

Funded by the European Union and the Council of Europe

Implemented by the Council of Europe

General European OMCL Network (GEON) QUALITY MANAGEMENT DOCUMENT

PA/PH/OMCL (18) 147 R1 CORR

EVALUATION OF MEASUREMENT UNCERTAINTY ANNEX 1.2

Full document title and reference	Evaluation of Measurement Uncertainty ANNEX 1: ESTIMATION OF MEASUREMENT UNCERTAINTY OF USING BOTTOM-UP APPROACH Annex 1.2: Estimation of Measurement Uncertainty for Quantitative Determination Using Spectrophotometric Method (Calibration Curve Method) <i>PA/PH/OMCL (18) 147 R1 CORR</i>
Document type	Guideline
Legislative basis	Council Directive 2001/83/EC and 2001/82/EC, as amended
Date of first adoption	19 July 2019
Date of original entry into force	1 February 2020
Date of entry into force of revised document	
Previous titles/other references / last valid version	
Custodian Organisation	The present document was elaborated by the OMCL Network / EDQM of the Council of Europe
Concerned Network	GEON

N.B. This OMCL Quality Management System document is applicable to members of the European OMCL Network only. Other laboratories might use the document on a voluntary basis. However, please note that the EDQM cannot treat any questions related to the application of the documents submitted by laboratories other than the OMCLs of the Network.

Annex 1 to Guideline "Evaluation of Measurement Uncertainty" PA/PH/OMCL (18) 145 (in its current version)

Estimation of measurement uncertainty of using Bottom-up approach

Annex 1.2 Estimation of Uncertainty of measurement for quantitative determination using spectrophotometric method (calibration curve method)

Example: Determination of [NH₄]⁺ in Water

1. Description of the method

Determination of NH_4^+ in water (a parameter listed in the specification of the purified water) is performed using a dye which forms a photometric complex with ammonium. The absorbance of the ammonium-dye complex is measured at 640-660 nm.

The concentration of ammonium ($C_{NH_4^+}$) is calculated from the measured absorbance of the sample solution, using calibration curve (absorbance νs concentration of standard solutions).

Preparation of sample solution:

20.0 mL of the sample to be analysed is diluted to 25.0 ml by the chromophore solution.

Calibration curve:

Calibration curve was constructed from the relationship between absorbance and concentration of standard solutions at 5 different concentrations (0.050 mg/L, 0.100 mg/L, 0.200 mg/L, 0.250 mg/L and 0.500 mg/L). The least squares approach was applied to check the linear relationship between calibration data pairs (x_i , y_i).

2. Estimation of the measurement uncertainty

Approach 1

2.1 Step 1. Specification of a measurand

The output quantity ($C_{NH_4^+}$) is calculated by means of the following function [4]:

$$(C_{\mathrm{NH}_4^+}) = \left[\frac{A_{NH4} - a}{b}\right] \cdot \frac{20}{25} + \Delta C_{dc}$$

Where:

*A*_{NH4}: measured absorbance of the sample solution; *a* and b: intercept and slope of the calibration curve (y = a + bx) $\frac{20}{25}$: dilution factor, f_d ΔC_{dc} : Component taking into account impurities

2.2 Step 2. Identification of Uncertainty Sources

Table 1. Uncertainty sources and components

Input variable	Uncertainty components	u(x _i)
A _{NH4}	Interferences	$u(A_{NH4})$
	Repeatability	
	Drift of photometer	
a and b	Purity of standard material	u(a)
	Preparation of solutions	u(b)
	Repeatability and drift of photometer	
f _d	Preparation of sample solution	u(fd)
ΔC_{dc}	Contamination	$u(\Delta C_{dc})$
	Decomposition	
	Volatilization	
	Incomplete reaction	

Each of the parameters that affect the value of the measurand are shown as a cause and effect diagram (Fig. 1) [1, 2].

Fig. 1 Cause and effect diagram for determination of $\mathcal{C}_{\mathrm{NH}_4^+}$

2.3 Step 3. Quantification of uncertainty components

2.3.1 Component 1: Uncertainty of preparation of the sample

Uncertainty of preparation of the sample is associated with the uncertainty of the dilution factor, calculated as:

$$fd = \frac{V_2}{V_1} = \frac{25mL}{20\,mL} = 1.25$$

The standard uncertainty of the dilution factor u(fd) is:

$$\frac{u(fd)}{fd} = \sqrt{(\frac{u(V_1)}{V_1})^2 + (\frac{u(V_2)}{V_2})^2}$$

The standard uncertainties $u(V_i)$ are calculated as:

$$u(V_i) = \sqrt{u(Vcal)^2 + u(Vrep)^2 + u(VT)^2}$$

Table 2. Uncertainty values of the dilution volume (calculation of these values is explained in Annex 1.1)

mL	Volume	u(VT)	u(Vrep)	u(Vcal)	$u(V_i)$	$u(V_i)$
						V_i
V_1	20 mL	0.0097 mL	0.0083 mL	0.01633 mL	0.0249 mL	0.001243
V_2	25 mL	0.01212 mL	0.0125 mL	0.01225 mL	0.0273 mL	0.001093

$$\frac{u(fd)}{fd} = \sqrt{(0.001243)^2 + (0.001093)^2} = 0.00134$$

 $u(fd) = 0.00134 \cdot 1.25 = 0.001677$

2.3.2 Component 2: Uncertainty of the absorbance of the sample solution

Uncertainty of the absorbance $u(A_{NH4})$

Table 3. Values of the uncertainties related to $u(A_{NH4})$

Description	Value	Unit
$u(A_{NH4}repeatability)$	0.0012	AU
$u(A_{NH4}drift)$	0.0014	AU
$u(A_{NH4}interference)$	0.0025	AU

 $u(A_{NH4}) = \sqrt{u(A_{NH4}repeatability)^{2} + u(A_{NH4}drift)^{2} + u(A_{NH4}interference)^{2}}$

 $u(A_{NH4}) = \sqrt{0.0012^2 + 0.0014^2 + 0.0025^2} = 0.003106 \text{ AU}$

Description	Value	Unit
$u(A_{NH4})$	0.00311	AU
$u(\Delta C_{dc})$	0.002*	mg/mL

*The uncertainty of ΔC_{dc} is established based on experience to 0.002 mg/mL.

2.3.3 Component 3 Uncertainty of the slope and intercept of the calibration curve

There are four main sources of uncertainty to consider when estimating uncertainty of the estimated concentration x_{pred} .

- 1. Random variations in absorbance (both reference y_i and measured y_{obs}).
- 2. Random effects in assigned reference value, x_i.
- 3. Constant unknown offset on x_i and y_i.
- 4. The assumption of linearity may not be valid [3].

However, the most significant of these sources is the first source, i.e. random variations in measurement of y_i and y_{obs} , which are estimated from the residual standard deviation S [1, 4].

$$S(residual) = \sqrt{\frac{\sum_{j=1}^{n} [Ai - (a + b \cdot c_i)]^2}{n - 2}}$$
$$S(residual) = \sqrt{\frac{\sum_{i=0}^{n} [y_i - y_c]^2}{n - 2}}$$

Estimation of the uncertainties was performed by the following equations:

$$S(b) = \frac{S(residual)}{\sqrt{\sum(xi - \bar{x})^2}}$$
$$S(a) = S(residual) \cdot \sqrt{\left[\frac{\sum(xi^2)}{n\sum(xi - \bar{x})^2}\right]}$$

Table 5. Calibration results

	x (mg/ml)	y(AU)		x, ²	(x-x _{mean)} =A	$(x-x_{mean})^2$	$(y-y_{mean}) = B$	(y-y _{mean}) ²	A*B	*y 。	(yi-yc) ²
	0	0.0011									
	0.05	0.129		0.0025	-0.1700	0.02890	-0.3917	0.1534	0.0666	0.1224439	4.298E-05
	0.1	0.236		0.01	-0.1200	0.01440	-0.2847	0.0811	0.0342	0.239578	1.280E-05
	0.2	0.4696		0.04	-0.0200	0.00040	-0.0511	0.0026	0.0010	0.4738463	1.803E-05
	0.25	0.59		0.0625	0.0300	0.00090	0.0693	0.0048	0.0021	0.5909805	9.614E-07
	0.5	1.1789		0.25	0.2800	0.07840	0.6582	0.4332	0.1843	1.1766512	5.057E-06
Mean	0.2200	0.5207	Sum	0.36500		0.12300		0.67512	0.28815		0.0000798
				n=5							
	b(Slope)	2.342683		*y _c = 2.34	2683 x; + 0.00	531		S(Residual)	0.0051586	i	
	a(Interc)	0.00531						Sb	0.014709		
			1					-	0.0020744		
	R2	0.999882						5a	0.0039741		
	R2	0.999882						Sa	0.0039741		

Therefore, y = 0.00531 + 2.34268x

Using this equation y_c can be calculated with known values for x and their corresponding square of difference, i.e. $[y_i - y_c]^2$.

$$S(residual) = \sqrt{\frac{\sum_{i=0}^{n} [y_i - y_c]^2}{n-2}} = \sqrt{\frac{7.9835 \cdot 10^{-5}}{3}} = 0.0051586 \, \text{AU}$$

$$S(b) = \frac{S(residual)}{\sqrt{\sum(xi - \bar{x})^2}} = \frac{0.0051586}{\sqrt{0.12300}} = 0.014709 \,\text{AU} \cdot \text{L/mg}$$

$$S(a) = S(residual) \cdot \sqrt{\left[\frac{\sum (xi)2}{n\sum (xi-\bar{x})^2}\right]} = 0.00477 \cdot \sqrt{\frac{0.365}{5 \cdot 0.1230}} = 0.0039741 \, \text{AU}$$

The standard uncertainty of *a* and *b* are approximation of the uncertainties. Because it neglects the systematic effects that impact all the points on the regression line. Furthermore, it neglects the correlation between *a* and *b*.

2.4 Step 4. Calculation of combined standard uncertainty and expanded uncertainty

The combined uncertainty is estimated by the following procedure, assuming that all variables are independent, i.e. there is no correlation between the measured values.

$$u_{c} = \sqrt{\left[\left(\frac{\delta c_{NH4}}{\delta A_{NH4}}\right)^{2} \cdot u^{2}(A_{NH4}) + \left(\frac{\delta c_{NH4}}{\delta a}\right)^{2} \cdot u^{2}(a) + \left(\frac{\delta c_{NH4}}{\delta b}\right)^{2} \cdot u^{2}(b) + \left(\frac{\delta c_{NH4}}{\delta f d}\right)^{2} \cdot u^{2}(fd) + \left(\frac{\delta c_{NH4}}{\delta a c d c}\right)^{2} \cdot u^{2}(\Delta C d c)\right]}$$

Replacing $\partial C_{sample} / \partial x_i$ by c_i the equation can be written as:

```
u_{c} = \sqrt{\left[c^{2}(A_{NH4}) \cdot u^{2}(A_{NH4}) + c^{2}(a) \cdot u^{2}(a) + c^{2}(b) \cdot u^{2}(b) + c^{2}(fd) \cdot u^{2}(fd) + u^{2}(\Delta Cdc) \cdot u^{2}(\Delta Cdc)\right]}
```

The partial derivatives $(\partial_y / \partial_{xi})$ or sensitivity coefficients (c_i) describes how the output estimate $(y \text{ or } C_{NH4})$ varies with changes in the values of the input estimates [4].

 $u(y) = |c_i| \cdot u(x_i)$

					(1/2)	0.0031064	0.0039741	0.014709	0.00167677	0.002	
					Ouantity	4	0.0000741	5.014/05 h	5.00101011 Fd	40	
Quantity	Value		Unit	1	Quantity	A NH4	d 0.2051	0.2051	0.2051	0.0051	
Quantity	value	u	Unit		A _{NH4}	0.3982064	0.3951	0.3951	0.3951	0.3951	
A _{NH4}	0.3951	0.003106	AU		a	0.0053098	0.0092839	0.0053098	0.005309756	0.0053098	
a	0.00531	0.003974	AU		b	2.3426829	2.3426829	2.3573919	2.342682927	2.3426829	
b	2.342683	0.014709	AUxL/mg		fd	1.25	1.25	1.25	1.25167677	1.25	
fd	1.25	0.001677	Unitless		∆C _{dc}	0	0	0	0	0.002	
∆C _{dc}	0	0.002	mg/L								
C _{NH4}	0.207983	mg/L			C _{NH4}	0.2096	0.2059	0.2067	0.2083	0.2100	
					$\Delta C_{NH4} = c_i \cdot u$	0.0017	-0.0021	-0.0013	0.0003	0.0020	
					$(ci, u(xi))^2$	0.000003	0.000004	0.000002	0.0000001	0.000004	
					Indexes	21.1%	34.6%	12.9%	0.6%	30.8%	100.09
					$\sum [c_i - \mu(r_i)]^2$	0.000013					
					Z[ce. a(ac)]	0.000010					
			(Slei u(vi))	2,1/2	u(C)-	0.0036064				ai (mi) 1 ²	
		u (C _{NH4}) -	[2[01. 10[21]]	\$	u (C _{NH4})-	0.0030004		k-2	$u(C_{NH4}) - 2l$	<i>u</i> (<i>x</i>)]	
					U Expand	0.0072		n-2			
					(Index) ²	0.0446	0.1195	0.0168	0.0000	0.0946	
					d,	30	4	4	30	30	
					(Index) ² /d	0.0015	0.0299	0.0042	0.0000	0.0032	
					(index) fur	0.0010	0.0200	0.0042	0.0000	0.0002	
					$\Sigma(\text{Index})^2/d_f$	0.0387					
					4	26		k ≈2			

Table 6 Estimation of the combined uncertainty by the spread sheet approach

$$u(C_{NH4}) = \sqrt{[c_i^2 \cdot u^2(x_i)]} = \sqrt{\sum [(\Delta C_{NH4})^2]} = 0.0036 \, mg/mL$$

Hence, $C_{\rm NH_4^+}$ = 0.208 ± 0.0072 mg/L (*k* = 2, approximately 95% level of confidence).

K = 2 is commonly used for calculation of expanded uncertainty. This value is appropriate when Type B uncertainty components dominate the uncertainty budget or when type A components have been established with \geq 30 repeated measurements [5]. When Type A uncertainties dominate and where there are fewer than 30 degrees of freedom, a larger coverage factor is required [5]. The coverage factor in such cases is calculated by taking into account the effective degree of freedom (df_{eff}), which is calculated by either of the following equations [2, 5].

$$df_{eff} = \frac{1}{\sum \frac{Index_i^2}{df_i}}$$

The effective degree of freedom can also be calculated by the Welch-Satterthwaite formula [5]:

$$d_{eff} = \frac{u_c^4(y)}{\sum \frac{[c_i u(x_i)]^4}{df_i}}$$

Table 7 Calculation of the effective degree of freedom according to the Welch-Satterthwaite formula [5]

ci x u(A _{NH4})	C _i x U _(Intercept)	C; X U _(Slope)	c _i xu _(df)	C _i X U _(∆Cdc)
0.0017	-0.0021	-0.0013	0.0003	0.0020
$[c_i \times u(A_{NH4})]^4$	$[C_i \times U_{(Intercept)}]^4$	$[C_i \times U_{(Slope)}]^4$	$\left[c_{i} \times u_{(df)}\right]^{4}$	$[c_i \times u_{(\Delta Cdc)}]^4$
0.00	2.02191E-11	2.83604E-12	1.405E-14	1.6E-11
df _i	df i	df _i	df _i	df i
30	4	4	30	30
$[c_i \times u(A_{NH4})]^4/df$	[Cix U(Intercept)]4/df	$[c_i x u_{(Slope)}]^4/df$	$[c_i \times u_{(df)}]^4/df$	$[c_i \times u_{(\Delta Cdc)}]^4/df$
2.51605E-13	5.05477E-12	7.0901E-13	4.6833E-16	5.33333E-13
Sum	6.54919E-12			
u _c	$(u_{c})^{4}$			
0.0036	1.70212E-10		df _{eff}	26.0

$$u_c(C_{NH_4}) = \sqrt{\sum (\Delta C_{NH_4})^2} = 0.0036 \text{ mg/L}$$

Calculation of the output quantity

$$C_{\rm NH_4^+} = \left[\frac{A_{sample} - a}{b}\right] \cdot \frac{20}{25} + C_{dc} = \left[\frac{0.3951 - 0.00531}{2.342683}\right] \cdot 1.25 + 0 = 0.208 \text{ mg/L}$$

Hence, $C_{NH_4^+} = 0.208 \pm 0.007$ mg/l (k = 2, approximately 95% level of confidence)

The contribution of each uncertainty source to the combined uncertainty is depicted in the figure 2. As seen the dilution factor (f_d) is the minor uncertainty source.

Fig. 2 Contribution of each uncertainty source to the combined uncertainty.

Approach 2

The purpose is to estimate the uncertainty for the determination of ammonium ions in water by taking into account the uncertainties in the reference standard solutions and the determined NH_{4^+} concentration ($u(C_0)$ or $u(Cx_{obs})$ [3].

2.1 Step 1. Specification of a measurand

The output quantity ($C_{NH_4^+}$) is calculated by means of the following function [2]:

$$(C_{\rm NH_4^+}) = c_0 \cdot fd + \Delta C_{dc}$$

Where:

 $c_0 = \left[\frac{A_{NH4} - a}{b}\right]$

*A*_{NH4}: measured absorbance of the sample solution *a* and b: intercept and slope of the calibration curve (y = 0.00531 + 2.34268x) ΔC_{dc} : Component taking into account impurities

2.2 Step 2. Identification of uncertainty sources

Each of the parameters that affect the value of the measurand are shown as a cause and effect diagram (Fig. 1) [1,2].

Fig. 1 Cause and effect diagram for determination of $C_{\mathrm{NH}^+_4}$

2.3 Step 3. Quantification of uncertainty components

2.3.1 Component 1: Uncertainty of preparation of the sample

Uncertainty of preparation of the sample is associated with the uncertainty of the dilution factor, calculated as:

$$fd = \frac{V_2}{V_1} = \frac{25mL}{20\ mL} = 1.25$$

The standard uncertainty of the dilution factor u(fd) is:

$$\frac{u(fd)}{fd} = \sqrt{(\frac{u(V_1)}{V_1})^2 + (\frac{u(V_2)}{V_2})^2}$$

The standard uncertainties $u(V_i)$ are calculated as:

$$u(V_i) = \sqrt{u(Vcal)^2 + u(Vrep)^2 + u(VT)^2}$$

Table 2. Uncertainty values of the dilution volume (calculation of these values is explained in Anex 1.1)

mL	Volume	u(VT)	u(Vrep)	u(Vcal)	$u(V_i)$	$\frac{u(V_i)}{V_i}$
<i>V</i> ₁	20 mL	0.0097 mL	0.0083 mL	0.01633 mL	0.0207 mL	0.00104
V_2	25 mL	0.01212 mL	0.0125 mL	0.01225 mL	0.0213 mL	0.00085

$$\frac{u(fd)}{fd} = \sqrt{(0.00104)^2 + (0.00085)^2} = 0.00134$$

 $u(fd) = 0.00166 \cdot 1.25 = 0.001677$

2.3.2 Component 2 Preparation of reference standard solutions

The reference standard solutions were prepared from a 1.000 mg/L commercial solution, according to the following scheme. As there is no information regarding the level of confidence stated for the uncertainty of the stock solution, its uncertainty was disregarded.

Table 3. Preparation scheme for standard solutions

Sample	V _{Stock} (mL)	V _{Final} (mL)	Concentration, <i>x_i</i> (mg/L)
Blank	-	-	0
Ref Std 1	5	100	0.05
Ref Std 2	5	50	0.10
Ref Std 3	5	25	0.20
Ref Std 4	5	20	0.25
Ref Std 5	5	10	0.50

 $C_{final} = \frac{V_{stock \ solution} \cdot C_{stock \ solution}}{V_{final}}$

The estimated standard uncertainties $u(V_i)$ are shown in Table 4.

Table 4. Uncertainty	values of the	dilution vo	olume (cal	culation of	these val	ues is exp	plained in
Annex 1.1)							

	Volume	u(VT)mL	u(Vrep)mL	u(Vcal)mL	$u(V_i)$ mL	$u(V_i)$
						$\overline{V_i}$
V_1	5 mL	0.0024	0.0010	0.01633	0.0165	0.00331
V_2	10 mL	0.00485	0.0021	0.01633	0.0172	0.00172
V_3	20 mL	0.00970	0.0083	0.01633	0.0207	0.00104
V_4	25 mL	0.1212	0.0125	0.01225	0.0213	0.00085
V_5	50 mL	0.02425	0.0128	0.03266	0.0426	0.00085
V_6	100 mL	0.04850	0.0333	0.0408	0.0716	0.00072

The uncertainties of the reference standard solutions are summarised in tables 5-9.

Table 5. Uncertainty values of the dilution volume of the first reference solution

Uncertainty	Quantity	Uncertainty	Relative
component			uncertainty
V _{Stock}	5 mL	0.0165 mL	0.00331
V _{Final}	100 mL	0.0716 mL	0.00072

The concentration of the first standard solution is calculated as:

$$C_{ref1} = \frac{5 \ mL \cdot 1.000 \ mg/mL}{100 \ mL} = 0.050 \ mg/mL$$

The uncertainty of the concentration of the first reference solution is:

$$\frac{u(C_{ref1})}{C_{ref1}} = \sqrt{(0.00331)^2 + (0.00072)^2} = 0.00338$$
$$u(C_{ref1}) = 0.00338 \cdot 0.05 = 0.000169 \, mg/mL$$

Table 6. Uncertainty values of the dilution volume of the second reference solution

Uncertainty	Quantity	Uncertainty	Relative
component			uncertainty
V _{Stock}	5 mL	0.0165 mL	0.00331
V _{Final}	50 mL	0.0426 mL	0.00085

The concentration of the second standard solution is calculated as:

$$C_{ref2} = \frac{5 \ mL \cdot 1.000 \ mg/mL}{50 \ mL} = 0.100 \ mg/mL$$

The uncertainty of the concentration of the second reference solution is:

$$\frac{u(C_{ref2})}{C_{ref2}} = \sqrt{(0.00331)^2 + (0.00085)^2} = 0.00342$$
$$u(C_{ref2}) = 0.00342 \cdot 0.100 = 0.000342 \, mg/mL$$

Uncertainty	Quantity	Uncertainty	Relative
component			uncertainty
V _{Stock}	5 mL	0.0165 mL	0.00331
V _{Final}	25 mL	0.0213 mL	0.00085

Table 7. Uncertainty values of the dilution volume of the third reference solution

The concentration of the third standard solution is calculated as:

$$C_{ref3} = \frac{5 \, mL \cdot 1.000 \, mg/mL}{25 \, mL} = 0.200 \, mg/mL$$

The uncertainty of the concentration of the third reference solution is:

$$\frac{u(C_{ref3})}{C_{ref3}} = \sqrt{(0.00331)^2 + (0.00085)^2} = 0.003416$$
$$u(C_{ref3}) = 0.003416 \cdot 0.200 = 0.000683 \, mg/mL$$

Table 8. Uncertainty values of the dilution volume of the fourth reference solution

Uncertainty	Quantity	Uncertainty	Relative
component			uncertainty
V _{Stock}	5 mL	0.0165 mL	0.00331
V _{Final}	20 mL	0.0207 mL	0.00104

The concentration of the fourth standard solution is calculated as:

$$C_{ref4} = \frac{5 \ mL \cdot 1.000 \ mg/mL}{20 \ mL} = 0.250 \ mg/mL$$

The uncertainty of the concentration of the fourth reference solution is:

$$\frac{u(C_{ref4})}{C_{ref4}} = \sqrt{(0.00331)^2 + (0.00104)^2} = 0.003466$$
$$u(C_{ref4}) = 0.003466 \cdot 0.250 = 0.000867 \, mg/mL$$

Table 9. Uncertainty values of the dilution volume of the fifth reference solution

Uncertainty	Quantity	Uncertainty	Relative
component			uncertainty
V _{Stock}	5 mL	0.0165 mL	0.00331
V _{Final}	10 mL	0.0172 mL	0.00172

The concentration of the fifth standard solution is calculated as:

$$C_{ref5} = \frac{5 \, mL \cdot 1.000 \, mg/mL}{50 \, mL} = 0.500 \, mg/mL$$

p. 12/21

The uncertainty of the concentration of the fifth reference solution is:

$$\frac{u(C_{ref5})}{C_{ref5}} = \sqrt{(0.00331)^2 + (0.00172)^2} = 0.00373$$
$$u(C_{ref5}) = 0.00373 \cdot 0.500 = 0.001863 \, mg/mL$$

2.3.3 Component 3. Uncertainty of the slope and intercept of the calibration curve

There are four main sources of uncertainty to consider when estimating uncertainty of the estimated concentration x_{pred} .

- 1. Random variations in absorbance (both reference y_i and measured y_{obs}).
- 2. Random effects in assigned reference value, xi.
- 3. Constant unknown offset on x_i and y_i .
- 4. The assumption of linearity may not be valid [1].

However, the most significant of these sources is the first source, i.e., random variations in measurement of y_i and y_{obs} , which are estimated from the residual standard deviation S [1, 4].

$$S(residual) = \sqrt{\frac{\sum_{j=1}^{n} [Ai - (a + b \cdot c_i)]^2}{n - 2}}$$
$$S(residual) = \sqrt{\frac{\sum_{i=0}^{n} [y_i - y_c]^2}{n - 2}}$$

The uncertainty in x_{obs} (the determined concentration) is estimated as:

$$u(x_{obs}) = \frac{S(residual)}{b}$$

	Concentration, <i>x_i</i> (mg/L)	Absorbance, <i>y</i> _i (AU)
Blank	0	0.0010
Ref Std 1	0.05	0.1290
Ref Std 2	0.10	0.2360
Ref Std 3	0.20	0.4696
Ref Std 4	0.25	0.5900
Ref Std 5	0.50	1.1789

Table 10. Concentration levels of reference standards and their responses (AU)

	x (mg/ml)	y(AU)		x, ²	(x-x _{mean)} =A	(X-X _{mean}) ²	$(y-y_{mean}) = B$	(y-y _{mean}) ²	A*B	*y _c	(yi-yc)²	
	0	0.0011										
	0.05	0.129		0.0025	-0.1700	0.02890	-0.3917	0.1534	0.0666	0.1224439	4.298E-05	
	0.1	0.236		0.01	-0.1200	0.01440	-0.2847	0.0811	0.0342	0.239578	1.280E-05	
	0.2	0.4696		0.04	-0.0200	0.00040	-0.0511	0.0026	0.0010	0.4738463	1.803E-05	
	0.25	0.59		0.0625	0.0300	0.00090	0.0693	0.0048	0.0021	0.5909805	9.614E-07	
	0.5	1.1789		0.25	0.2800	0.07840	0.6582	0.4332	0.1843	1.1766512	5.057E-06	
Mean	0.2200	0.5207	Sum	0.36500		0.12300		0.67512	0.28815		0.000079835	
Mean	0.2200	0.5207	Sum	0.36500		0.12300		0.67512	0.28815		0.000079835	
Mean	0.2200	0.5207	Sum	0.36500 n=5		0.12300		0.67512	0.28815		0.000079835	
Mean	0.2200 b(Slope)	0.5207	Sum	0.36500 n=5 *y _c = 2.342	2683 x _i + 0.005	0.12300 531		0.67512 S _(Residual)	0.28815		0.000079835	
Mean	0.2200 b(Slope) a(Interc)	0.5207 2.342683 0.0053098	Sum	0.36500 n=5 *y _c = 2.342 c ₀ (x _{obs})	2683 x _i + 0.005 0.166386257	0.12300 531		0.67512 S _(Residual) S _b	0.28815 0.0051586 0.014709		0.000079835	
Mean	0.2200 b(Slope) a(Interc) R2	0.5207 2.342683 0.0053098 0.999882	Sum	0.36500 n=5 $^{*}y_{c} = 2.342$ $c_{0} (x_{obs})$ $u(x_{obs})$	2683 <i>x</i> ; + 0.005 0.166386257 0.002202021	0.12300 531		0.67512 S _(Residual) S _b S _a	0.28815 0.0051586 0.014709 0.0039741		0.000079835	
Mean	0.2200 b(Slope) a(Interc) R2	0.5207 2.342683 0.0053098 0.999882	Sum	0.36500 n=5 *y _c = 2.342 c ₀ (x _{obs}) $u(x_{obs})$ C _{NH4}	2683 x; + 0.003 0.166386257 0.002202021 0.207982821	0.12300		0.67512 S _(Residual) S _b S _a	0.28815 0.0051586 0.014709 0.0039741		0.000079835	

Table 11. Calibration results

Therefore, y = 0.00531 + 2.34268x and

 $C_0 (X_{obs}) = (0.3951 - 0.00531) / 2.34268 = 0.166386 \text{ mg/ml}$

Using this equation y_c can be calculated with known values for x and their corresponding square of difference, i.e., $[y_i - y_c]^2$.

$$S(residual) = \sqrt{\frac{\sum_{i=0}^{n} [y_i - y_c]^2}{n-2}} = \sqrt{\frac{9.0965 \cdot 10^{-5}}{3}} = 0.0051586 \, \text{AU}$$

$$u(x_{obs}) = \frac{S(residual)}{b} = \frac{0.0051586}{2.342683} = 0.002220 \text{ mg/L}$$

2.3.4 Component 4: Uncertainty of the absorbance of the sample solution

Uncertainty of absorbance $u(A_{NH4})$

Table 12. Values of the uncertainties related to $u(A_{sample})$

Description	Value	Unit	
$u(A_{NH4}repeatability)$	0.0012	AU	
$u(A_{NH4}drift)$	0.0014	AU	
$u(A_{NH4}interfereng)$	0.0025	AU	

 $u(A_{sample}) = \sqrt{u(A_{NH4}repeatability)^2 + u(A_{NH4}drift)^2 + u(A_{NH4}interfereng)^2}$

$$u(A_{NH4}) = \sqrt{0.0012^2 + 0.0014^2 + 0.0025^2} = 0.00311 \,\text{AU}$$

Description	Value	Unit
$u(A_{NH4})$	0.00311	AU
$u(\Delta C_{dc})$	0.002*	mg/mL

*The uncertainty of ΔC_{dc} is established based on experience to 0.002 mg/mL.

2.4 Step 4. Calculation of combined standard uncertainty and expanded uncertainty

	Description	Value	Standard	Relative standard
			uncertainty u(x)	uncertainty u(x)/x
C _{Stock}	Stock solution concentration	1.000 mg/L	-	-
$\mathcal{C}_{\text{Ref1}}$	Reference standard concentration	0.050 mg/L	0.000169 mg/L	0.0033845
$\mathcal{C}_{\text{Ref2}}$	Reference standard concentration	0.100 mg/L	0.000342 mg/L	0.0035501
$\mathcal{C}_{\text{Ref3}}$	Reference standard concentration	0.020 mg/L	0.000683 mg/L	0.0034157
$\mathcal{C}_{\text{Ref4}}$	Reference standard concentration	0.250 mg/L	0.000867 mg/L	0.0034664
$\mathcal{C}_{\text{Ref5}}$	Reference standard concentration	0.500 mg/L	0.001863 mg/mL	0.0037266
X _{Obs}	Observed concentration (c ₀)	0.166 mg/mL	0.0022020	0.0132344
		-	mg/mL	
Asample	Absorbance of sample	0.3951 AU	0.003106 AU	0.007862
fd	Dilution factor	1.25	0.001677	0.001341

Table 14. Calculated values for uncertainties

Combined standard uncertainty is calculated as:

$$\frac{u_c(C_{\text{NH}_4^+})}{(C_{\text{NH}_4^+})} = \sqrt{\left(\frac{u(C_{ref1})}{C_{ref1}}\right)^2 + \frac{u(C_{ref2})}{C_{ref2}}}^2 + \frac{u(C_{ref3})}{C_{ref3}}^2 + \frac{u(C_{ref4})}{C_{ref4}}^2 + \frac{u(C_{ref5})}{C_{ref5}}^2 + \frac{u(x_{obs})}{x_{obs}}^2 + \left(\frac{u(A_{NH4})}{A_{NH4}}\right)^2 + \left(\frac{u(fd)}{fd}\right)^2 + \frac{u(fd)}{C_{ref1}}^2 + \frac$$

Calculation of the ammonium concentration

The absorbance of a sample solution containing the analyte and impurities, is used for measurement of the concentration. The ammonium concentration is calculated by using the following equation:

The output quantity ($C_{NH_4^+}$) is calculated by means of the following function [2]:

$$(C_{\mathrm{NH}_4^+}) = c_0 \cdot fd + C_{dc}$$
 , Where: $c_0 = \left[\frac{A_{sample} - a}{b}\right]$

Table 15. Values for calculation of the $C_{\rm NH_4^+}$

Quantity	Value	Unit				
A _{Sample}	0.3951	AU				
a(Intercept)	0.00531	AU				
b(Slope)	2.342683	AU x L/mg				
R	0.9999	-				
fd	1.25	-				
ΔC_{dc}	0.000	mg/L				
$c_0 = 0.1664 \text{ mg/L}$ and $C_{\text{NH}_{\star}^+}$ in the sample = 0.208 mg/L						

$$u_c(C_{\mathrm{NH}_4^+}) = 0.0173 \cdot 0.2084 = 0.00360 \mathrm{mg/L}$$

 $u_c(C_{\mathrm{NH}_4^+}) = \sqrt{u_c(C_{\mathrm{NH}_4^+})^2 + u_c(C_{dc})^2} = 0.00412 \mathrm{mg/L}$

p. 15/21

Expanded uncertainty (k = 2, approximately 95% level of confidence) is:

 $U=2\cdot u_c=0.0082\,mg/L$

2.5 Reporting of result

The result is expressed as:

Content of NH₄⁺ = 0.208 mg/L \pm 0.008 mg/L (k = 2, approximately 95% level of confidence)

Approach 3

The purpose is to estimate uncertainty for the determined ammonium ion concentration in water by taking into account the uncertainties in the reference standard solutions and the determined NH₄⁺ concentration ($u(c_0)$ or $u(x_{obs})$ [1].

2.1 Step 1. Specification of a measurand

The output quantity ($C_{NH_4^+}$) is calculated by means of the following function [2]:

$$(C_{\mathrm{NH}_{4}^{+}}) = \left[\frac{A_{sample} - a}{b}\right] \cdot fd + C_{dc}$$

Where:

 $c_0 = \left[\frac{A_{sample} - a}{b}\right]$

Where:

A_{sample}: measured absorbance of the sample solution; *a* and b: intercept and slope of the calibration curve (y = a + bx) *C_{dc}*: component taking into account impurities

2.2 Step 2: Identification of uncertainty sources

Table 1. Uncertainty components

Input variable	Uncertainty components	u(x _i)
A sample	Interferences	$u(A_{sample})$
	Repeatability	
	Drift of photometer	
a and b	Purity of standard material	<i>u</i> (<i>a</i>)
	Preparation of solutions	u(b)
	Repeatability and drift of photometer	
f_d	Preparation of sample solution	u(fd)
C_{dc}	Contamination	$u(C_{dc})$
	Decomposition	
	Volatilization	
	Incomplete reaction	

Each of the parameters that affect the value of the measurand are shown as a cause and effect diagram (Fig. 1) [1,2].

Fig. 1 Cause and effect diagram for determination of $C_{\rm NH^+}$

2.3 Step 3. Quantification of uncertainty components

2.3.1 Component 1: Uncertainty of preparation of the sample

Uncertainty of preparation of the sample is associated with the uncertainty of the dilution factor, calculated as:

$$fd = \frac{V_2}{V_1} = \frac{25mL}{20\,mL} = 1.25$$

The standard uncertainty of the dilution factor u(fd) is:

$$\frac{u(fd)}{fd} = \sqrt{(\frac{u(V_1)}{V_1})^2 + (\frac{u(V_2)}{V_2})^2}$$

The standard uncertainties $u(V_i)$ are calculated as:

$$u(V_i) = \sqrt{u(Vcal)^2 + u(Vrep)^2 + u(VT)^2}$$

Table 2. Uncertainty values of the dilution volume (calculation of these values is explained in Annex 1.1)

mL	Volume	u(VT)	u(Vrep)	u(Vcal)	$u(V_i)$	$u(V_i)$
						V_i
V_1	20 mL	0.0097 mL	0.0083 mL	0.01633 mL	0.0207 mL	0.00104
V_2	25 mL	0.01212 mL	0.0125 mL	0.01225 mL	0.0213 mL	0.00085

$$\frac{u(fd)}{fd} = \sqrt{(0.00104)^2 + (0.00085)^2} = 0.00134$$

 $u(fd) = 0.00166 \cdot 1.25 = 0.001677$

2.3.2 Component 2: Uncertainty of the absorbance of the sample solution

Uncertainty of absorbance $u(A_{sample})$

Table 3. Values of the uncertainties related to $u(A_{sample})$

Description	Value	Unit
$u(A_{sample} repeatability)$	0.0012	AU
$u(A_{sample}drift)$	0.0014	AU
$u(A_{sample}interfereng)$	0.0025	AU

$$u(A_{sample}) = \sqrt{u(A_{sample}repeatability)^{2} + u(A_{sample}drift)^{2} + u(A_{sample}interfereng)^{2}}$$
$$u(A_{sample}) = \sqrt{0.0012^{2} + 0.0014^{2} + 0.0025^{2}} = 0.00311 \text{ AU}$$

Table 4. Values of the uncertainties related to absorbance of the sample solution

Description	Value	Unit
$u(A_{sample})$	0.00311	AU
$u(C_{dc})$	0.002*	mg/mL

*The uncertainty of C_{dc} is established based on experience to 0.002 mg/mL.

2.3.3 Component 3 Calibration curve

Estimation of the uncertainty in $(u(c_0) \text{ or } u(x_{obs}) :$

$$u(c_0) = \frac{S_{residual}}{b} \cdot \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{b^2 \sum (x_i - \bar{x})^2}}$$

(it	has	units	of	mg/L)
-----	-----	-------	----	-------

(it has unit	s of mg/L)
b	Slope
y-bar	average value of the observed responses (= $\Sigma y_{i}/n$)
y 0	response of the sample
Xi	concentration of the ith standard solution
x-bar	average value of the concentration of the standard solutions (= $\Sigma x/n$)
m	number of measurements to determine C _{NH4}
n	number of calibration points

Table 5. Calibration results

	x (mg/ml)	y(AU)		x_i^2	(x-x _{mean)} =	(x-x _{mean}) ²	(y-y _{mean}):	(y-y _{mean}) ²	A*B	*y .	(yi-yc)²
	0	0.0011									
	0.05	0.129		0.0025	-0.1700	0.02890	-0.3917	0.1534	0.0666	0.122443902	4.298E-05
	0.1	0.236		0.01	-0.1200	0.01440	-0.2847	0.0811	0.0342	0.239578049	1.280E-05
	0.2	0.4696		0.04	-0.0200	0.00040	-0.0511	0.0026	0.0010	0.473846341	1.803E-05
	0.25	0.59		0.0625	0.0300	0.00090	0.0693	0.0048	0.0021	0.590980488	9.614E-07
	0.5	1.1789		0.25	0.2800	0.07840	0.6582	0.4332	0.1843	1.17665122	5.057E-06
Mean	0.2200	0.5207	Sum	0.36500		0.12300		0.67512	0.28815		0.000079835
				n=5							
	b(Slope)	2.342683		$*y_{c} = 2.34$	2683 x _i + 0	.00531		S(Residual)	0.005159	S _(Residual) /b	0.00220
	a(Interc)	0.0053098		$c_0 (x_{obs})$	0.166386			s _b	0.014709	1/m + 1/n	1.2
	R2	0.999882		$u(x_{obs})$	0.002202			sa	0.003974	(y _o -y _{mean}) ²	0.015775
				C _{NH4}	0.207983					$b^2 \cdot \Sigma (xi - x_{mean})^2$	0.67504409

$$S(residual) = \sqrt{\frac{\sum_{i=0}^{n} [y_i - y_c]^2}{n-2}} = \sqrt{\frac{7.9835 \cdot 10^{-5}}{3}} = 0.005159 \text{ AU}$$

$$u(c_0) = \frac{S_{residual}}{b} \cdot \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{b^2 \sum (x_i - \bar{x})^2}} = \frac{0.005159}{2.3468} \cdot \sqrt{\frac{1}{1} + \frac{1}{5} + \frac{0.015775}{0.67504}} = 0.002436 \ mg/L$$

2.4 Step 4. Calculation of Combined standard uncertainty and Expanded Uncertainty

2.4.1 Calculation of Combined standard uncertainty

$$\frac{u\left(c_{NH4}\right)}{\left(c_{NH4}\right)} = \sqrt{\left(\frac{u\left(A_{sample}\right)}{A_{sample}}\right)^{2} + \left(\frac{u(c_{0})}{c_{0}}\right)^{2} + \left(\frac{u(fd)}{fd}\right)^{2}}$$
$$\frac{u(c_{NH4})}{\left(c_{NH4}\right)} = \sqrt{\left(\frac{0.00311}{0.3951}\right)^{2} + \left(\frac{0.002202}{0.16639}\right)^{2} + \left(\frac{0.00168}{1.25}\right)^{2}} = 0.01545$$

2.4.2 Calculation of the output quantity

Table 16. Values for calculation of the $\mathcal{C}_{\rm NH_4^+}$

Quantity	Value	Unit					
A _{Sample}	0.3951	AU					
a (Intercept)	0.00531	AU					
b(Slope)	2.34268	AU x L/mg					
R	0.9999	-					
fd	1.25	-					
ΔC_{dc}	mg/L						
$c_0 = 0.1664 \text{ mg/L}$ and $C_{\text{NH}_4^+}$ in the sample = 0.2079							
	mg/L						

$$u(C_{\mathrm{NH}_{4}^{+}}) = 0.01545 \cdot 0.2079 = 0.0032125 \,\mathrm{mg/L}$$

Combined standard uncertainty is:

$$u_c(C_{\mathrm{NH}_4^+}) = \sqrt{u_c(C_{\mathrm{NH}_4^+})^2 + u_c(C_{dc})^2} = 0.00378 \mathrm{ mg/L}$$

2.4.3 Expanded uncertainty is:

$$U = k \cdot u_c \left(C_{\mathrm{NH}_4^+} \right) = 2 \cdot 0.0038 \,\mathrm{mg/L}$$

U = 0.0076 mg/L (k = 2, approximately 95% level of confidence)

2.5 Reporting of results

 $C_{\text{NH}^+} = 0.208 \pm 0.008 \text{ mg/L}$ (k = 2, approximately 95% level of confidence).

3. Estimation of the combined uncertainty using spreadsheet

The uncertainty of the final concentration of NH_4^+ can also be estimated by applying the spreadsheet approach. This approach summarizes the relationship between all of the variables that have impact on the uncertainty of the concentration of NH_4^+ .

The following equation is used for the calculation of the combined uncertainty:

$$u_{c} = \sqrt{\left[\left(\frac{\delta C_{sample}}{\delta Co}\right)^{2} \cdot u^{2}(co) + \left(\frac{\delta C_{sample}}{\delta fd}\right)^{2} \cdot u^{2}(fd) + \left(\frac{\delta C_{sample}}{\delta \Delta Cdc}\right)^{2} \cdot u^{2}(\Delta Cdc)\right]}$$

The equation neglects any correlation between the measured values.

Table 7 Estimation of the combined uncertainty by the spread sheet approach

					u(x)	0.002202021	0.0016768	0.002	
					Quantity	C ₀	fd	∆C _{dc}	
Quantity	Value	u	Unit		C _o	0.168588279	0.1663863	0.166386	
C _o	0.1663863	0.002202021	mg/L		fd	1.25	1.2516768	1.25	
fd	1.25	0.00167677			∆C _{dc}	0	0	0.002	
∆C _{dc}	0	0.002	mg/ml						
<u>_</u>	0.0070909	m.e/l	1		C	0.2407	0 2082	0.2400	1
UNH4	0.2079020	mg/L			CNH4	0.2107	0.2003	0.2100	
					$\Delta C_{\rm NH4} = c_{\rm i} \cdot u(x_{\rm i})$	0.00275	0.00028	0.00200	
					$(ci. u(xi))^2$	0.000008	0.000000	0.000004	
					Indexes	65.0%	0.7%	34.3%	100.0%
					$\Sigma[ci. u(xi)]^2$	0.000012			
								$u(C_{NH4}) = \Sigma[$	[ci . u(xi)] ²
		u(C _{NH4}) =	{Σ[ci. u(xi	$[]^{2}\}^{1/2}$	u(C _{NH4})=	0.0034138			

$$u_c(C_{NH_4}) = \sqrt{\sum (\Delta C_{NH_4})^2} = 0.0034 \text{ mg/L}$$

p. 20/21

Calculation of the output quantity

$$C_{\rm NH^+_{\star}} = 0.2079 \, \rm mg/L$$

Hence, $C_{NH_4^+} = 0.208 \pm 0.007$ mg/L (k = 2, approximately 95% level of confidence)

4. Summary

The results of uncertainty estimations, using different methods, are summarised in the following Table.

Table 8 Summary of the obtained results for $u_c(C_{NH_4})$ using different approaches

Estimation of $u_c(C_{NH_4})$	Determined concentration	Estimated U_{Expanded} (k = 2)
	(mg/L)	mg/mL
Approach 1	0.2084	0.007
Approach 2	0.2084	0.008
Approach 3	0.2084	0.007

5. References

- 1. Eurachem/CITAC Guide CG 4, Quantifying Uncertainty in Analytical Measurement, Third Edition, 2012.
- 2. Estimation of measurement uncertainty in chemical analysis (analytical chemistry) course. An introductory course on measurement uncertainty estimation, specifically related to chemical analysis. Ivo Leito, Lauri Jalukse, Irja Helm.
- 3. A Guide on Measurement Uncertainty in Chemical & Microbiological Analysis. Accreditation Scheme for Laboratories, Technical Guide 2. Second edition 2008.
- 4. Statistics and Chemometrics for Analytical Chemistry, JC Miller and JN Miller, 6th edition, Ellis Horwood Prentice Hall, 2010.
- 5. G104- Guide for Estimation of Measurement Uncertainty In Testing, American Association for Laboratory Accreditation, December 2014.