorized drug products or to detect active ingredients in 
illegal tablets with an unknown composition.  

                                                            
(1) <https://www.camo.com/unscrambler/>; https://umetrics.com/>; https://www.mathworks.com/products/matlab.html>;  
<https://www.r-project.org/>; <https://galaxyproject.org/use/chemflow/>, respectively. 

https://umetrics.com/
https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
https://galaxyproject.org/use/chemflow/
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3.4. API Fingerprinting 

API Fingerprinting MSS projects (MSS FP) represent a Network-wide strategy to detect illegal API 
sources. The aim of such projects is to develop a methodology that enables identification of 
characteristic chemical features of the API, thus collecting analytical data and providing a list of 
discriminating analytical techniques which could help to reveal possible falsification of these 
substances. With each MSS FP, lessons were learned that improved the design of subsequent projects, 
which now include well-organised sampling and testing processes which facilitate the chemometric 
analyses to follow. Reports from finalised MSS FP projects are available on the Extranet. 
 

3.5. Herbal fingerprinting and analysis of plant-based food supplements 
Herbal fingerprinting, especially based on chromatography, is becoming increasingly accepted for the 
identification and quality control of herbal components. These fingerprints are analytical profiles 
representing the complete composition of the samples. Chemometrics is used to extract information 
from these profiles about origin, quality or even active components, as well as to compare profiles of 
different herbal samples.  
For the identification/detection of toxic or regulated plants in (suspicious) plant-based food 
supplements, chromatographic profiles can be used in conjunction with chemometrics. 

 

3.6. Non-analytical data 
Multivariate data analysis algorithms can be applied as part of a sampling plan for market surveillance 
study in order to limit the number of sample to be tested within a group of products. The recognition of 
common identifiers (e.g. formulation, form, strength, manufacturing site, etc.) allows to detect and 
discard similar samples. This could be of great importance for large market surveillance studies. 
 
4. Chemometric methods 
Generally, chemometrics is defined as “a chemical discipline that uses mathematics, statistics and 
formal logic to (a) design or select optimal experimental procedures; (b) to provide maximum relevant 
chemical information by analysing chemical data; and (c) to obtain knowledge about chemical systems.” 
This definition is composed of three parts. The first (a) can, for example, be used to develop a new 
chromatographic method or to optimise a chromatographic separation with a minimal number of 
experiments. Indeed, chemometrics can be applied to select optimal parameters such as the pH range, 
buffer concentration, percentage of organic modifier or the column. This is generally known as 
experimental design (Design of Experiments, DoE).  
The second and third parts, (b) and (c), are concerned with the extraction of information from chemical 
data. A simple example would be the decision on whether a sample is illegal or genuine, based on its 
infrared spectrum. The extraction of the information needed to come to this decision is the subject of 
part (b) of the definition. In part (c) the question would be asked: why is this sample illegal? Here the 
parts of the infrared spectrum relevant to the final decision and what they correspond to can be 
explored, e.g. a specific infrared region can correspond to the presence of a certain excipient, impurity 
or adulterant. 
Chemometric methods use algorithms based on vector and matrix calculations. That is why manifest 
variables (e.g. spectra or chromatograms) are first transposed from graphical representations to a data 
table or matrix. Thus a data matrix contains samples arranged in rows and variables (e.g. the different 
wavelengths in a spectrum) sorted in columns.  
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4.1. General definitions 

Some terminology used in the following discussion is defined below: 
- Manifest variables represent what is measured or the observed data, on the basis of which a decision 
should be made. Examples include the absorbance values at different wavelengths across an infrared 
spectrum, the intensities at the different mass-to-charge ratios in a mass spectrum and the 
concentrations of impurities, as well as chemical or physical properties. 
- A Response variable is what you want to know. It can be categorical or continuous. Examples of 
categorical variables are illegal vs genuine medicines and different API manufacturers. Examples of 
continuous variables are the dosage of API and the concentration of a certain impurity in samples. 
- Latent variables are newly defined variables calculated from the manifest variables in the context of 
variable reduction. 
- Data space is a multidimensional environment where all objects are plotted against their manifest 
variables. 
- Unsupervised techniques are chemometric methods that use only manifest variables for data 
extraction. Information about manifest variables is not known. These techniques are often, but not 
exclusively, used for data exploration. A possible outcome here could be the presence of two distinct 
groups or clusters in an, at first sight, homogeneous group of samples. 
- Supervised techniques are chemometric methods that relate manifest variables to a response 
variable. When the response variable is categorical, they are called classification or discrimination 
techniques. When the response is continuous, they are regression techniques. 
 

4.2. Questions to be asked before starting 
As for all method developments in analytical chemistry, some questions have to be answered before 
starting the analysis. The first question is about the goal of the chemometric analysis, followed by the 
work or measurements that will be performed and what information is needed.  
In short: 

(1) What do we want to know and what do we want to do? 
• Develop and/or optimise a method? Plan experimental work in a rational way?  

• Search for undefined differences? i.e. searching for differences within a group of samples, not 
knowing if there are any. 

• Search for defined differences? i.e. searching for differences between groups of samples, e.g. APIs 
from different companies. 

• Is the purpose to quantify something? e.g. the concentration of a certain impurity. 

• Based on the chemometric analysis, are there new samples to be classified or quantified? 
(2) Which manifest variables will be used or which measurements will be performed? 

Manifest variables may be provided by spectroscopy, chromatography or other analytical techniques, 
and may be studied as such using analytical profiles or as data resulting from calculations. 

(3) Is information on the manifest variables necessary?  
Is information needed on which manifest variables are the most or least important in order to come to 
a decision (e.g. differentiation into groups, classification of a sample or quantification of an impurity). 
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Based on the answers to these questions, different approaches and chemometric methods will be used. 
This means the workflow of the analysis will be highly influenced by the purpose of the analysis, the 
type of manifest variables and the information needed from the analysis. The choice of chemometric 
techniques used is also strongly influenced by the knowledge and preferences of the analyst.  
In the following section the general workflow used in the context of chemometrics is introduced. An 
analysis performed according to this workflow is applicable to the majority of the problems to be dealt 
with in an OMCL.  
 

4.3. Workflow 
Given the large number of methods available and the rapid scientific evolution in this field, only basic, 
frequently used chemometric methods are included in this document. They are gathered in a summary 
figure along with the preliminary questions to be asked before starting (Figure 1). A detailed explanation 
of the methodology and the methods is available in the respective annexes (Annex 1: Data 
pretreatment; Annex 2: Experimental design; Annex 3: Unsupervised methods; Annex 4: Supervised 
methods; Annex 5: Validation of models; Annex 6: Interpretation of the outcomes of chemometrics). 

 

 
Figure 1: Workflow for chemometric analysis 

  

QUESTIONS MANIFEST
VARIABLES

RESPONSE 
VARIABLES

Is the purpose 
to…

Exploration:
- Principal Component Analysis (PCA)
- Hierarchical Clustering Analysis (HCA)
- Multivariate Curve Resolution Alternative 
Least Square (MCR-ALS)

For outcomes evaluation see Annex 6

Classification:
- k Nearest Neighbors (kNN)
- Partial Least Square Discriminant 
Analysis (PLS-DA)
- Soft Independent Modelling Class 
Analogy (SIMCA)

For outcomes evaluation see Annex 6

For outcomes evaluation see Annex 6

Categorical: 
Class, group
ex: Illegal vs genuine,
API manufacturer…

Validation
Cross/external
See Annex 5

Supervised
Predictive

See Annex 4 Regression:
- Multiple Linear Regression (MLR)
- Partial Least Square (PLS)

Continuous:
ex: API concentration,
% impurity, water 
content…

… search for 
undefined 

differences 
within a group of 

samples?

… search for 
defined 

differences 
between groups 

of samples?

… quantify 
something?

… develop,  
optimize method 

or plan 
experiments?

 /

Analytical profiles:
Spectra (IR, NIR, 

Raman, XRF, MS...), 
chromatograms,
diffractograms…

Individual data:
% impurity, 

residual solvents, 
heavy metals, 
sample weight, 
melting point…

See Annex 1:
Data pretreatment

Unsupervised
Descriptive
See Annex 3

 /

CHEMOMETRIC METHODS

Screening 
for significant 
experimental 

factors

Optimization
of analytical 

method 

Design of Experiments (DoE)
See Annex 2

For outcomes evaluation see Annex 6
 /
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5. Publishing of results obtained using chemometrics 
Data dissemination is an important way to improve, increase and share scientific knowledge. The 
publication of survey results could also be an important step forward. 
OMCLs are encouraged to discuss with their peer OMCLs the possibility of publishing all significant 
findings obtained using chemometrics, including those from combining or pooling data from multiple 
OMCL activities (via Annual Reports, Scientific Journals (including peer–reviewed journals) and 
Scientific Meetings, Internet sites). The diffusion of results could be important for inspections and the 
evaluation of dossiers. 
Data can be published as prescribed in the document “Publicising the work of OMCLs and the GEON, 
Position Paper of the AdG GEON”. 
 
6. Conclusions 
• Chemometrics is a powerful analytical tool that can be used for the development and optimisation 

of analytical methods, fingerprinting, characterisation, contaminant profiling, falsified drug detection, 
development of prediction models, tracing the origin of suspect samples, etc. 

• Chemometrics can be applied within different aspects of regular OMCL work, such as validation of 
analytical methods, investigation of reports of falsified products, use of Ph. Eur. general chapters, 
QbD approach within CTD. 

• The GEON supports and promotes the use of chemometrics for API fingerprinting studies, 
authenticity testing, falsification detection and better sampling planning. 

• OMCLs are encouraged to publish data where appropriate and suitable, and discuss with other 
OMCLs the possibility of publishing combined data. 

• OMCLs are encouraged to share their ‘success stories’ with the Network and possibly beyond by 
sending abstracts of the work done and references for further reading to the Communication Group 
at the EDQM. 
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ANNEX 1: Data pretreatment 
Before starting a chemometric analysis the data often has to be pretreated or transformed. 
Pretreatment of data has two purposes. The first is to make different manifest variables comparable, 
so that it is easier to interpret and compare the importance of the different manifest variables in solving 
the presented problem. The second is the elimination of noise in the data. This often occurs when using 
experimental data like spectra. Spectra are influenced by external parameters, such as temperature 
and fluctuations in the source. The inclusion of the noise data in the analysis can result in bad, 
unmeaningful or even faulty results and conclusions. 
Different pretreatment techniques can be applied depending on the purpose and the type of data. 
To make manifest variables comparable scaling techniques are used. Usually, scaling between 0 
and 1 and mean centring are applied.  

(1) To scale between 0 and 1, each column of the data table – or manifest variable – is scaled 
separately. From each value in column (x) the minimum value of the column is subtracted after which 
each value in the new column (x1) is divided by the maximum value of this new column (x1).  
(2) In mean centring, each column of the data table – or manifest variable – is also scaled 
separately. Here the mean value of the column/manifest variable to be treated is subtracted from 
each individual value. 

These techniques are often applied in projection methods such as principal component analysis (PCA) 
or partial least squares (PLS) regression in order to be able to compare the contribution of each variable 
to the obtained result. They are also applied in classical linear regression. In this case, after scaling the 
regression coefficients become a measure for the importance of a manifest variable in the regression. 
Without scaling or pretreatment the regression coefficients would be influenced by the difference in the 
range of values of the different manifest variables. 
To eliminate noise in the data, especially when using spectral data, the most commonly used 
techniques are: standard normal variate (SNV) and the second derivative. 

(1) SNV is applied to each spectrum separately and for each of the spectra the average and 
standard deviation of all the data points are calculated. The average value is subtracted from the 
absorbance for every data point and the result is divided by the standard deviation. In this way a 
part of the noise or scatter is removed from the spectra. 
(2) The second derivative is also applied to each spectrum separately. This not only allows 
compensation for some noise but will also enlarge the visibility of differences between the spectra 
in the data set. This pre-treatment also has the advantage of correcting potential baseline drift. 

A whole series of other more specific pretreatment techniques exist; these include warping when using 
chromatograms to compensate for time shifts between chromatograms due to column aging, 
temperature fluctuations or differences in mobile phase composition.  
Data fusion techniques are applied when different data blocks have to be combined (e.g. 
chromatographic and spectroscopic data). Data fusion is particularly useful for fingerprinting of 
pharmaceutical samples. For example, this methodology improves the discrimination between APIs 
originating from different manufacturers. 
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ANNEX 2: Experimental design 
One of the important applications of chemometrics is Design of Experiments (DoE) which is used for 
systematic and planned investigations and for solving the experimental problems that arise during the 
optimisation of analytical methods. The use of DoE enables the maximum utilisation of data from 
systematic and planned experiments. The mathematical criteria incorporated in the factorial design 
enable screening for significant experimental factors, and response surface methodology (RSM) is 
applied to optimise the experimental values of previously identified significant experimental factors. 
 

• DoE for screening and optimisation 
DoE involves the use of mathematical, statistical and graphical methods to design experiments, aiming 
for maximal usage of the information from experimental data. A major role of experimental design is 
screening. Most analytical processes are influenced by a wide variety of factors. Which factors are most 
significant is not always obvious. Initially, it is important to understand which factors are significant and 
then narrow down the final optimisation to three or four significant factors.  
It is reasonable to assume that the outcome of an experiment is dependent on the experimental 
conditions. This means that the result can be described as a function based on the experimental 
variables (Equation 1):  

)(xfy =        (Eq. 1)  

The function f(x) is approximated by a polynomial function (Equation 2) and represents the relationship 
between the experimental variables (marked as x) and the responses (marked as y) within a limited 
experimental domain.  

NNNN xbxbxbxbxbby ++++++= −− 113322110 ....    (Eq. 2) 

The terms marked as b (b1, b2, b3, bN-1, bN) are coefficients that represent the estimated effect of the 
factors considered and b0 is the average experimental response. The simplest polynomial model 
contains only linear terms and describes only the linear relationship between the experimental variables 
and the responses.  
The next level of polynomial models contains additional terms (marked as b12, b13, b23) that describe 
the interaction between different experimental variables. Thus, a second order interaction model is 
explained with the following polynomial (Equation 3): 

NNNN

NNNN

xxbxxbxxbxxb
xbxbxbxbxbby

1)1(322331132112

113322110

...
....

−−

−−

+++++
+++++++=

   (Eq. 3) 

The two models above are mainly used to investigate the experimental system, i.e., screening. For this 
purpose full factorial, fractional factorial and star design are often used (Figure 2). The number of 
experiments depends on the type of full factorial design selected, represented by the equation: 

 nN k += 2  

where k is the number of parameters studied and n is the number of central points included (n=3). It is 
obvious that the limit for the number of experiments it is possible to perform will easily be exceeded 
when the number of variables increases. In most investigations it is reasonable to assume that the 
influence of the interactions of the third order or higher are very small or negligible and can then be 
excluded from the polynomial model. Thus, experiments can be reduced by grouping the interaction 
terms into fractions. The number of experiments for fractional factorial design is defined with equation: 

 pkN −= 2   

where k is the number of variables and p the size of the fraction.  
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A star design is easy to carry out: all factors, except one, are set at level 0 (in coded units) and the 
levels of the studied factor are set at −1 and +1 (in coded units). It is easy to add a new factor, which 
is important at the end of the robustness study when the operator may want to verify whether a new 
factor is robust or not. Another advantage of star design is the introduction of a central point, an integral 
part of this type of design. 
 
In most cases, it is not necessary to investigate the interactions between all of the included variables 
from the beginning. In the first screening it is recommended to evaluate the result and estimate the 
main effects according to a linear model. After this evaluation the variables that have the largest 
influence on the result are selected for new studies. Thus, a large number of experimental variables 
can be investigated without having to increase the number of experiments to the extreme. 

 
Figure 2a: Full factorial design of the experimental domain for two (left) and three variables (right). The levels of 

the factors are given by minus 1 for low level and plus 1 for the high level. A zero-level is also included, a 
centre, in which the mid-value of all variables is set.  

 
Figure 2b: Distribution of experiments for a 2 3-1 fractional factorial design.  

 
Figure 2c: Two-factor star design. The first factor has three levels (1, 0 and −1 in coded units). The second 

factor has only two new levels (−1 and +1) because the third level (0) is the same as factor 1. The other factors 
are similar to factor 2 and can be as numerous as the operator wishes. 
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Response surface designs 

To be able to determine optimum (maximum or minimum) values for the variables, quadratic terms 
have to be introduced in the model. By introducing these terms, it is possible to determine non-linear 
relationships between the experimental variables and responses. The polynomial function below 
(Equation 4) describes a quadratic model: 

22
333

2
222

2
1111)1(

322321123322110

......
.......

NNNNNNN

NN

xbxbxbxbxxb
xxbxxbxbxbxbxbby

++++++

++++++++=

−−

  (Eq. 4) 

Response surface designs are useful for modelling a curved quadratic surface to continuous factors. A 
response surface model can pinpoint a minimum or maximum response, if one exists, inside the factor 
region. Three distinct values for each factor are necessary to fit a quadratic function, so the standard 
two-level designs cannot fit curved surfaces. Among the response surface DoE designs often 
mentioned are the Doehlert design, Box-Behnken design and the central composite design (Figure 3). 

 
Figure 3a: Doehlert design with two variables (left) and Box-Behnken design (right) 

 
Figure 3b: Two- (left) and three-factor (right) Central Composite design 

  
The central composite design combines a two-level fractional factorial and a star design. So, as well 
as the 2k cube points that come from a full factorial design, there are also:  
• Centre points, for which all the factor values are at the zero (or midrange) value and 
• Axial (or star) points created by a Screening Analysis, for which all but one factor are set at zero 
(midrange) and that one factor is set at outer (axial) values.  
The number of experiments (N) for central composite design is expressed by equation:  
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where k is the number of parameters studied and n is the number of central points included (n=3). Here, 
the three repetitions at the central points are required to determine the experimental error variance and 
test the predictive validity of the model.  
 

• Response Surface Methodology 
So far, the experiments described have focused on: (a) identifying a few important variables from a 
large set of candidate variables, i.e., a screening experiment and (b) ascertaining how a small number 
of variables impact the response. In order to answer the question: “What specific levels of the important 
variables produce an optimum response?”, the goal is to find the optimum for a response (y) and to 
understand how the response changes in a given direction by adjusting the design variables. 
Response surface methodology (RSM) is applied for optimisation of the experimental values of 
previously identified significant experimental factors. The graphical presentation of RSM results makes 
it easy to see how to reach the desired optimal range of the response (y) by controlling the experimental 
factors (x), knowing the intensity and direction of their effect on the response, as well the interaction 
among the factors. For interpretation of the RSM graphical representation refer to Annex 6.  
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ANNEX 3: Unsupervised methods 
 

- Principal Component Analysis (PCA) 
PCA is an unsupervised projection technique based on variable reduction through the definition of latent 
variables. In short, in PCA new variables (latent variables) are defined as linear combinations of the 
manifest variables according to the formula: 

PC1 = a + b1x1 + b2x2 + … + bixi + … + bnxn 

 

in which PC1 is the first principal component, a is the residue, bi the regression coefficient for the ith 
manifest variable, xi the ith manifest variable and n the total number of manifest variables. 
This new variable PC1 is defined in the direction of the highest variation in the data, e.g. in a data matrix 
composed of three manifest variables, PC1 will draw a new axis in the direction of the highest variation 
in the data, as shown in Figure 4a. 
The samples can then be projected onto the new axis (Figure 4b), leading to a representation of the 
data in one dimension. The projected value of a sample on PC1 is called the score of the sample on 
PC1. The importance of the manifest variables in defining PC1 are called the loadings on PC1.  
 

 
(a) 

 
(b) 

Figure 4: (a) definition of PC1; (b) projection of samples on PC1 

 
The use of PCA in a situation with only three manifest variables does not make sense. The power of 
PCA is the ability to represent multidimensional data (a high number of manifest variables) in two or 
three dimensions. As stated above PC1 is defined in the direction of the highest variation in the data. 
The second PC is defined in the direction of the highest remaining variation around PC1 and therefore 
is orthogonal to PC1 by definition. The third PC is further defined in the direction of the highest 
remaining variations around the plane PC1/PC2 and therefore as orthogonal to this plane. In theory as 
many PCs can be defined as there are samples in the data set, Although often the first three principal 
components are used to represent multidimensional data in a two or three dimensional plot, where 
PC1, PC2 and PC3 form the new axes. When the scores of the different samples are plotted, the result 
is called a score plot, while a loading plot shows the importance/loadings of the different manifest 
variables. 



 PA/PH/OMCL (19) 60 DEF – Benefits of Chemometrics for OMCLs  

14 
 

PCA is especially valuable for detecting trends in the data and for distinguishing different sample 
groups, e.g. APIs from different sources. Not only will PCA allow the detection of differences between 
groups of samples, but it can also define these differences based on the loading plots. 
 

- Hierarchical Cluster Analysis (HCA) 
HCA is the other unsupervised technique often used in OMCLs. HCA is a method used to evaluate the 
distance between samples and to group them in a tree-shaped chart called a dendrogram (Figure 5). 
In the data space, samples are considered as points and the distance between points will define the 
degree of (dis)similarity between samples. Therefore, HCA calculates a similarity measure between 
each pair of samples. Classical examples are the Euclidean distance and the correlation coefficient. In 
the former, HCA projects all samples in the multidimensional dataspace and calculates the Euclidean 
distance between each pair of samples, building the dendrogram according to these distances. When 
using the correlation coefficient, the correlation is calculated between the values of all manifest 
variables for each pair of samples. The dendrogram is created based on the obtained correlation 
values. 
 

 
Figure 5: simplified example of a HCA dendrogram 

 
In the dendrogram, samples are grouped according to their similarity, i.e. according to the Euclidean 
distance (the shorter the more similar) or the correlation (the higher the more similar). The length of the 
branches is a measure of the similarity between groups. For example, in Figure 5 samples 5, 6 and 8 
are very similar since they are connected by the shortest branches. Samples 1, 4, 3 and 9 are also 
similar but this group is characterised by a higher heterogeneity than the group containing 5, 6 and 8. 
Sample 7 shows some similarity with group 1, 4, 3 and 9 and less with group 5, 6 and 8, while sample 
2 is significantly different from all other samples. 
HCA can be performed in a divisive or in an agglomerative way. With the divisive method the algorithm 
starts with all samples and splits them according to their similarity. With the agglomerative method 
individual samples are connected according to the similarity measure used. A wide variety of HCA 
algorithms exist, each using different ways to split/connect the samples and different similarity 
measures, but the general principle is always the same. 

 

- Multivariate Curve Resolution Alternating Least Squares (MCR-ALS).  
Hyperspectral images usually consist of hundreds of spectra gathered in a data cube, i.e. a three-
dimensional matrix with two spatial dimensions (x, y) and one spectral dimension (λ). The data can be 
examined in a univariate way, as for conventional spectroscopy or, alternatively, chemometric methods 
may be used. MCR-ALS is a very popular method for the resolution of a spectral mixture without a priori 
knowledge of the chemical system. The assumption of a decomposition method is that the sample 
spectrum may be considered as the weighted sum of the spectra of pure chemical species. In a 
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chemical image, each pixel of the image contains the same pure spectra but their contribution is 
different from one pixel to the next. The method decomposes the spectral dataset X into the product of 
the matrix of pure spectra of species ST and the matrix of their relative contribution C in the 
hyperspectral image according to the following formula (E is the residual error): 

X = C.ST + E 
Studying the pure spectra delivered by the MCR-ALS outcome, it is possible to identify chemical 
compounds in a sample of unknown composition (use of spectral libraries), and to access the 
distribution map of substances in the sample (Figure 6). 
 

 
Figure 6: Basic principle of a decomposition method 
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ANNEX 4: Supervised methods 
 

• Classification/discrimination techniques 
 

- k-Nearest Neighbours (k-NN) 
k-NN is probably the simplest chemometric classification technique. The algorithm is based on the class 
memberships of neighbouring objects. In short the samples of a sample set are projected into the 
multidimensional data space defined by their manifest variables. A new sample or a sample from an 
external test set is also projected and then the k-nearest neighbours are taken into account. Imagine a 
two class problem where k equals 3 (i.e. 3 neighbouring samples). From the three (k) closest samples, 
based on Euclidean distance or correlation similar to HCA, two belong to class 1 and one to class 2. In 
this case the new sample will be classified as belonging to class 1. In this algorithm k is the only value 
to be optimised. The choice of k can be done using cross-validation (see Annex 5). The method, being 
based on distance criteria and not on latent variables, does not give a graphical outcome.  
k-NN is generally more efficient for binary classification problems, and k is often between 3 and 9. 
When k is uneven in a binary problem, samples will be classified. Where k is even, samples can also 
be unclassified. When a multiple-class problem is dealt with, unclassified samples can also occur with 
an uneven value of k. 
 

- Soft Independent Modelling of Class Analogy (SIMCA) 
SIMCA is a disjoint classification algorithm. In SIMCA each class of samples is modelled separately 
using PCA. A PCA analysis is performed on each class, represented by the samples in the training set 
belonging to this class. Based on this analysis, boundaries around the class are defined based on two 
spatial distances (Euclidean and Mahalanobis distances). The selection of the number of PCs to be 
taken into account to define the boundaries for each class is based on a cross-validation procedure 
(see Annex 5). 
In the case of a classification problem with three classes, SIMCA will perform three PCA analyses (one 
for each class), and calculate limited spaces around the samples belonging to each class. When a new 
sample has to be classified, it is projected on the PC spaces of each class (Figure 7).  
 

 
Figure 7: Graphical representation of a SIMCA analysis 

http://www.google.be/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwirgprQ75fMAhUEWRQKHSQICy0QjRwIBw&url=http://pubs.rsc.org/en/content/articlehtml/2007/ja/b704868h&bvm=bv.119745492,d.bGs&psig=AFQjCNFmRauo3d3Fr1QrNx3iu-euDiDKhA&ust=1461058038848742
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When the sample falls within the limits around a certain class, the sample will be classified in this class. 
Since SIMCA is a disjoint modelling technique (each class is modelled separately), a new sample can 
be classified in more than one class or in none. This is also called a weak classifier. 
SIMCA is one of the most popular classification techniques and often used when using spectroscopic 
data such as NIR or Raman spectroscopy. In this case SIMCA would allow identification of a sample 
based on the spectrum measured. This can be used in the identification of falsified samples, but also 
in the characterisation of e.g. party drugs. 
 

- Partial Least Squares-Discriminant Analysis (PLS-DA)  
PLS is by far the most commonly applied chemometric technique in a variety of domains. PLS is based 
on the same principles as PCA, i.e. on the definition of latent variables which are linear combinations 
of the manifest variables. The difference lies in the way these latent variables are defined. In PCA the 
latent variables are only based on the variation in the data since a response variable is not available. 
In PLS the latent variables are defined based on the co-variance of the data (the manifest variables) 
and the response variable(s), i.e. the model is built by trying to find a compromise between the best 
description of manifest variables and the best prediction of the response variable. Thus the first latent 
variable, called PLS factor 1 (PLS1), is defined in the direction of the highest co-variance with the 
response, the second in the direction of the highest remaining co-variance around PLS1, etc. 
As in PCA, the latent variables are defined according to the following formula:  

PLS1= a + b1x1 + b2x2 + … + bixi + … + bnxn 

 

in which PLS1 is the first PLS factor, a is the residue, bi the regression coefficient for the ith manifest 
variable, xi the ith manifest variable and n the total number of manifest variables. 
The PLS factors define new axes on which the samples are projected. As in PCA, the projection of the 
samples in the space defined by the PLS factors are called the scores, while the importance of each 
manifest variable in the definition of the respective PLS factors is called the loading. Visualisation of 
the dataspace becomes possible in two or three dimensions using a score and/or loading plot. 
Once the latent variables are defined, they can be used to build models. When the response is 
categorical, PLS is combined with discriminant analysis (DA) to build a classification model. In short, 
all the samples of the training set are projected in the new space defined by the PLS factors. DA will 
now define some boundaries differentiating the different classes of the training set. A new sample will 
be projected into the PLS space and depending on its location relative to the boundaries, the sample 
will be assigned to a class. 
PLS-DA can be used to solve the same problems as SIMCA. The advantage of PLS-DA is that it is a 
real classifier, assigning all samples to one exclusive class. Other advantages are that PLS-DA allows 
a visual interpretation of the data, taking into account the response variable, and that the model can be 
interpreted by evaluating the loadings. The latter allows identification of the most important variables, 
differentiation between the classes and assignation of new samples to a specific class. 
 

• Regression methods 
Regression techniques are used when the response variable is continuous. Although in their simplest 
form they are used daily in OMCL work to calculate calibration lines, regression methods are not widely 
used in the context of OMCL work. 
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The most basic regression technique is Multiple Linear Regression (MLR), which is calculated 
according to the formula: 

Y= a + b1x1 + b2x2 + … + bixi + … + bnxn 

 
in which Y is the response variable (e.g. concentration), a is the residue, bi the regression coefficient 
for the ith manifest variable, xi the ith manifest variable and n the total number of manifest variables. 
When the different manifest variables are scaled before analysis, the regression coefficient is an 
indication of the importance of the different manifest variables to model Y. 
MLR is most often performed when data with a limited number of manifest variables is used. In case of 
a high number of manifest variables, e.g. when using spectroscopic data, MLR will generally result in 
bad modelling due to the fact that it is highly influenced by the presence of correlated manifest variables 
and noise in the data. To resolve this, two approaches can be followed: the first is variable selection 
and the second variable reduction. 
In variable selection, algorithms are used to select only those manifest variables that contribute 
significantly to the modelling of the response variables. Different algorithms are available: forward 
selection in which the manifest variables are added to the model in a stepwise way, based on their 
contribution to the model, until no further improvement of the model can be obtained; backward 
selection in which all variables are included in the model and then in a stepwise way the variables 
contributing the least to the model are withdrawn. This continues until no further improvement of the 
model can be obtained; the third is stepwise selection in which forward and backward selection are 
used iteratively. These are the most basic algorithms, but a whole series of variable selection 
techniques exist, ranging from very simple to complex, e.g. genetic algorithms. 
Variable reduction is based on the previously described techniques PCA and PLS and similar 
techniques. In short a PCA or PLS analysis is performed and the latent variables are calculated. The 
scores of the samples on the PCs or the PLS factors are then used in MLR instead of the manifest 
variables themselves. The selection of the number of PCs or PLS factors to be included is based on a 
cross-validation procedure (see Annex 5). When PCs are used this combination of PCA and MLR is 
called Principal Component Regression (PCR), when PLS factors are used it is simply called PLS.  
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ANNEX 5: Validation of models 
 
When applied to chemometrics, “validation” does not refer to the regulatory validation supported by 
ICH-Q2, but it is instead considered as a procedure implemented in order to build, optimise and 
assess the prediction ability of a model. 
The procedure for the elaboration of a chemometric model involves the use of many samples which 
response variable is perfectly known (e.g. identity, water content, API content…). A calibration set is 
dedicated to the building/optimisation of the model whilst a validation set is devoted to the evaluation 
of the model performance. When the number of sample is low a validation set may not be available, 
and then the calibration sample set must be split in 2 sub-sets (training set and test set).  
A reliable chemometric model is usually elaborated in 3 steps: 

- Building of the initial model with the training/calibration set, 
- Optimisation of the model with the training/calibration set using cross-validation (also known as 

internal validation), 
- Performance assessment of the final model with the test/validation set (also known as external 

validation). 
 

- Test/validation set selection 
To be able to correctly validate a model a representative set of samples not used during modelling, i.e. 
an external test set, has to be selected. In some cases, an external set of samples is available, but 
often the test set has to be selected from the calibration sample set. This selection can be randomly 
performed by the analyst (50-80% for the training set and 20-50% for the test set), although to avoid 
bias and to ensure that the test set is representative of the entire sample set, algorithms could be 
applied. A whole series of this kind of algorithms exist, ranging from very simple to very complex. Two 
regularly used algorithms which are efficient for resolving most of the problems facing an OMCL are 
Kennard-Stone and Duplex. 

(1) Kennard-Stone projects the samples into the multidimensional data space defined by all 
manifest variables in the data set. The algorithm starts with the selection of the sample closest to 
the mean point in the data space for the test set, and continues with the sample farthest from the 
first sample, then the sample farthest from the first two samples…, until the predefined number of 
samples for the external test set is reached. In general, a test set is composed of 20 to 50% of the 
total sample set, depending on the sample set size. Alternatively Kennard-Stone can also be applied 
starting with the sample farthest from the mean point of the data space. 
(2) Duplex also projects the samples into the data space and makes a pairwise selection of 
samples, starting with the selection of the two samples farthest away from each other for a first set. 
The second pair farthest away from each other is selected for a second set, while the third pair is 
again selected for the first set. This goes on until the predefined number of samples is reached in 
the second set, which will be the test set. The first set together with the remaining samples will be 
used for modelling. 

 
- Cross-validation 

A whole series of cross-validation algorithms exist, ranging from very simple to very complex, but they 
are all based on a resampling principle and only take the training set into account.  
The simplest algorithm is leave-one-out cross-validation (LOOCV). Here one sample is taken out of the 
calibration set and a model is built with the remaining samples. The obtained model is then used to 
predict the selected sample. This procedure is repeated, each time with another sample. At the end a 
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prediction error is obtained for each sample of the calibration set. The prediction error for the whole 
calibration set is then calculated as correct classification rate (ccr, % samples correctly classified) for 
classification models or as the root mean squared error of cross-validation (RMSECV) for regression 
models. When cross-validation is used for selection of the optimal model, the model with the lowest 
RMSECV or the highest ccr is chosen. LOOCV has the disadvantage that it can lead to an over-fitted 
model, meaning that the model very closely describes the calibration set and is no longer able to 
predict/classify new samples correctly. This is often the case when LOOCV is used for the selection of 
the optimal model.  
A more suitable alternative is n-fold cross-validation in which the calibration set is randomly divided into 
n parts. In each step one part is left out and the n-1 remaining parts are used for modelling. The obtained 
model is used to predict the sample in the part that was left out. This procedure is repeated n times, 
each time with another of the n-parts left out. At the end a prediction error is obtained for each sample 
of the calibration set and the ccr or RMSECV can be calculated. The most commonly used n-fold cross-
validation is 10-fold cross-validation, where the training set is divided into 10 parts. 
An example of a more complex, very efficient cross-validation algorithm is Monte Carlo cross-validation. 
Here you have a random selection of the cross-validation test sets, test sets can vary in size and 
samples can be selected more than once or not at all. 
  

- External validation  
External validation is the validation of the model using an external test set. This is the only correct way 
to validate a model, since in cross-validation the error is based on several slightly different models. 
Once the model is obtained, it is used to classify or predict the samples of the external test set. For 
classification models the error is given as ccr for the test set and for regression models as the root 
mean squared error of prediction (RMSEP). It is up to the operator to decide the minimum ccr or 
maximum RMSEP acceptable for the intended use of the model. 
  



 PA/PH/OMCL (19) 60 DEF – Benefits of Chemometrics for OMCLs  

21 
 

ANNEX 6: Interpretation of the outcomes of chemometrics 
 

A valuable feature of chemometric analysis is the production of graphical representations and numerical 
outcomes that allow evaluation and interpretation of analytical data. Depending on the chemometric 
methods implemented, several kinds of outcome are possible. Some of these are described in the 
following sections.  
 

- Response Surface Methodology (RSM)  
The response surface applied for optimisation of the experimental values of previously identified 
significant experimental factors can be visualised graphically as presented in Figure 8.  
 

 
Figure 8: Response surface plot (left) and contour plot (right) 

 
Graphs are useful to see the shape of a response surface: hills, valleys, and ridge lines. Hence, the 
function f (x1, x2) can be plotted against the levels of x1 and x2. Three-dimensional graphs show the 
response surface from the side and are called response surface plots. Sometimes it is less complicated 
to view the response surface in two-dimensional graphs (contour plots) that show contour lines of x1 
and x2 pairs which have the same response value y. In the case of the development of a 
chromatographic method, the diagram on the surface of the response of the chromatographic system 
explains the behaviour of the values of the chromatographic parameters/response when changing the 
experimental values of the studied factors. This diagram can be applied in order to predict the values 
of the chromatographic parameters at values of experimental factors beyond the test range. 
 

- Principal Component Analysis 
PCA is an exploratory method that highlights similarities and differences between analytical data. It is 
applied to reduce the dimensionality of the dataset while preserving as much as possible the observed 
variation. Original data are transformed into a new uncorrelated set of variables (principal components 
or PCs). Four plots are available for the interpretation of data from PCA.  
The score plot is usually a 2- or 3-dimensional scatter plot where samples are projected in the PC 
space (Figure 9). First PCs model the relevant information in the chemical system whereas further PCs 
model the residual noise. A colour or a particular shape may be attributed to each sample, and it is then 
possible to observe the sample distribution, clusters of samples or atypical samples. The Hotelling T² 
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ellipse is a graphical representation inside which 95% (for a risk of 5%) of the samples are expected to 
be located.  
The loadings show the importance of the manifest variables to the different PCs. The loading plot is 
usually a 2- or 3-dimensional scatter plot where the loadings are projected in the PC space. When 
score and loading plots are combined, a bi-plot is obtained, showing the clustering of samples and the 
variables responsible or important for this clustering. Since loading and bi-plots may be difficult to 
interpret, loadings may be plotted as a curve for each principal component (Figure 10) showing the 
importance of the variables to a particular PC. Variables with high loadings (red boxes in Figure 10) are 
responsible for the greatest differences between samples. In certain cases (no use of derivative pre-
treatment) loadings of individual PCs can be associated with analytical profiles (e.g. spectra). Thus the 
study of loadings may assist with the identification of variables linked to specific chemical information 
(e.g. vibration mode of H2O for NIR spectroscopy). The study of loadings may also help in the selection 
of the number of PCs carrying relevant information, since high-level loadings exhibit random signals. 
These 2 plots need to be examined in conjunction for a better understanding of which variable is 
responsible for the grouping of samples and which variable most contributes to the variability of the 
dataset. 
 

  
Figure 9: PCA score plot Figure 10: Loadings of the variables on PC1 

 
The explained variance represents the ratio of the total variance of the dataset supported by the 
individual PCs. These numerical outcomes are visible in the graph of cumulative variances (Figure 11) 
and also in the axis labels of the score and loading plots. The graph of cumulative variances highlights 
the number of PCs needed to reliably model the relevant information in the dataset. In Figure 11, 95% 
of the variation in the data is described with the two first principal components.  
An outlier is atypical data that may come, for example, from measurement issues or differences in the 
chemical or physical composition of the sample. These data have to be inspected in order to decide if 
they must be kept or discarded from the dataset. Outliers can be detected on the score plot and 
highlighted with 2 numerical outcomes: residual distance Q (orthogonal distance of the data to the 
model) and Hotelling distance T² (distance of the orthogonal projection of the data to the centre of the 
model). The influence plot compiles the 2 distances (Figure 12). Data with a high T² value (leverage on 
x-axis) act as a strong outlier since they have a leverage effect on the model. Removing such data 
strongly modifies the PCA model. Data with a high Q value (on y-axis) act as a low outlier with a 
moderate impact on the model.  
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Figure 11: Plot of cumulative explained variance Figure 12: Influence plot of residual (Q) vs leverage 

(T²) 

 
 

- Hierarchical Cluster Analysis (HCA) 
HCA is an exploratory/unsupervised method used to evaluate the distance between samples and to 
group them in a tree-shaped chart called a dendrogram (Figure 13). In the data space, samples are 
considered as points, and the distance between points will define the degree of (dis)similarity between 
samples. Geometric measurements are usually calculated with the Euclidean distance (using the 
coordinates of samples in the data space) or the Mahalanobis distance (including the correlation 
between variables). Different strategies and linkages (agglomerative, divisive, single, complete, 
average) may be tested in order to optimise the classification of samples. 
In the dendrogram, samples are sorted and connected to each other with lines. The length of lines 
represents the distance between samples. The longer the line the more dissimilar the samples are. 
Clusters of samples may be defined using an arbitrary critical distance. For example, in Figure 13 if the 
critical distance is 5 then 3 clusters of samples are proposed, while if the critical distance decreases to 
3 then 6 clusters of samples are suggested.  
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Figure 13: Dendrogram of 40 samples obtained with HCA 

 
 

- Soft Independent Modelling of Class Analogy (SIMCA)  
SIMCA is a data classification/discrimination method that requires the prior establishment and 
validation of disjoint PCA models for each membership class. Each PCA model is adjusted separately 
determining the optimal number of PCs. Score/loading plots are studied for each PCA. A cross-
validation is performed to determine the acceptable ccr. New data is then projected in each of these 
PCA models, and its distance to the model is calculated. This data will be assigned to a class if its 
distance to the model (usually calculated with Q and T²) is lower than the critical distance (based on 
the overall variation of each class and usually representing 95% confidence that particular data belongs 
to a class). With the SIMCA method, a new sample can belong simultaneously to several classes or to 
none.  
The main outcome of SIMCA is the classification table that allocates samples to each class. Another 
plot using the sample distances to the model shows residual and leverage distances for a particular 
class. Figure 14 shows 4 samples predicted to be part of class A (residual and leverage distances lower 
than the critical distance in red) while 5 others are excluded. 
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Figure 14: Distances of new samples to the model of class A 

 
- Partial Least Squares regression (PLS)  

PLS is a regression method used to find relationships between two blocks of data (see Annex 4). It is 
often implemented for the quantitative determination of the API content in a dosage form. A model is 
built taking into account the correlation between manifest variables (e.g. analytical data, spectra) and 
a continuous response variable (e.g. concentrations in mg/tablet). 
The optimisation step of the model includes, for example, the selection of relevant variables, the 
appropriate pre-treatment of analytical data, the choice of the number of PLS factors and the detection 
of outlier samples. During this phase the operator aims to minimise the error of prediction (difference 
between predicted and reference values). A figure of merit is calculated testing known samples on the 
model built with the calibration set. The optimal number of PLS factors may be determined during the 
modelling calculating Root Mean Square Error of Cross-Validation (RMSECV) with an increasing 
number of factors entering the model. In figure 15, RMSECV decreases when the number of PLS 
factors increases, and 6 PLS factors are enough to properly describe the studied properties of the 
samples. RMSECV is expressed in the same unit than the concentration of samples, and then the 
performance of the model may be compared to the reference method. RMSECV between 1% and 2% 
of the reference value is considered acceptable. 
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Figure 15: Standard error of cross-validation 

 
The external validation step is implemented to demonstrate the compliance of the model with the 
intended purpose and evaluate its predictive ability. This phase is performed by using the test sample 
set and calculating the root mean square error of prediction (RMSEP). The model is considered reliable 
when the RMSEP is found to be close to RMSECV. 
As PLS is a projection method, score and loadings plots are studied in the same way as for PCA. 
The PLS model is assessed with the calibration plot that connects predicted and reference values 
(Figure 16). Performance criteria to be studied are: slope of the curve close to 1, intercept (offset) close 
to 0, RMSEC/RMSEP as low as possible and determination coefficient (R²) close to 1 (RMSEC 
represents the deviation of the calibration samples from the model.) 
 

 
Figure 16: PLS calibration plot (calibration data in blue and prediction data in red) 
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ANNEX 7: Applications and scientific articles 
The list provided here is not exhaustive.  

• Design of experiments 
GC/MS-HPLC/DAD 
J. Acevska, G. Stefkov, R. Petkovska, S. Kulevanova, A Dimitrovska – Chemometric approach for 
development, optimization, and validation of different chromatographic methods for separation of opium 
alkaloids, Analytical and Bioanalytical Chemistry 403 (2012) 1117-1129. 

 

• API fingerprinting 
HPLC/MS-PCA-HCA 
J. Acevska, G. Stefkov, I. Cvetkovikj, R. Petkovska, S. Kulevanova, J. Cho, A. Dimitrovska, 
Fingerprinting of morphine using chromatographic purity profiling and multivariate data analysis, 
Journal of Pharmaceutical and Biomedical Analysis 109 (2015) 18-27. 
 

• Detection of illegal and falsified products 
HPLC-SVM-SIMCA 
E. Deconinck, P.Y. Sacré, P. Courselle, J.O. De Beer, Chemometrics and chromatographic fingerprints 
to discriminate and classify counterfeit medicines containing PDE-5 inhibitors, Talanta 100 (2012) 123-
133. 
IRTF-kNN 
E. Deconinck, J.L. Bothy, B. Desmedt, P. Courselle, J.O. De Beer, Detection of whitening agents in 
illegal cosmetics using attenuated total reflectance-infrared spectroscopy, Journal of Pharmaceutical 
and Biomedical Analysis 98 (2014) 178-185. 
NIR-SIMCA 
I. Storme-Paris, H. Rebiere, M. Matoga, C. Civade, P.A. Bonnet, M.H. Tissier, P. Chaminade – 
Challenging near infrared spectroscopy discriminating ability for counterfeit pharmaceuticals detection 
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