
Case stud	dy 1 – Basic workflo	wc	microcoat
Getting I	eady for testing a b	iological drug produ	ct with MAT
	feasibility Generic valida	Validation	Release testing
	1 2 3 4	5 6 7 8	9 10 11 12
A	Endotoxin STD 1	sample dilution 1	samplpe dilution 2 + LTA
В	Endotoxin STD 2	sample dilution 1 + RSE	samplpe dilution 2 + Flagellin
С	Endotoxin STD 3	sample dilution 1 + LTA	samplpe dilution 3
D	Endotoxin STD 4	sample dilution 1 + Flagellin	sample dilution 3 + RSE
E	Endotoxin STD 5	sample dilution 2	sample dilution 3 + LTA
• • • • • •	Blank (medium)	sample dilution 2 + RSE	sample dilution 3 + Flagellin
G	LTA – 0.5x spike	LTA – 1x spike	LTA – 2x spike
H H	Flagellin – 0.5x spike	Flagellin -1x spike	Flagellin – 2x spike
	ead-out: IL-6 nterpretation: 2.6.30, Met	hod B (semi-qualitative)	
			4

		5 0,1	ici gist			Case study 3 – Synergistic effects						
Spike	recove	ery > 20	00 %						micro			
Dilution	Measured [OD ^P]	Endotoxin Spike [OD ^s -OD ^p]	LTA Spike [OD ^s -OD ^p]	Fla Spike [OD ^s -OD ^p]	Status	OD-BLK	0.5 x Spike	1 x Spike	2 x Spike			
Dilution 1	0.059	0.208	0.246	2.050	Invalid	Endotoxin	0.094	0.266	1.414			
Dilution 2	0.056	0.243	0.149	1.325	Invalid	LTA	0.016	0.033	0.150			
Dilution 3	0.119	0.164	0.077	1.571	Invalid	Fla	0.147	0.581	1.056			
and Flage	()					p		TA) and Flag				
RSE:LTA:	Valid reco Invalid rec Invalid rec	coveries fo	th all teste th dilution or all teste	ed dilution 1, valid r d dilutions	ecoveries s (OD > O	with dilution 2 D(2x spike)) ns (ie., below		on limit)				

	С	ase s	tudy	y 4 –	An alter	native	to BET	mc
		The cl	halle	enge:	Analysis	of VLP	S	microcoat
	Endotox	in test	Units	VLP1	VLP2	VLP3	VLP4	NPET net velicible (velovet for siver test extisted
	Gel c	lot		00.65	Test r			\rightarrow BET <u>not reliable/robust</u> for given test articles
+	(Method A) Turbidimetric kinetic		-	30-60	determined	≤350; >273	<u>≥</u> 350; >983	
	(Metho	od C)	EU/mg	3	154.8	3-17; 3,817	8.5-30 Not	
	Chromoger (Metho			504	1,037	Not determined	determined	
		Method D kinel	Test Chron	nogenic	Medium wi	ith MAT a	and LAL	\rightarrow MAT <u>reliable/robust</u> for given test articles
• • •		PB	Eur. 2.6. MC MA Eur. 2.6.	т	32 EEU/mL	5		
		Compa	arisor	n of two 500 400 200 100 0		■PBMC MAT ■PBMC MAT □Menocytic or		→ MAT is the preferred test method

| 11

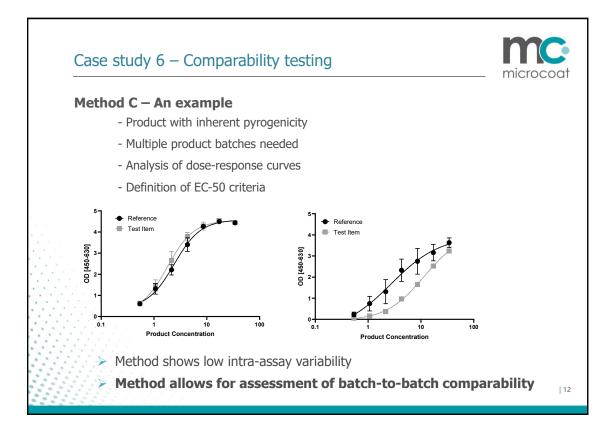
Case study 5 – Low Endotoxin Recovery

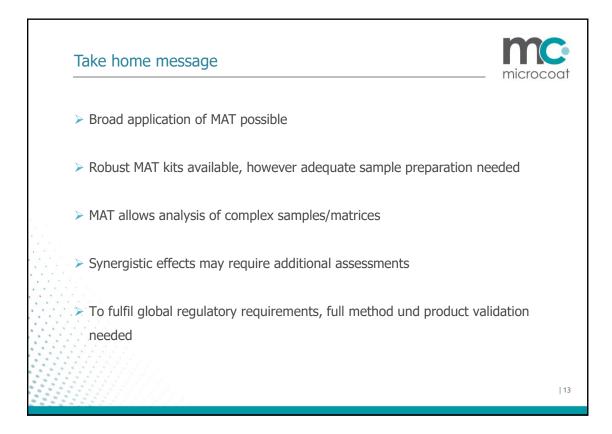
LER Study – MAT (quantitative Interpretation) vs. LAL

Results	from LER	study in L	AL at da	y 0
Dilution	Measured value in DP [EU/mL]	EU/mL x Dilution in DP	Recovery to theor. value in DP [%]	PPC in DP [%]
1:12.5	0.103	1.29	86	136
1:25	0.0563	1.41	93	155
1:50	0.0241	1.21	81	100

Results from LER study in MAT at **day 0**

	Dilution	Measured value in DP [EU/mL]	EU/mL x Dilution in DP	Recovery to theor. value in DP [%]	PPC in DP [%]
	1:1	0.654	0.654	44	86 *
1	1:2	0.619	1.24	83	142
1	1:4	0.412	1.65	110	119
	1:8	0.202	1.62	108	100

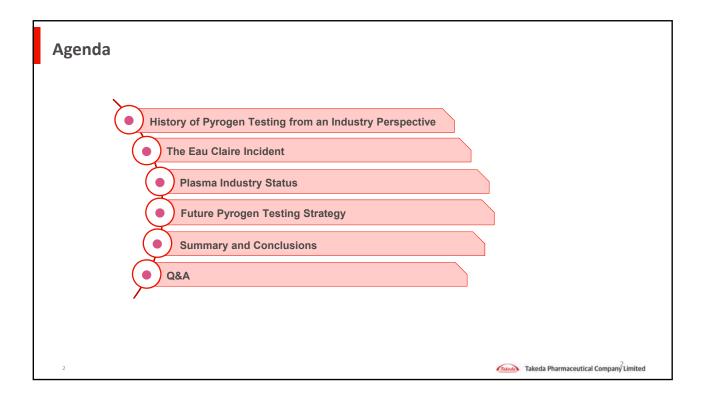

Results	from LER	study in L	AL at day	/ 2
Dilution	Measured value in DP [EU/mL]	EU/mL x Dilution in DP	Recovery to theor. value in DP [%]	PPC in DP [%]
1:12.5	0.0115	0.144	9	125
1:25	0.00648	0.162	11	99
1:50	< 0.00330	< 0.165	< 11	97

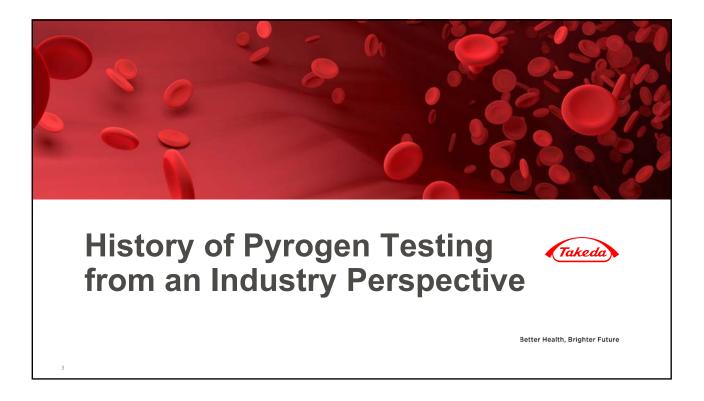

Results from LER study in MAT at **day 2**

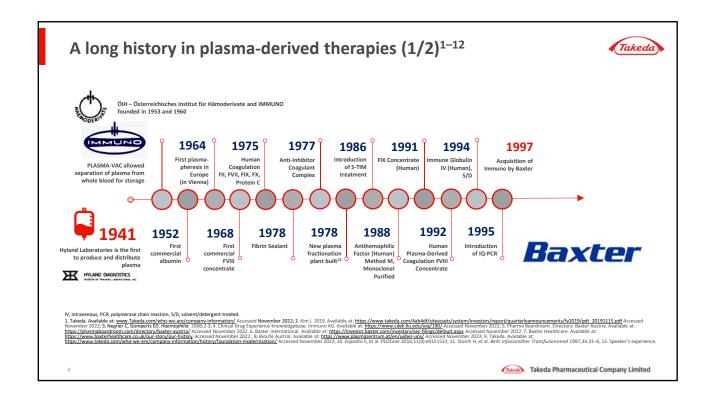
Dilution	Measured value in DP [EU/mL]	EU/mL x Dilution in DP	Recovery to theor. value in DP [%]	PPC in DP [%]
1:1	< 0.125	< 0.125	< 8	104
1:2	0.193 *	0.386	26	36
1:4	< 0.125	< 0.500	< 33	103
1:8	< 0.125	< 1.00	< 67	111

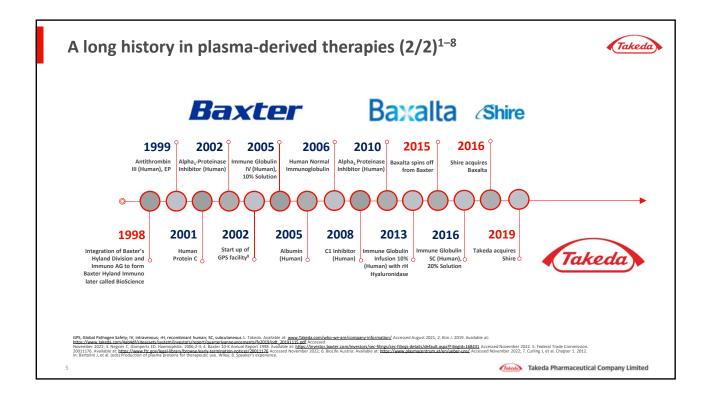
*CV > 30 %; Note: Spiked water controls were stable ie., 50-200 % over time (data not shown).

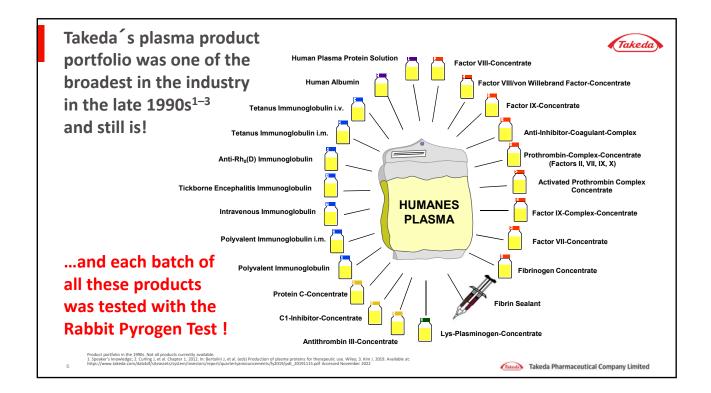
> In Product DP, a LER-effect was detected with MAT and LAL

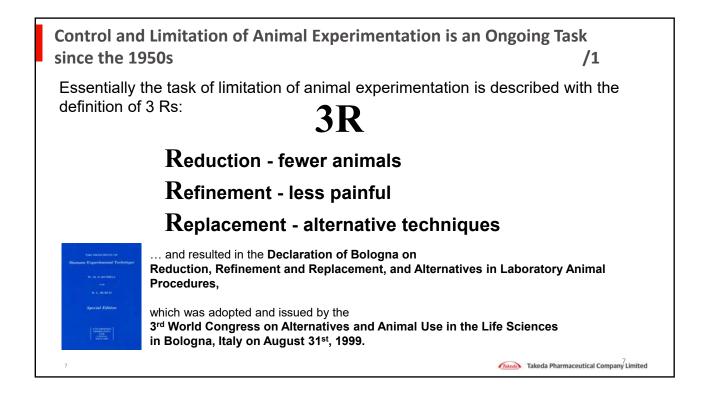


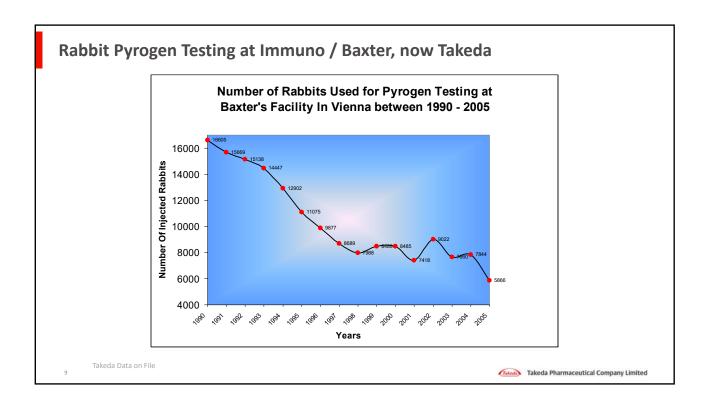





Disclosure


• Peter L. Turecek is a full-time employee and a stock owner of Takeda



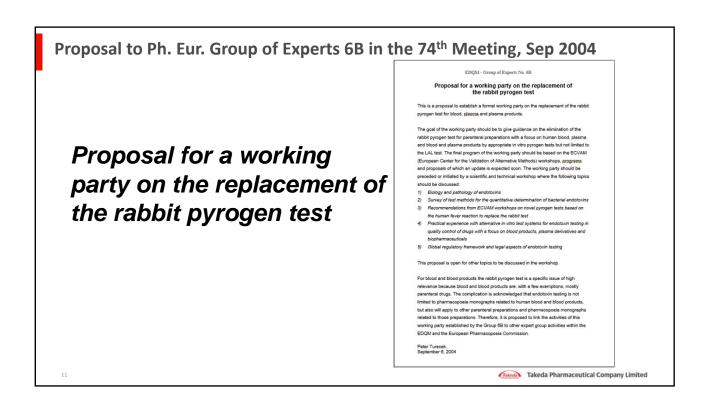


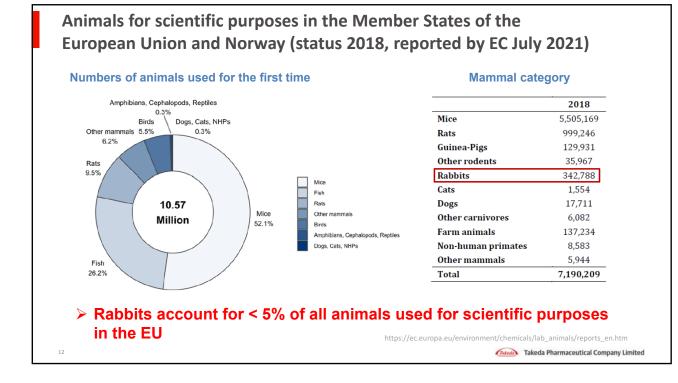
Control and Limitation of Animal Experimentation is an Ongoing Task since the 1950s /2

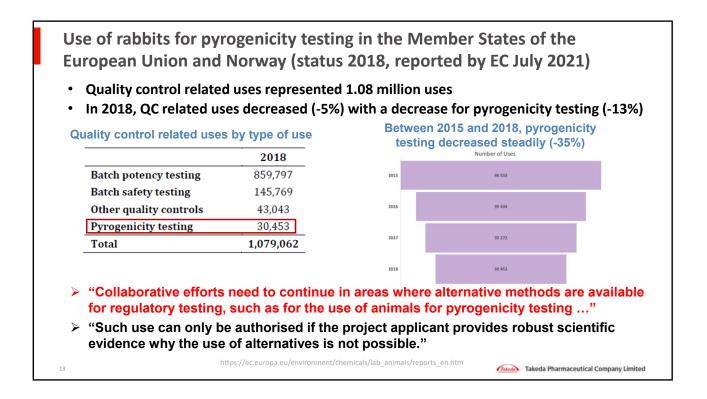
- Companies like Immuno AG (successor Takeda) had been consistently working on reduction of animal experiments.
- For example: From the early 1980s over 15 years Immuno AG replaced, reduced or refined animal tests for vaccine products release from 4,278 to 2,011 per average vaccine lot with a total savings of animals of

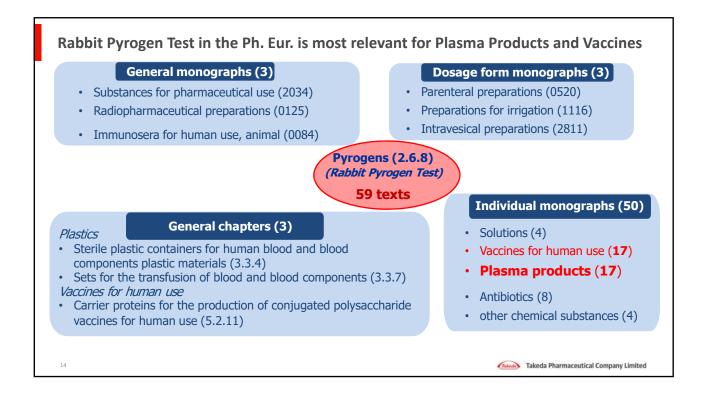
Schober-Bendixen S., Application of the 3 R. ALTEX. 1997;14(3):99-106.

around 50,000 per year!




Ph. Eur. Monographs on Plasma and Blood Related Products Consequences in 2004

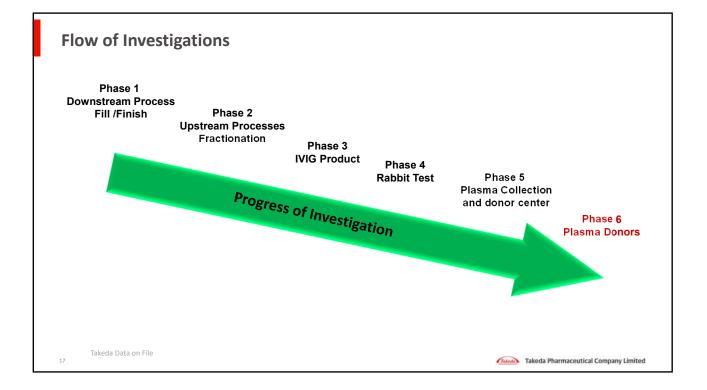

→ The monographs related to plasma and plasma products did not explicitly allow alternatives for the rabbit pyrogens test


(Takeda Pharmaceutical Company Limited

→ Estimates said that by 2004 approx. 200,000 rabbits per year were used worldwide for the pyrogen test only

What had happened?

Problem description:


- In March 2007, an IVIG 10% lot was tested for pyrogen (rabbit test) by the QC-laboratory at the LE
 plant and found to fail test requirements.
- Subsequently eleven (11) other IVIG 10% batches failed the rabbit pyrogen test.

Investigation:

- CAPA investigation was initiated to identify the root cause in the manufacturing plant LE at the formulation/filling and downstream processes.
 - Following thorough investigation any influence through the processes in LE could be ruled out. All analytical
 investigations on the product proved that the cause was not coming from the LE processes.
- Another CAPA was conducted in the VI plant for detailed investigations in the upstream process.
 - Following thorough investigation, no root cause in the upstream processes could be identified. This proved that the cause is not coming from the upstream processes.
- As next step CAPA was conducted on Division level (in charge of all plants) to focus on investigations in plasma sourcing and handling side.

```
16
```

Takeda Data on File

Inv	estigations-Downstream Process & Fill Finish
All i ❖	involved downstream and pharmaceutical production processes were assessed against potential sources of root cause: <u>Environmental monitoring</u> - routine LAL (WFI, before sterile filtration, downstream processes, raw materials) all results (Jan to Jun 2007) met acceptance criteria
	 extraordinarily LAL final product testing: all results < 1EU/ml bioburden (equipments, in process samples during bulk production, WFI, demineralized water) did not show any correlation to pyrogenicity
	- depyrogenization/sterilisation processes incl sterile filter integrity were checked O.K.
	 peptidoglycan testing of final product: no correlation found to pyrogenicity and all values found far below pyrogenicity causing concentration
*	Bulk Manufacturing
	 pyrogenicity is not production line specific, not time specific, not successively produced no correlation with cleaning processes
	- no correlation with column storages, cycle times, or other in process parameter
*	Fill/Finishing operations
	- no correlation with particles, garments and operation trendings,
	 no correlation with process parameters or cycle times no correlation to any in process test or release test parameter
*	Raw Materials - no correlation to raw material lots
*	<u>Equiment calibration/maintenance & training</u> - no unusual observations or events regarding maintenance and calibration of equipment or personal training
≻	No observation which could explain the pyrogenicity of the product
≻	No root cause could be identified
18	Takeda Data on File Takeda Pharmaceutical Company Limited

Investigations – Upstream Processes

All involved processes (Plasma Fractionation, Central Warehouse, Receiving & Inspections Dpt.) were assessed against all potential sources of root cause which include people, materials, methods, environment, and equipment:

Data analysis

- bioburden, LAL, in process testing, process parameters, quality control testing CIP and Cleaning Processes
- manual and automated cleaning of equipment and room cleaning
 Maintenance
- chemicals, auxiliaries
- Process
- production equipment, parameters, personal processes (shifts,..)
- Additional samples drawn and analyzed
 - in process bioburden and LAL, cleaning processes (last rinse, swabs, cleaning agents)
- The investigations and the data analysis did not reveal any correlation or observation, which could explain the pyrogenicity of the affected IVIG lots
- > No root cause could be identified in the upstream manufacturing processes

Investigations – IVIG Product Analysis

- TLR 2 and TLR4 assays conducted by FDA
- Ouchterlony double immunodiffusion assay
- IgG structural analysis: FT IF, differential scanning calorimetry, 2-dimensional electrophoresis, size exclusion chromatography
- Anti-rabbit ELISA, anti-LPS ELISA
- Elements, chemicals: ICP MS, GC
- Protein analytics: LC-MS, GC-MS, SDS-PAGE
- Forensic screening of final container product for neuroleptic drugs (120 drugs)
- Fluorescence spectroscopy pattern

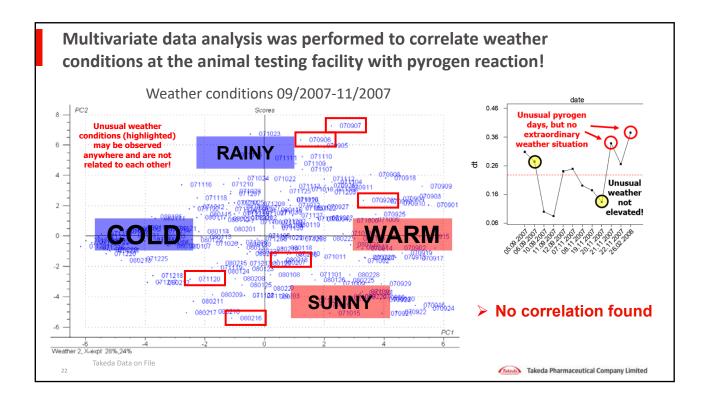
- Cytokine/chemokine in product: human cytokines and rabbit cytokines
- Bronchospastic guinea pig and hypotensive rat
- Monkey (cynomolgus) study: IV application of most pyrogenic final products: no difference in body temperature/blood cytokine level
- PBMC cytokine release assays (high/low density cells)
- Toll Like receptor assay in THP-1 blue CD14 cells
- Human granulocyte cell line (HL60) activation assay
- Co-culture human saphenous vein (endothelial) Cell + PBMC
- > The investigations did not reveal any useful correlation to pyrogenicity
- > No discrimination test (pyrogenic versus non pyrogenic lots) could be found

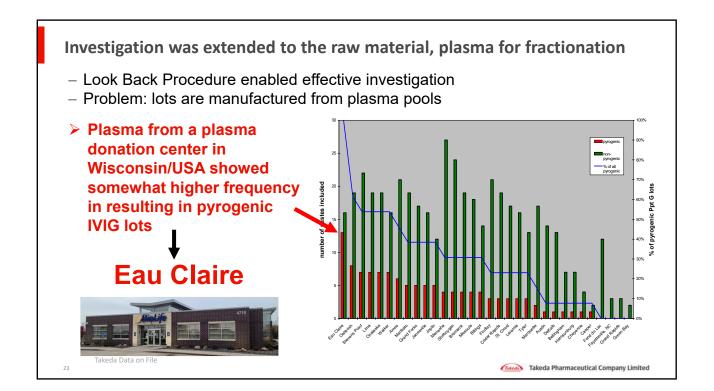
Takeda Data on File

Takeda Pharmaceutical Company Limited

Investigations – Pyrogen Test

All involved processes were assessed against potential sources of root cause:

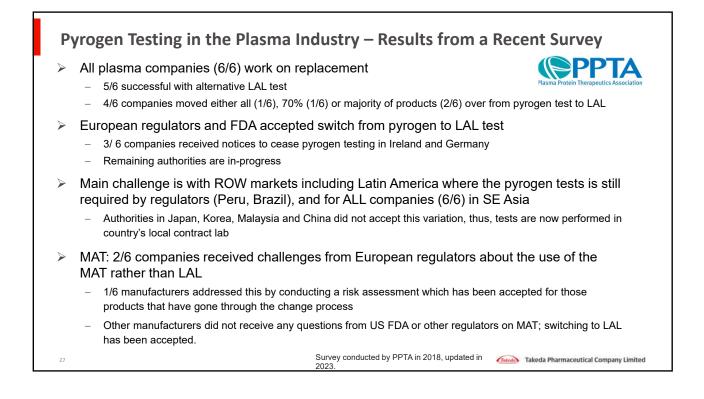

Animal facilities

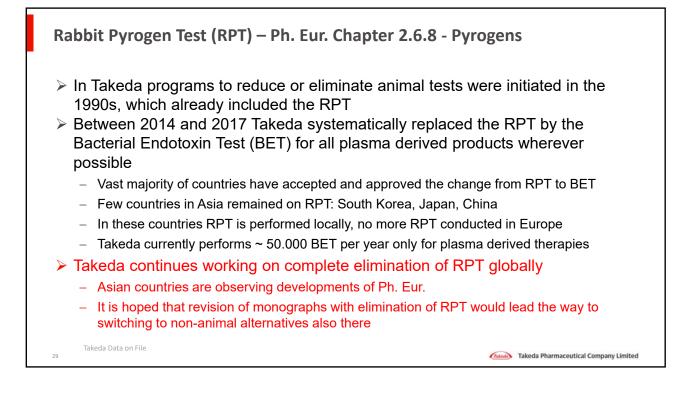

- no unusual observations, events at facility
- no correlation to rabbit source
- no correlation to materials used for testing
- no correlation to environmental conditions at facility
- The investigations did not reveal any correlation or observation, which could explain the pyrogenicity of the product lots

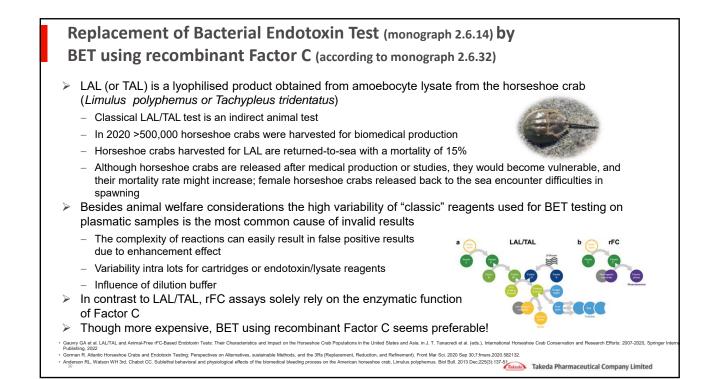
Supplemental Rabbit Studies

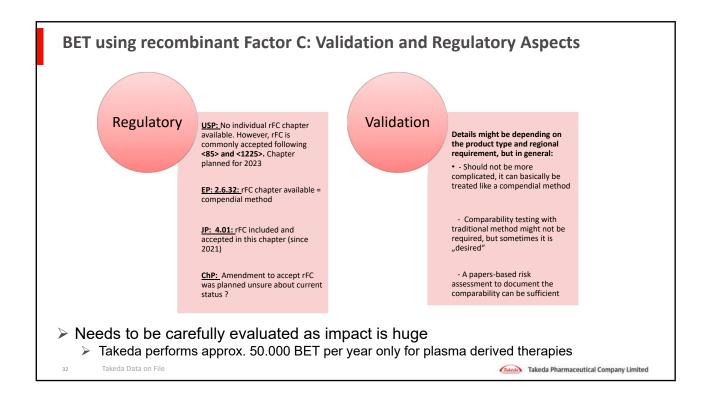

- Post pyrogen test: cytokines/blood picture and -chemistry
- Pre rabbit test: rabbit whole blood cell adsorption experiment
- Rabbit tissue study: cross-reactivity study in a rabbit model system using immunohistochemistry on cryo tissue sections
- The investigations did not reveal any correlation to pyrogenicity
- No discriminatory test could be found

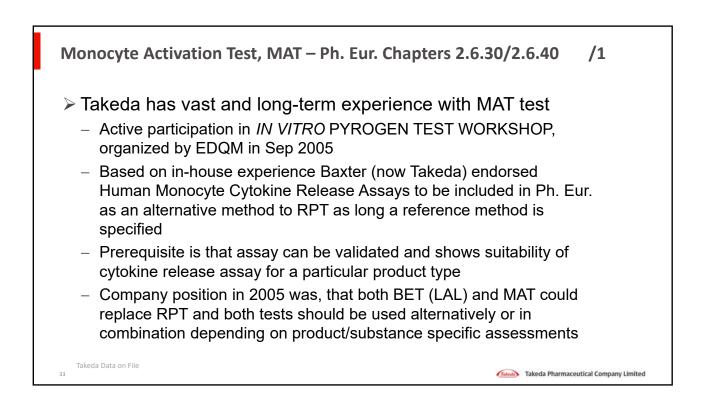
21 Takeda Data on File

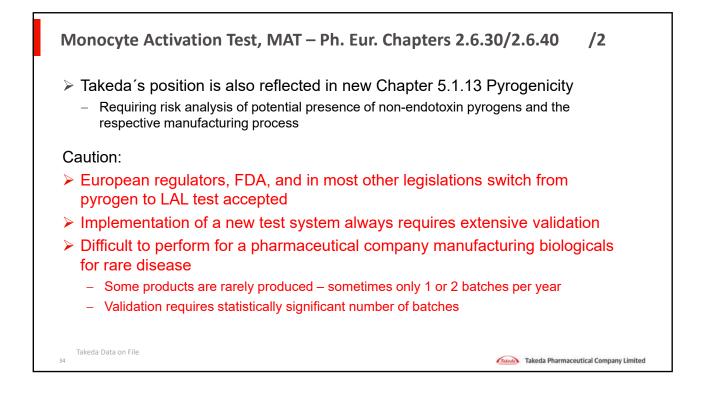


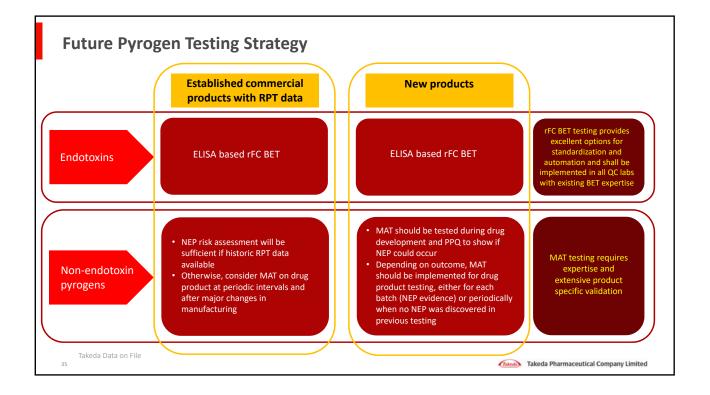

The Eau Claire Investigation
 All potential root causes for contamination of plasma with pyrogenic substances were investigated in greatest detail Contamination of collection bags Environmental contamination Unfavorable storage and/or transport Plasmapheresis equipment and machines Plasma donation process Plasma donors
Statistical analysis identified 28 donors from the plasma center as potential contributors to the RPT failures
 11 of the 28 donors plasma were available for testing
One individual's plasma was positive in the RPT test at a dilution between 100 to 1000 times higher than control donors!
 This was a young woman
 Review of her medical history, a subsequent enhanced medical history and clinical laboratory testing focused on immune function did not identify any unusual factors
 The donor was and remains in robust good health
24 Takeda Data on File Takeda Pharmaceutical Company Limited



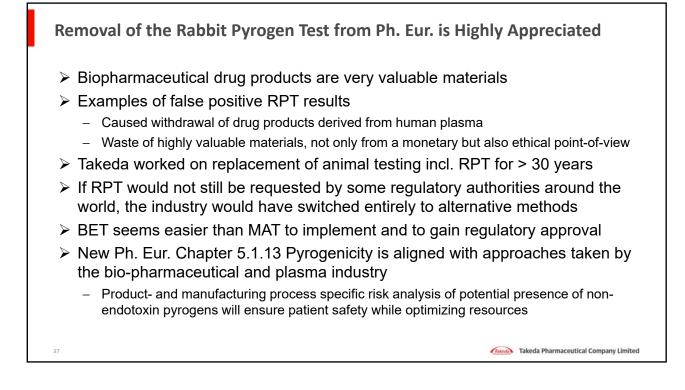


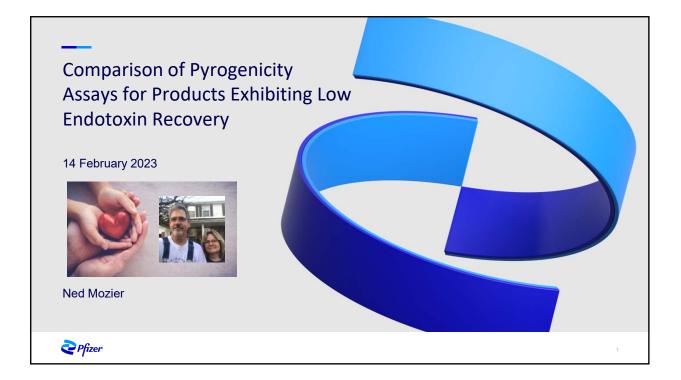


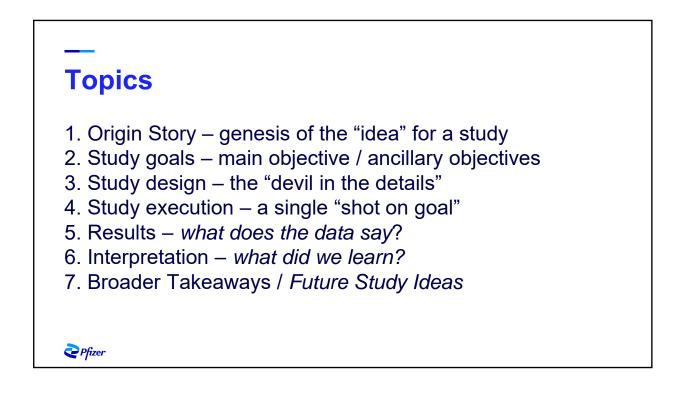


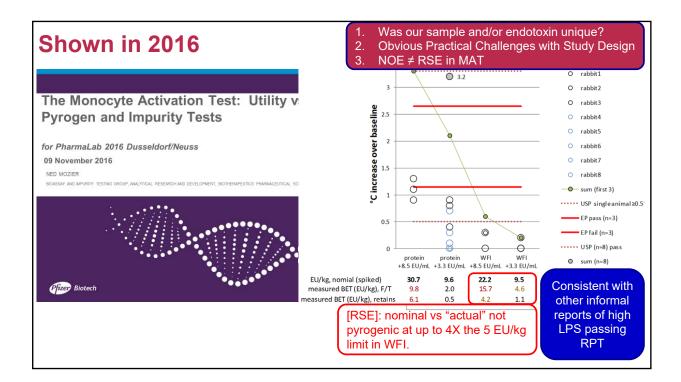

Takeda is Evaluating the Most Feasible Options to Replace BET by BET using recombinant Factor C

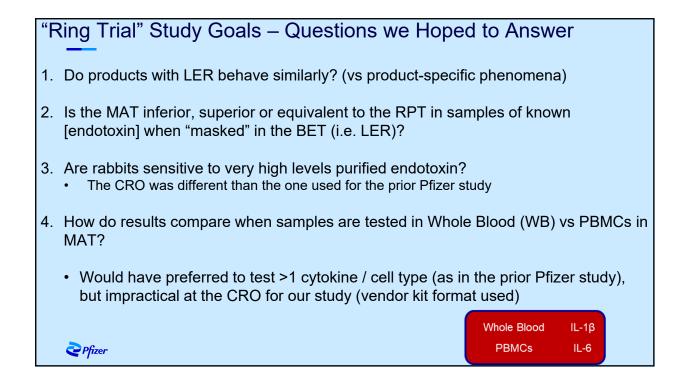
	Chrom. / Turb. Kinetic	PTS™ / MCS™ Cartridges	(Endozyme® II GO Strips (rFC)	EndoLisa [®] (rFC)
Source of the Reagents	Animal based (variable)	Animal based (variable)		Recombinant (standardized)	Recombinant (standardized)
Sensitivity (EU/ml)	0.005 EU/ml	0.05 EU/ml		0.05 EU/ml	0.05 EU/ml (lower dilutions possible)
Standard Curve	Manual	Archived		Pre-coated (minimal preparation)	Pre-coated (minimal preparation)
Interfering Factors	Multiple	Multiple		Low	Low
False positive due to ß- Glucan	Yes	Yes		No	No
Reading	Kinetic	Kinetic		Endpoint	Endpoint
Time to Result 21 Samples	50 min – 90 min	90 min (MCS only, PTS too low capacity to compare)		50 min	180 min
Hands-on Time 21 Samples	20 -30 min	60 – 80 min		20 -30 min	20 -30 min
Throughput	High to very high if automated	Low to high if automated with Nexus		High to very high if automated	High
Preference for 31	or ELISA type as	ssays		(mark)	Takeda Data on File Takeda Pharmaceutical Company Limited








Acknow	ledgment	
	Takeda Global Quality	Takeda Plasma Global Quality
	Christoph Hansy	Meike Reumueller
	Christina Oberhuber	Wolfgang Drosg
	Georg Göstl	Barbara Glantschnig
	Takeda Global Manufacturing Sciences	Takeda Plasma Derived Therapies R&D
	Reinhard Ilk	Alfred Weber
	Michael Kraus	Wolfgang Teschner
	Takeda Corporate Affairs Plasma Deborah Hibbett	Derived Therapies
	Plasma Protein Therapeutics Ass PPTA	ociation
	Dominika Misztela	
38		Takeda Pharmaceutical Company Limited



	1 C C C C C C C C C C C C C C C C C C C	to the US of					
-				R82 was published			
V O	good	solutions	existed	for samples with Low End	otoxi	n Recovery (l	.E
5		Rabbit Pyrogen Test					
	USP LAL	Non- spiked finished product	Spiked finished product	Endotoxin Control Strategy	ca	Kevin L. Williams Editor)(
201	No LER	Non pyrogenic	-	Microbial control during manufacturing; USP LAL is suitable as a release test method.	nu the		i
14/2	LER	Non-pyrogenic	Pyrogenic	Microbial control during manufacturing; Rabbit Pyrogen test as release test (interim measure); PMC to develop a suitable <i>in vitro</i> test method.		Endotoxin Detection and Control in	
~2014/2015	LER	Non-pyrogenic	Non-pyrogenic	Microbial control during manufacturing; Risk assessment; Endotoxin specification at the BDS stage prior to PS addition; Microbial control of input materials; PMC to develop a suitable <i>in vitro</i> test method.	de	Pharma, <i>Limulus</i> , and Mammalian Systems	a
	LER	Pyrogenic	-	Reject product			

PDA Low Endotoxin Recovery Technica	5.2.2 Product Dosage	Approach was
 Dayue Chen, PhD, Eli Lilly and Company, G. Friedrich von Wintzingerode, PhD, Genentes Julie Barlasov-Brown, Merck & Co. Lindsey Brown, PhD, U.S. Food and Drug At Allen Burgenson, Lonza Group Ltd. Joseph Chen, PhD, Ulragenix Pharmaceutica Monica Commerford, PhD, U.S. Food and D Gregory Devulder, PhD, bioMerieux, Inc. Jennifer Farrington, PhD, U.S. Food and Drug At Patricia Hughes, PhD, U.S. Food and Drug A Patricia Hughes, PhD, U.S. Food and Drug A Stefan Ishak, Novartis Chris Knutsen, PhD, Bristol-Myers Squibb In Jack Levin, MD, University of California, San Jeanne Mateffy, Amgen Inc. Ned Mozier, PhD, U.S. Food and Drug Adn Cheryl Platco, Merck & Co. (retired) Johannes Reich, PhD, Microcoat Biotechnolo Stijn Seels, Sanofi Anders Thorn, Novo Nordisk A/S Masakazu Tsuchiya, PhD, Charles River Labo René Ørving, Biogen 	 Another major consideration in conducting animal or in vitro studies is the dose of the product tested. For the traditional progen test in rabbits with unspiked product, animals are administered a quantity of drug equivalent to the maximum dose per kg of body weight of a human subject. For example, a fixed dose of 1 mL of a 150 mg/mL drug product given subcutaneously to human subjects weighing 50-100 kg would be calculated as follows: If compendial RPT methods, administration of very small-volume doses is neither recommended nor pare r50 kg (Smallest Patient) = Max Exposure of 3 mg/kg. In compendial RPT methods, administration of very small-volume doses is neither recommended nor pare expected to be spiked "maxi," that is, undifuted. A guide for conducting the LER hold-time and preparation of dosing solutions for progen test in rabbits, based on an assumed human dose of 3 mg/kg kg active pharmaceutical ingredient containing a targeted 35 EU/kg of endotoxin, and matching per kg human dosing, is as follows: 1. Use protein sample of 150 mg/mL 2. Reconstitute RSE (10,000 EU) with 1 mL LRW to achieve 10,000 EU/mL 3. Combine and mix 0.876 mL (876 mL) (0.876 et.5 mL) = 128 mg/mL 4. If sample is to be held three (3) days, test these samples immediately (T₄) and after hold time a. Didute 0.78 mL of spiked LRW or sample in 99 mL of PBS b. Protein concentration = (128 mg/mL) (0.78 mL/(0.78 mL + 99 mL)) = 1.0 mg/mL c. Reck i. 1.0 mg/mL protein * 9 mL = 9 mg protein e. 9 mg/3 kg = 3 mg/kg protein dose ii. 1.1 GEU/mL RSE * 9 mL = 105 EU e. 100 EU/s kg = 35 EU/kg RSE dose f. Based on individual rabbit weights, administer 9 mL/kg for the RPT 	nical Report No. 82 Endotoxin Recovery
P fizer	Before conducting LER studies in animals, ensure that the unspiked sample in the RPT is not inher- ently pyrogenic. The same should be done before conducting the MAT design described in Section 5.2.3 . Data analysis for both the RPT and MAT LER studies is discussed in Section 5.3 .	

Study design – Key Features

- 1. Avoid the sample handling challenges by using one facility for all tests
- 2. Test appropriate samples and compare MAT to RPT
 - Select products previously shown to be non-pyrogenic in RPT
 - Select products shown to exhibit LER in 3 days or less
 - · Compare to an identically prepared water control
 - Use RSE as source of LPS as spiking solution
- 3. Test from same vial at the same time in the same laboratoryControl for sample handling to directly compare assays
- 4. Pre-dilute each spiked product and water to achieve:
 Target mg protein per kg in RPT based on human dose
- 5. Dilute pre-dilutions identically for BET & MAT

2 Pfizer		otal 8 sa	amples
the preliminary correlation study	W	ater T0	Т3
Pfizer used same drug substance tested for TR82 and the preliminary correlation study	Pro	duct 3 T0	Т3
Dizer used some drug substance tested for TD92 and	Pro	duct 2 T0	Т3

Study execution

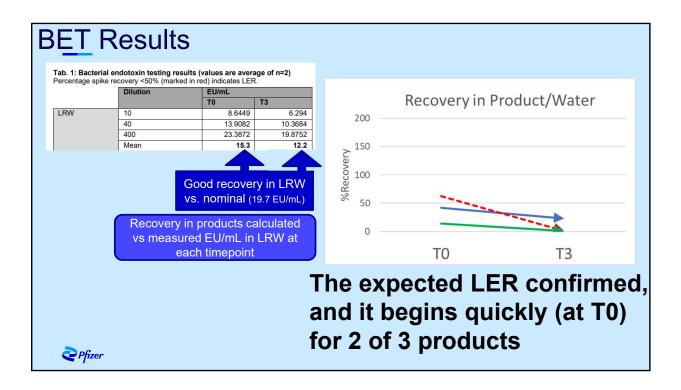
Pfizer

- 1. No single facility was proficient in all 3 assays: RPT, MAT & BET
- The company chosen struggled to perform MAT, so we split the study
 One company did the RPT
 - •Another did both BET & MAT
- 3. Pfizer person observed to assure samples prepared identically at both sitesThis gave us high confidence that results could be compared
- 4. The 3 Product doses varied widely, so initial spiking was varied to achieve 35 EU/kg and product-specific (mg/kg) goals in the final dosing solution
- 5. First samples prepared 3 days earlier (T3) and fresh (T0), then all 8 samples tested at the same time (the "Reverse Mode" as per TR82)
- 6. Execution of Study was Flawless "right the first time"
 ✓ All assays performed as close in time as humanly possible

roduct 1	Т0	Т3		
roduct 2	Т0	Т3		
Product 3		Т3		
Water		Т3		
Total		8 samples		
	Water	roduct 2 T0 roduct 3 T0 Water T0	roduct 2 T0 T3 roduct 3 T0 T3 Water T0 T3	

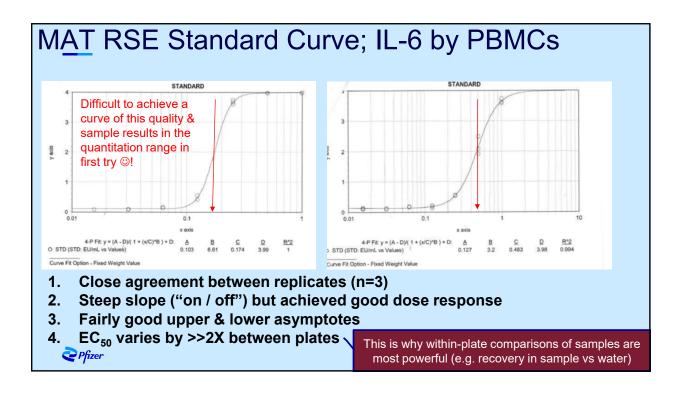
Study Completed in 2018, published last year

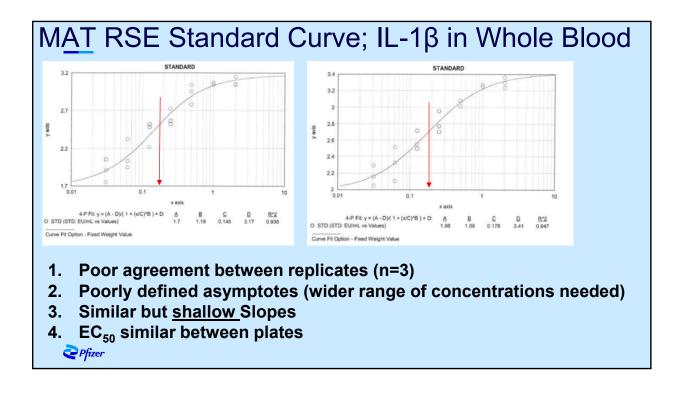
ALTEX, accepted manuscript published June 24, 2022 doi:10.14573/altex.2202021


Research Article

Comparison of Pyrogen Assays by Testing Products Exhibiting Low Endotoxin Recovery

Tammy L. Thurman¹, Carol J. Lahtt², Jeanne M. Mateffy³, Ren-Yo Forng⁴, Friedrich von Wintzingerode⁵, Lindsey M. Silva⁵, Sven M. Deutschmann⁶ and Ned M. Mozier¹ ¹Pfizer, Chesterfield, MO, USA; ²CILahti Consulting Services, Albany, CA, USA; ³Amgen, Thousand Oaks, CA, USA; ⁴EirGenix, Inc., Taiwan, Republic of China; ⁵Genentech, a Member of the Roche Group, South San Francisco, CA, USA; ⁶Roche Diagnostics GmbH, Penzberg, Germany


Abstract


The use of pyrogen tests to assess the risk of endotoxin in biological products has increased recently due to concerns of some regulatory authorities about products exhibiting low endotoxin recovery (LER). Manufacturers increasingly seek to reduce the use of animals unless essential to assure patient safety. The current study compares the ability of the monocyte activation test (MAT) and the bacterial endotoxin test (BET) to the rabbit pyrogen test (RPT) to detect endotoxin spikes in samples of products shown to exhibit LER. Product samples or water were spiked

			8.0 -						
au. 2. Increase in rai			7.0 -		7	.0 7.0		7.1	
	LRW T0	LRW T3			6.1			sum rabbit 1	Product 3 T3
rabbit 1	0.5	0.8	6.0					rabbit 2	0.2
rabbit 2	0.4	0.6						 rabbit 3 rabbit 4 	0.1
rabbit 3	0.1	0.7	5.0 -	4.9				 rabbit 5 rabbit 6 	0.2
rabbit 4	0.5	0.4	Se					© rabbit 7	0.2
rabbit 5	0.7	0.4	°C Increase					O rabbit 8 ——— Pass/Fail	0.1
rabbit 6	0.4	0.5	u 4.0	-					0.2
rabbit 7	0.4	0.9	ů	3.3					0.1
rabbit 8	0.3	0.6	3.0						0
sum (n=8 rabbits)	3.3	4.9							1.1
RPT result	FAIL	FAIL	2.0 -						PASS
			1.0		0 g	8	1.2	8	
			0.0 -	0000	8	Ŏ	8	8	

M	1 A	T De	esign	Su	mm	nary	,				Whole Blood PBMCs	IL-1β IL-6
		d are dilute	and water) ed to this co the same v	ommon	concent	ration, tl	hen all di	luted in				
Tab. S5: I	Prepa	aration of Sar	mples for MA	T using 1.	97 EU/mL	predilutio	ons from Ta	ble S3				
Assay type	İ	Total Fold D	•	49-fold	66-fold	99-fold	131-fold	197-fold	263-fold		sample diluent	
type		Expected Re	sult (EU/mL)	0.40	0.30	0.20	0.15	0.10	0.075	"Kit-	specific media"	
MAT	F	sample (mL)	, ,	0.100	0.100	0.050	0.050	0.050	0.050	Т	he endotoxin	
	F	Kit-specific m	nedia (mL)	0.390	0.560	0.445	0.605	0.935	1.265		oncentration	
	F	Total Volume	e (mL)	0.490	0.660	0 / 95	0.655	0.985	1.315		culated before	
E V	stand Sar of R was u hole	2 3 dard 1 me lot SE that used for d time e study	4 9 Product 1: 49 Product 1: 66 Product 1: 99 Product 1: 133 Product 1: 197 Product 1: 263 LRW: 49-fc LRW: 66-fo	-fold dilution -fold dilution -fold dilution L-fold dilution 7-fold dilution B-fold dilution	Wi repl	ithin-in	ussion plate strategy or 4?	uct 3: 49 uct 3: 66 uct 3: 99 uct 3: 13 uct 3: 19 uct 3: 19 uct 3: 26 W: 197-f	1 12 3-fold dilution 5-fold dilution 3-fold dilution 1-fold dilution 3-fold dilution old dilution old dilution	addin is how See me	ig to cells+med / we report [RS creted cytokine asured, cells no tionally disrupt secreted	E] s ot
	e pl Pfize		all four		ampl	es, a	nothe			⁻ T3 sa	mples	

MAT Results – RSE (LPS) in water

1. Nominal LPS is 19.7 EU/mL

	Dilution	EEU/mL PI	BMCs, IL-6	EEU/mL WB, IL-1β		
		TO	T3	TO	T3	
LRW	49	49	31.4	11.4	14.2	
	66	20.5	35.8	12.1	18.9	
	99	21.6	31.3	13.1	11.4	
	131	23.1	39.7	15.9	18.5	
	197	15.2	33.6	8.9	12.4	
	263	32.1	42.1	8.5	19.2	
	Mean	22	36	12	16	

This kind of variability (182% recovery) is not unusual, could be the standard curve prep for this particular plate (raw data suggests). No one believes that endotoxin in water is increasing over the 3 days! This is why comparing results within a plate (e.g. recovery in sample vs in water) is best and why plate to plate comparison of raw numbers is can be misleading.

Pfizer

	Tab. 4: Summary	y of data fr	om BET, RP	Re diff	sults (T0 vs erent for any nd together i	T3) not sta y assay bu n LRW ≁	,
		BET [EU/mL]	RPT (sum n=8) [°C]	MAT PBMC-IL-6 [EEU/mL]	MAT WB-IL1β [EEU/mL]		<pre>statistically different (prior</pre>
	LRW (T0)	15.3	3.3	22	12		MAT suggestive)
	LRW (T3)	12.2	4.9	36	16		Million Buggeouve)
	Product 1 (T0)	6.4	6.1	18	34		
	Product 1 (T3)	2.8	7.0	21	49		
	Product 2 (T0)	9.4	7.0	<1	<2		
	Product 2 (T3)	0.2	1.2	<1	<2		
	Product 3 (T0)	2.1	7.1	9	4		
	Product 3 (T3)	0.1	1.1	<1	<2		
P fizer							

Major Findings / Conclusions

- 1. At both CROs, Rabbits require >>>>> 5 EU/kg RSE to cause pyrogenicity
- 2. RSE in water is recovered well in BET & both MATs, less so with RPT
 BET & MAT are ≥ 100X more sensitive to RSE than the RPT
- 3. LER-Prone Products at T3 show positive correlations of MAT to RPT

	EU/mL BET	Σ°C, n=8 RPT	EEU/mL MAT/PBMC/IL6	EEU/mL MAT /WB/IL1β	
Product 1	2.8	7.0 (Fail)	In hindsight, for MAT		
Product 2	0.2	1.2 (pass)	should have p	out 2 samples	
Product 3	0.1	1.1 (pass)	/ plate (T0 & ⁻	13 for each)!	

4. RPT adds no additional information beyond MAT as a pyrogenicity test for LER resolution for relevant samples of these 3 products

MAT is not easy – careful design, superb execution and clear standards of assay performance are necessary to make sense of the data!

Research Article

Pfizer

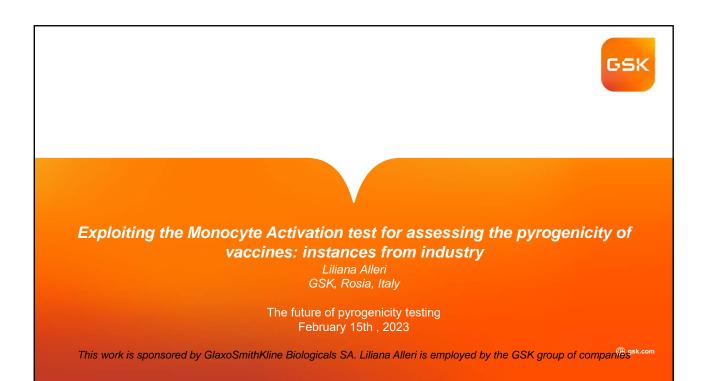
Comparison of Pyrogen Assays by Testing Products Exhibiting Low Endotoxin Recovery

Tammy L. Thurman¹, Carol J. Lahti², Jeanne M. Mateffy³, Ren-Yo Forng⁴, Friedrich von Wintzingerode⁵, Lindsey M. Silva⁵, Sven M. Deutschmann⁶ and Ned M. Mozier¹

¹Pfizer, Chesterfield, MO, USA; ²CJLahti Consulting Services, Albany, CA, USA; ³Amgen, Thousand Oaks, CA, USA; ⁴EirGenix, Inc., Taiwan, Republic of China; ⁵Genentech, a Member of the Roche Group, South San Francisco, CA, USA; ⁶Roche Diagnostics GmbH, Penzberg, Germany

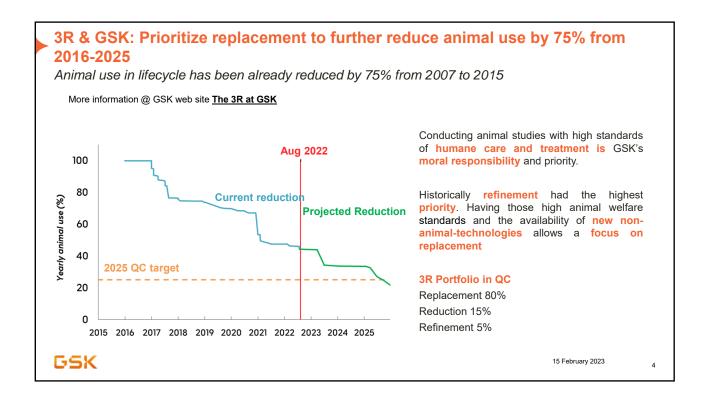
Abstract

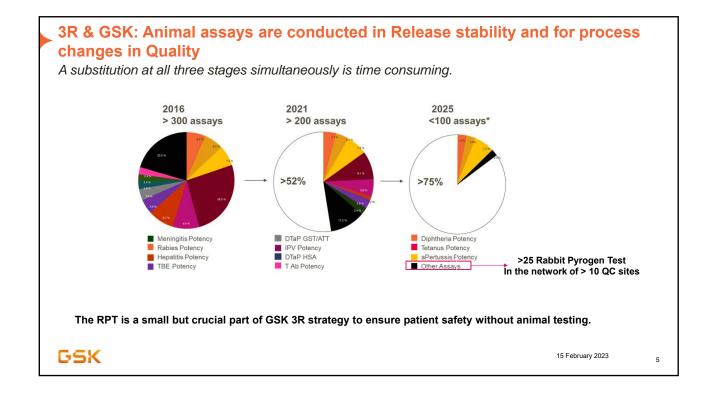
The use of pyrogen tests to assess the risk of endotoxin in biological products has increased recently due to concerns of some regulatory authorities about products exhibiting low endotoxin recovery (LER). Manufacturers increasingly seek to reduce the use of animals unless essential to assure patient safety. The current study compares the ability of the monocyte activation test (MAT) and the bacterial endotoxin test (BET) to the rabbit pyrogen test (RPT) to detect endotoxin spikes in samples of products shown to exhibit LER. Product samples or water were spiked with endotoxin and held for three days or tested immediately in the BET, the RPT and two variations of the MAT at the same time. Results show high sensitivity to endotoxin of both the BET and MAT and much lower sensitivity in the RPT than the 5 endotoxin units (EU) per kg common threshold. The results of the BET and MAT correlated well for the detection of endotoxin spike in water. We also show that LER (masking of endotoxin) found in the BET is also over time, thereby rendering it less or non-pyrogenic. We conclude the non-animal MAT option is a suitable replacement for the RPT to measure spiked endotoxin in biopharmaceuticals.

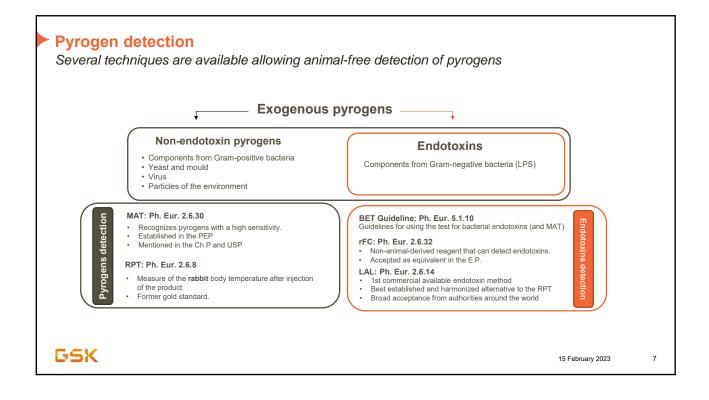

	Rabbit Pyr	ogen Test	
USP LAL	Non- spiked finished product	Spiked finished product	Endotoxin Control Strategy
No LER	Non pyrogenic	-	Microbial control during manufacturing; USP LAL is suitable as a release test method.
~	Non-pyrogenic	Pyrogenic	Microbial control during manufacturing; Rabbit Pyrogen test as release test (interim measure); PMC to develop a suitable <i>in vitro</i> test method. option is a s
	Non-pyrogenic	Non-pyrogenic	Microbial control during manufacturing; Risk assessment; Endotoxin specification at the BDS stage prior to PS addition; Microbial control of input materials; PMC to develop a suitable <i>in vitro</i> test method
LER	Pyrogenic	-	Reject product

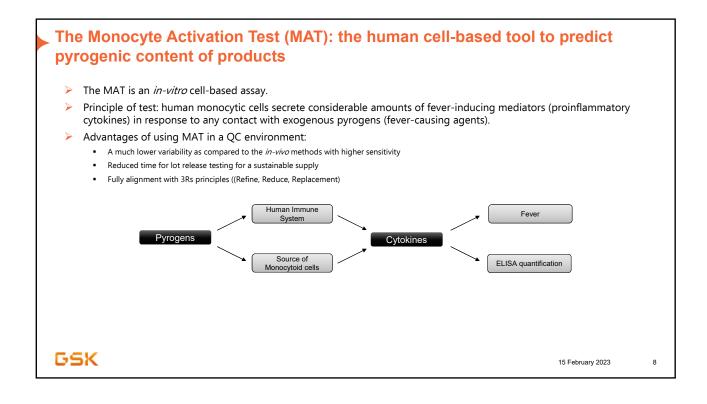
Acknowledgements

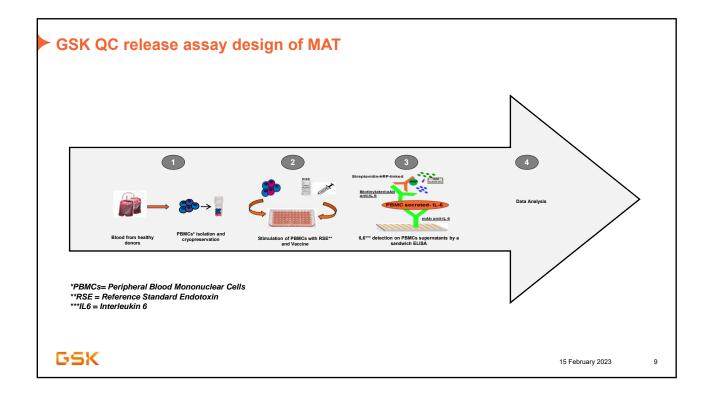
- Fellow brainstormers that night in Dusseldorf
- Tammy Thurman
- Carol Lahti
- John Dubczak, Jack Levin
- Thomas Hartung
- And our other Altex coauthors:

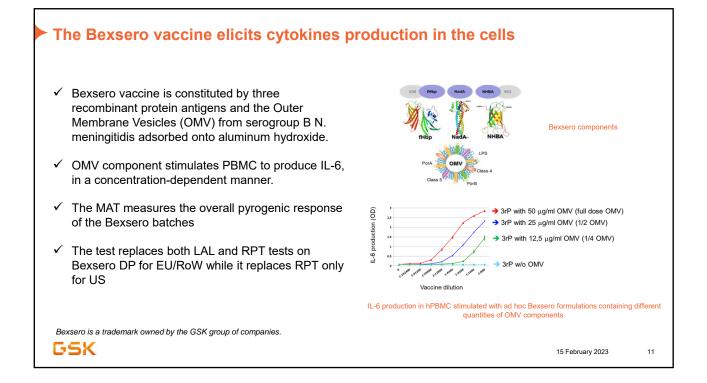

Tammy L. Thurman¹, Carol J. Lahti², Jeanne M. Mateffy³, Ren-Yo Forng⁴, Friedrich von Wintzingerode⁵, Lindsey M. Silva⁵, Sven M. Deutschmann⁶ and Ned M. Mozier¹ ¹Pfizer, Chesterfield, MO, USA; ²CILahti Consulting Services, Albany, CA, USA; ³Amgen, Thousand Oaks, CA, USA; ⁴EirGenix, Inc., Taiwan, Republic of China; ⁵Genentech, a Member of the Roche Group, South San Francisco, CA, USA; ⁶Roche Diagnostics GmbH, Penzberg, Germany

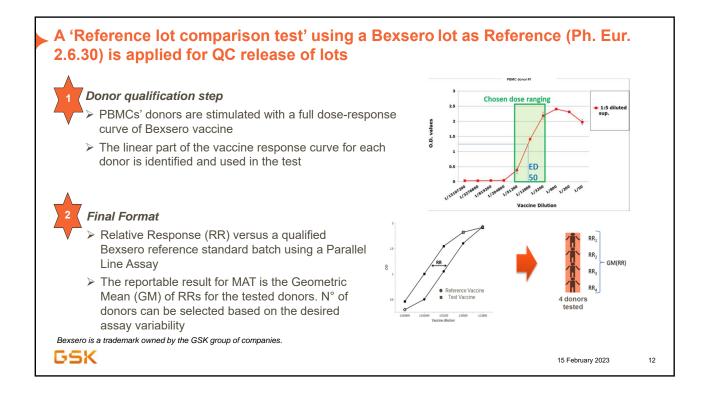

20


- Outlook •• GSK 3R strategy MAT assay overview • MAT assay for intrinsically pyrogenic * product: the example of Bexsero* MAT assay for all other products: instances ٠. of semi-quantitative and quantitive methods Risk-based approach for phasing out RPT * * Bexsero is a trademark owned by the GSK group of companies. GSK 15 February 2023

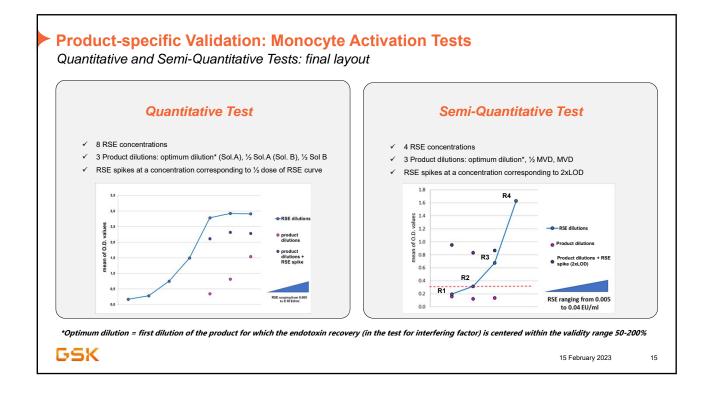

Outlook	*	GSK 3R strategy
	*	MAT assay overview
	*	MAT assay for intrinsically pyrogenic product: the example of Bexsero*
	*	MAT assay for all other products: instances of semi-quantitative and quantitive methods
	*	Risk-based approach for phasing out RPT
* Revears is a trademark sugged by the CSK group of companies		
* Bexsero is a trademark owned by the GSK group of companies.		15 February 2023



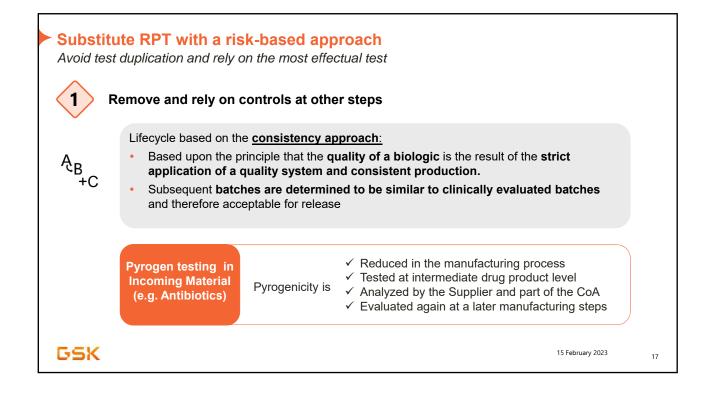

► Outlook	*	GSK 3R strategy
	*	MAT assay overview
	*	MAT assay for intrinsically pyrogenic product: the example of Bexsero*
	*	MAT assay for all other products: instances of semi-quantitative and quantitive methods
	*	Risk-based approach for phasing out RPT
* Bexsero is a trademark owned by the GSK group of companies.		
GSK		15 February 2023

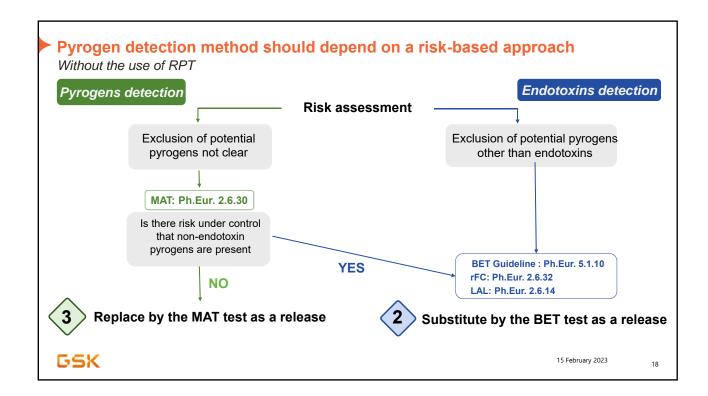


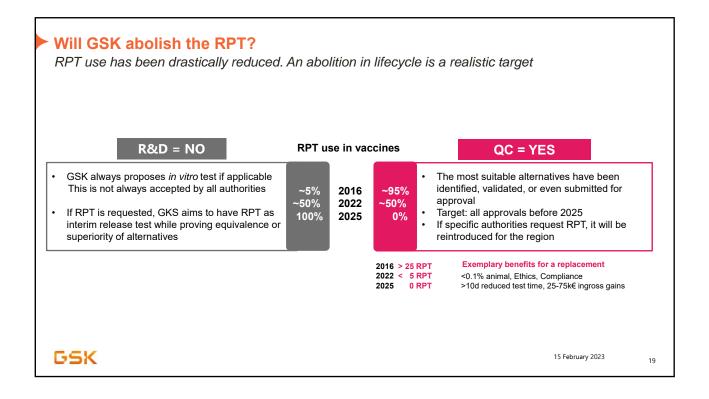
► Outlook	*	GSK 3R strategy
	*	MAT assay overview
	*	MAT assay for intrinsically pyrogenic product: the example of Bexsero*
	*	MAT assay for all other products: instances of semi-quantitative and quantitive methods
	*	Risk-based approach for phasing out RPT
* Bexsero is a trademark owned by the GSK group of companies.		
GSK		15 February 2023



Outlock		
Outlook	*	GSK 3R strategy
	*	MAT assay overview
	*	MAT assay for intrinsically pyrogenic product: the example of Bexsero*
	*	MAT assay for all other products: instances of semi-quantitative and quantitive methods
	*	Risk-based approach for phasing out RPT
* Bexsero is a trademark owned by the GSK group of companies.		
GSK		15 February 2023


Quantitative and semi-quantitative MAT assays


- Quantitative and semi-quantitative MAT methods foresee the comparison of the tested preparation with the Standard Endotoxin which is used as Reference Standard in the test.
- The Contaminant Limit Concentration (CLC) is used as Specification Limit


MAT assay	Characteristics
Quantitative Test (Method A of Eu.Ph. 2.6.30)	 Comparison of the tested preparation with a <u>dose-response curve</u> of Standard Endotoxin Appropriate when dose-response curve (expressed in endotoxin equivalents per milliliter) of a preparation is broadly parallel to that of standard endotoxin Results are provided in Endotoxin Equivalents per ml
Semi-quantitative Test (Method B of Eu.Ph. 2.6.30)	 Comparison of the tested preparation with Standard Endotoxin (<u>4 endotoxin</u> <u>concentrations</u> close to the Limit of Detection of the assay) Parallelism between Endotoxin and the preparation not required PASS/FAIL test (Result has to be <clc)< li=""> Applicable to intrinsically non-pyrogenic product </clc)<>
SK	15 February 2023

Outlook	*	GSK 3R strategy
	*	MAT assay overview
	*	MAT assay for intrinsically pyrogenic product: the example of Bexsero*
	*	MAT assay for all other products: instances of semi-quantitative and quantitive methods
	*	Risk-based approach for phasing out RPT
* Bexsero is a trademark owned by the GSK group of companies.		
GSK		15 February 2023

Conclusions and future perspective

Conclusions

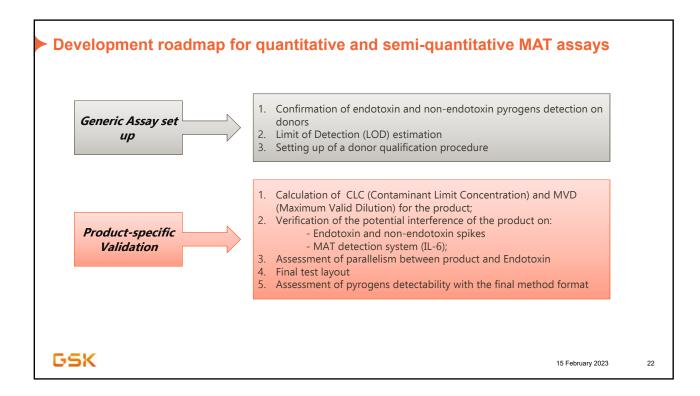
- The MAT assay is a robust and effective method which allows to effectively guarantee the safety of vaccine products. Indeed, the method:
 - 1. Enables a better evaluation of critical quality attributes of products
 - 2. Reduces complexity/limitations of existing methods
 - > much lower variability as compared to the in vivo method with higher sensitivity
 - reduced time for lot release testing
 - > full alignment with 3Rs principles (replacement, refinement, reduction)
 - 3. Ensures the reliably detection of pyrogen contaminants (if present) in the product
- The use of MAT assay is particularly strategic in the field of vaccines which could be complex in matrix structure (the case of the Bexsero vaccine is an example).
- MAT is approved worldwide for Bexsero (Method C), approved for Encepur in Europe (Method B), under review for other products (Method B and A).

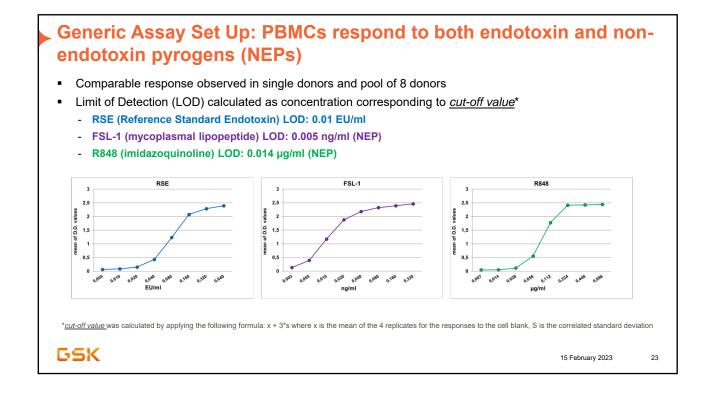
Future perspective

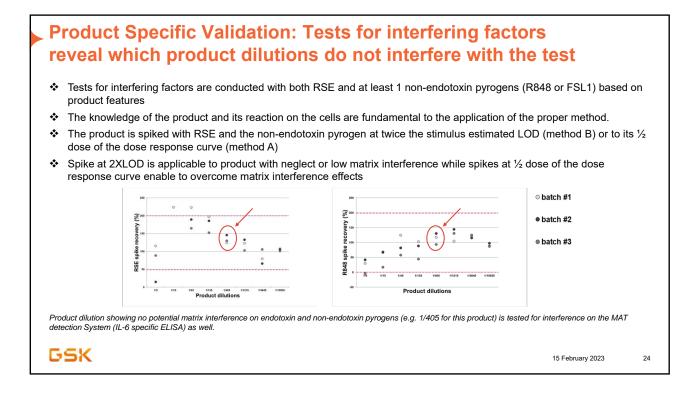
- Abolition of RPT for QC testing before 2025
- RPT not proposed for pyrogenicity for new GSK products. Proposal of Equivalent or superior *in-vitro* alternatives for pyrogenicity assessment on new products.

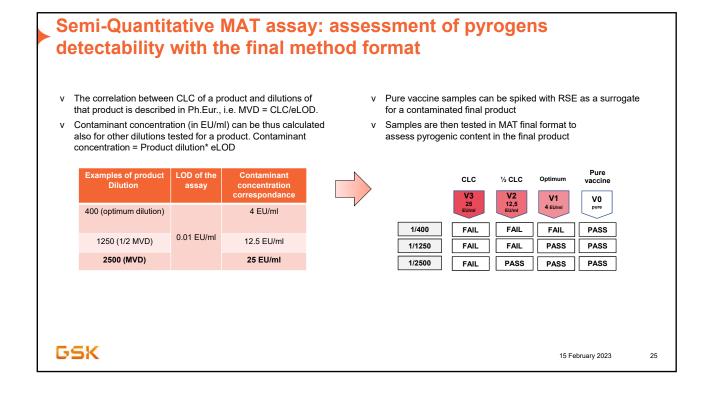
GSK

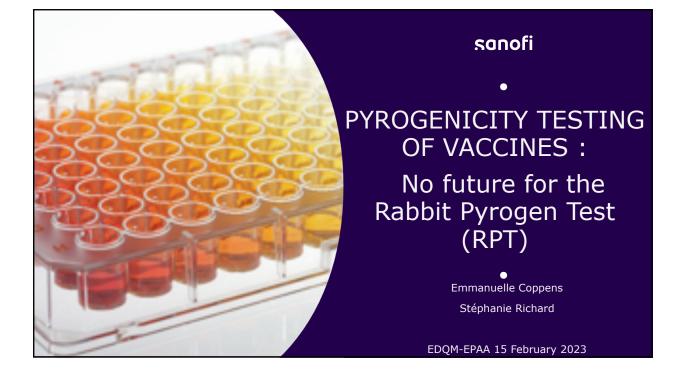
15 February 2023

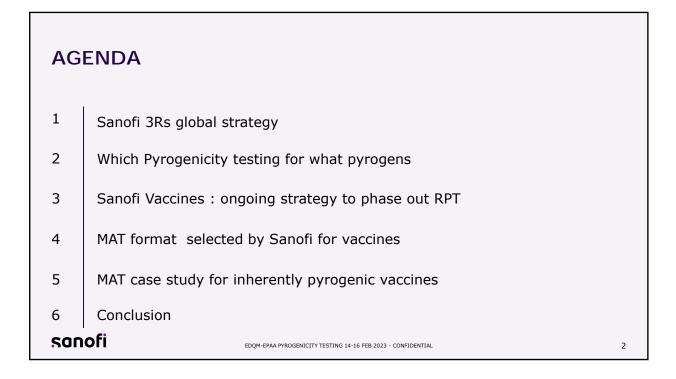

20

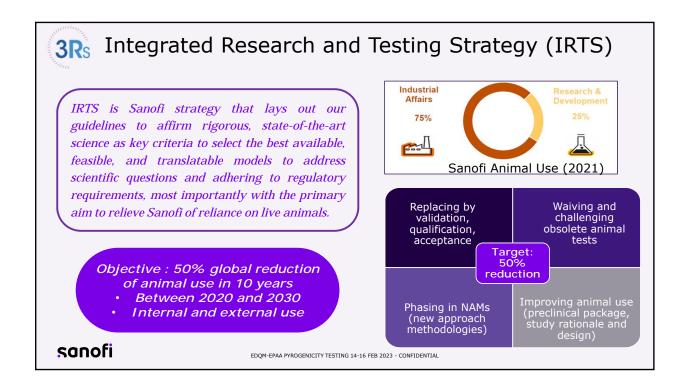

Thank you for your attention QUESTIONS?

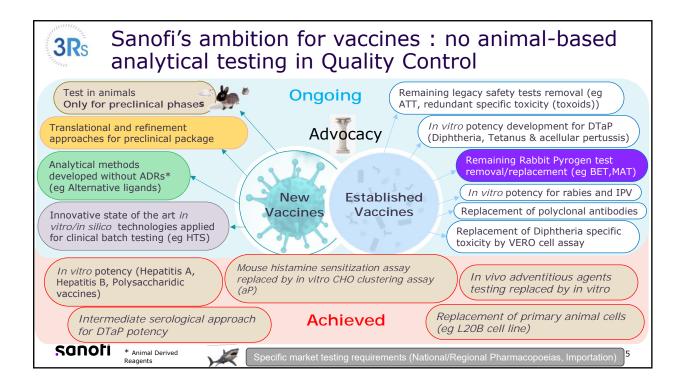

15 February 2023

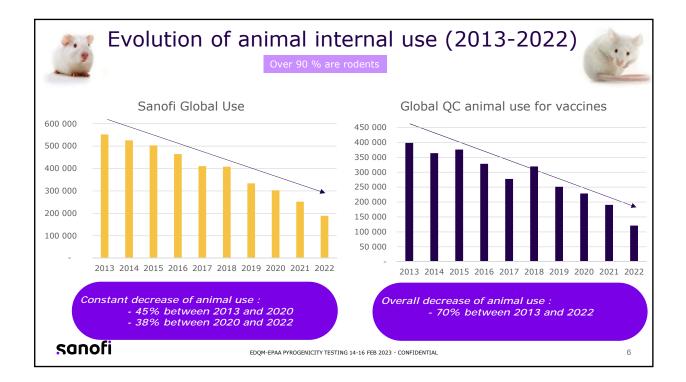

21

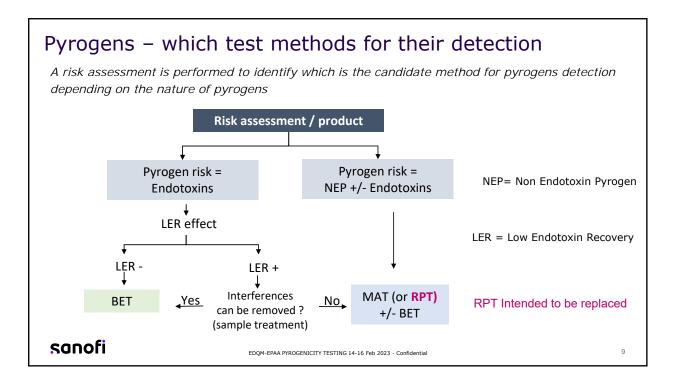

GSK

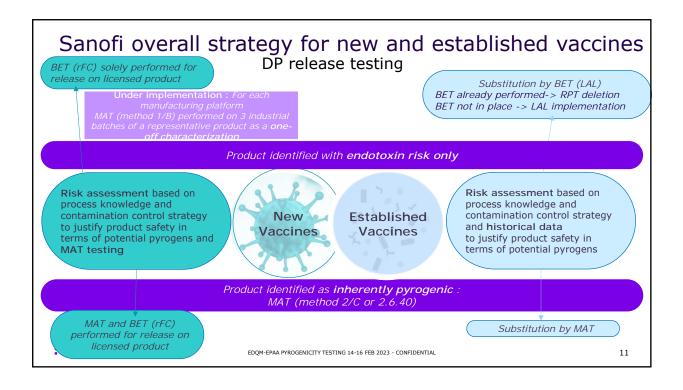


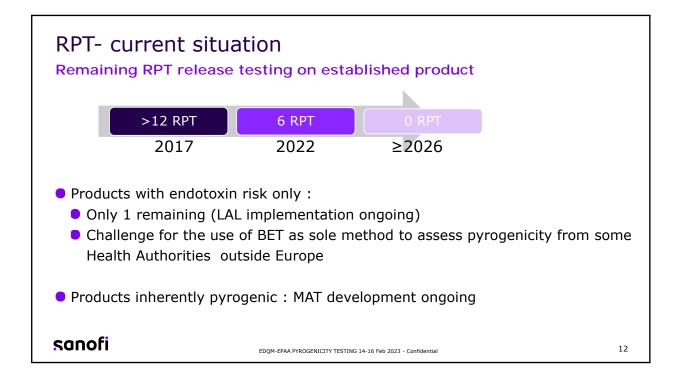




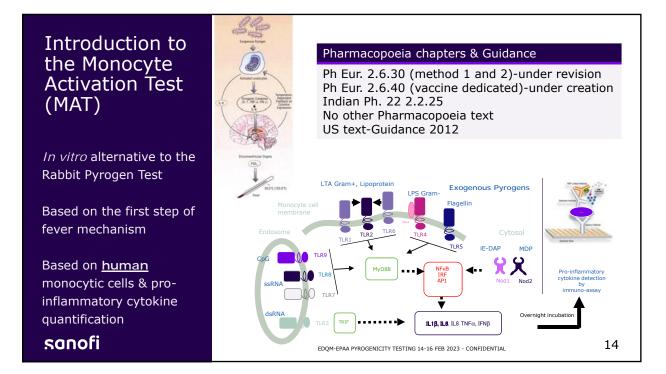


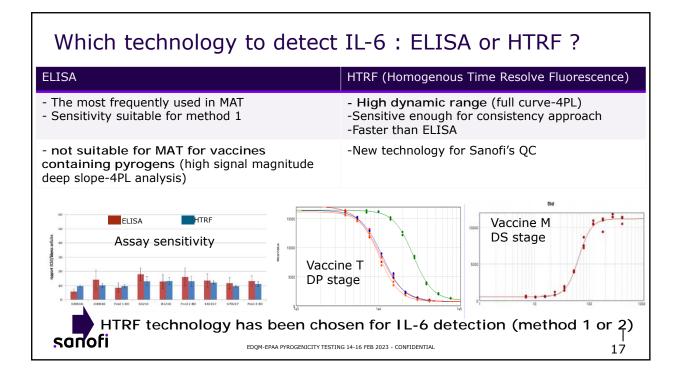


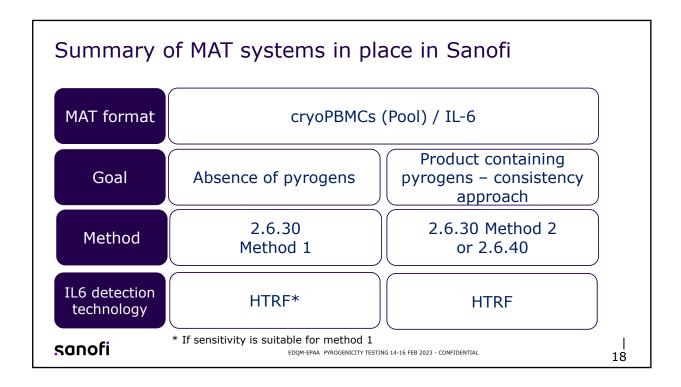


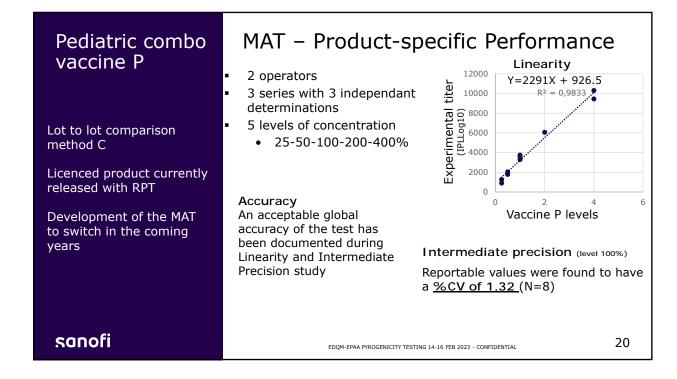


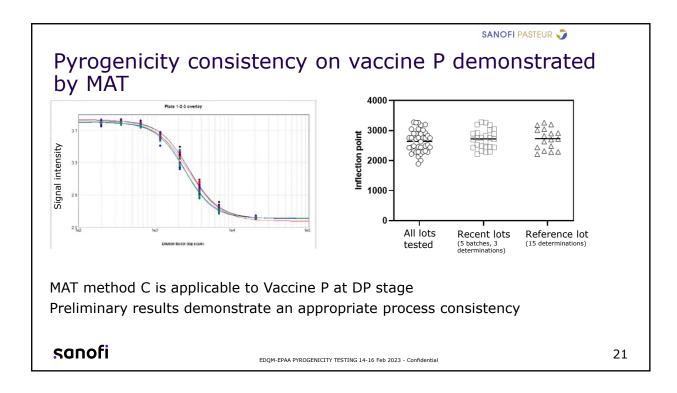
Comparison of the methods described in pharmacopeias							
	Rabbit Pyrogen Test (RPT) Ph. Eur. 2.6.8 / USP <151> / JP 4.04 / Russian Ph GPM 1.2.4.0005.15 / ChP <1142> / Indian Ph 2.2.8 :	Bacterial Endotoxin Tests (BET) LAL: Ph. Eur. 2.6.14 / USP <85> /JP 4.01: harmonized (ICH 2001)/ ChP 1143 (TAL)	Monocyte Activation Test (MAT) Ph. Eur. 2.6.30 (and 2.6.40) IP 22 2.2.25*				
	Not harmonized	rFC: Ph. Eur. 2.6.32 / ChP guideline 9251 / JP guideline JP G4-4-180	ChP draft "Gene Reporter Assay"				
Principle	Body temperature elevation post IV injection	Hemolymph clotting in contact with endotoxins / or recombinant reagent	Mimic the first step of fever mechanism – use human cells				
Method	Limit Assay (0.5 IU/mL/kg)	Detection or Quantitative Assay shown to be sensitive to 0.005 IU/mL	 A) Quantitative Assay (but plan to be deleted) B) Limit Assay C) Lot-to-lot comparison 				
Goal	Safety Test Product/Process Consistency	Safety Test Product/Process Consistency	Safety Test Product/Process Consistency				
Advantages	Compendial method (US, Eur and JP but not harmonized) Sensitive to all pyrogens	Compendial method harmonized for LAL based BET (US, EU, JP) Sensitive and fast rFC compendial only in Ph. Eur.	In vitro – Compendial method (EU) Sensitive to pyrogens Based on human cells				
Drawbacks	In vivo Not harmonized through Pharmacopeias Variable Not representative of human biology Injection route Dilution of the product (vaccine) Intended to be deleted in Ph. Eur. (2026)	Ex vivo (horseshoe crab is an endangered species) « Only sensitive to endotoxins from Gram negative bacteria » rFC approach not compendial in USP and JP and China	Compendial method <u>only for</u> Ph. Eur. since 2010				

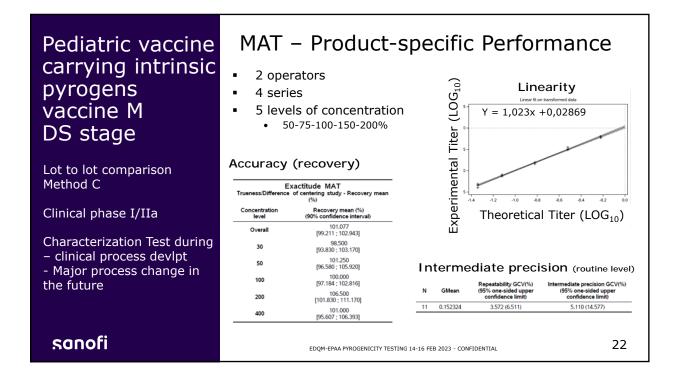


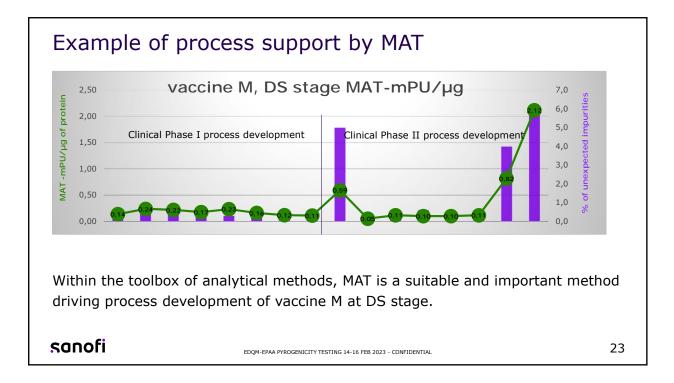


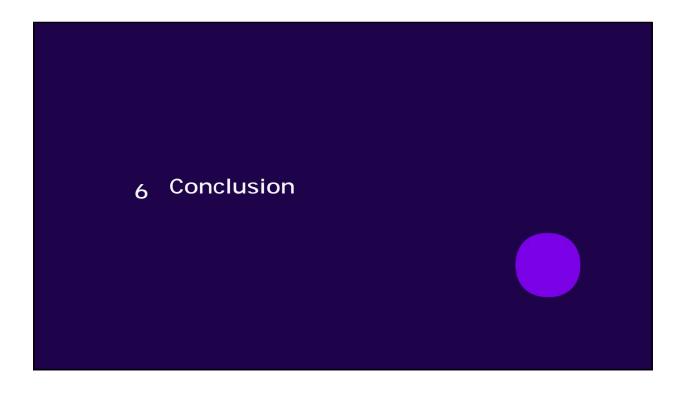


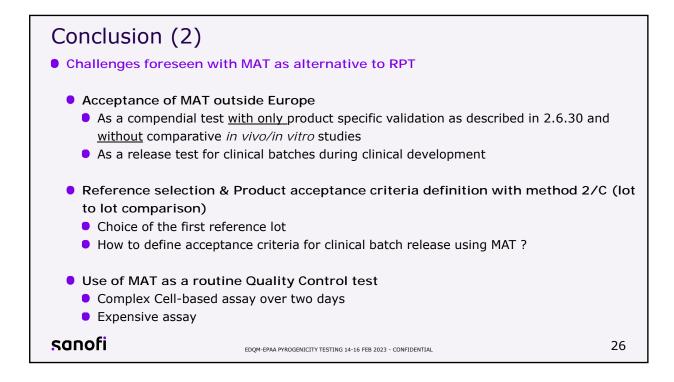

Introduction to the Monocyte Activation Test (MAT)	Method 1 (A+B) = semi quantitative method	Method 2 (C) = lot to lot comparison
General Chapter 2.6.30 evolution (Pharmeuropa 34.2) Methods to be justified regarding the product	ECL (Endotoxin Concentration Limit) as specification Purified <i>E. coli</i> standard EE/mL (Equivalent Endotoxin/mI) as reportable value Conclusion : Pass /Fail	Use when matrix interference in method 1 Or If the pyrogen content of the product is inherently high, it may be more appropriate to carry out, for example, a parallel-line analysis on the dose-response curves for the test and reference lots. In this situation, solutions of the preparations are tested at 3 or more geometric dilutions which cover the range of the dose-response curve used for the validated analysis (see chapter 5.3. Statistical analysis).
and the goal of the testing	To be used when no NEP is expected (Product Characterization)	To be used when the pyrogen content (NEPs and/or endotoxin) of the product to be tested is high (inherently pyrogenic)
sanofi	EDQM-EPAA PYROGENICITY TESTIN	NG 14-16 FEB 2023 - CONFIDENTIAL 15


MAT format: Source of Monocytes & pro- inflammatory	 Human monocyte cell source Primary cell (PBMCs or Whole Blood), individual or pooled, fresh or frozen Cell lines, Pro-inflammatory cytokines IL-1β, IL-6, TNFα, IL-8 				
cytokines		Pros	Cons		
PBMCs (pool)/IL-6 as a universal format across Sanofi	Cell line MonoMac6 / IL-6	Ready to use Test Reproducibility improved	Restricted access (Merck- Worldwide licence) Not always well accepted by MAT European experts Abnormal cell TLR expression characterization required		
	Whole Blood/IL-1 eta	/	Intra/Inter batch variability Not used anymore		
<i></i>	PBMCs/IL-6 (Pheripheral Blood Mononuclear Cells)	A better representative of what may occur in vivo than the cell line Several suppliers worldwide ECVAM validation Pool of donors (reduces variability) Currently used by ANSM	High cost Complex reagent management		
sanofi		EDQM-EPAA PYROGENICITY TESTING 14-16 FE	b 2023 - CONFIDENTIAL		








Conclusion (1)

- Removing RPT is a clear ambition in alignment with Ph Eur evolution strategy
 RPT is almost completely removed for non-NEP-containing marketed vaccines with substitution by BET as the sole method used to assess pyrogenicity
- MAT implementation is ongoing :
 - For inherently pyrogenic products (Method 2/C):
 - QC transfer of the assay for release :ongoing for 1 product, planned within 2 years for another one
 - Used in R&D as characterization tool
 - For products under development with no expected NEPs (Method 1/A+B):
 - Under implementation as characterization tool

sanofi

EDQM-EPAA PYROGENICITY TESTING 14-16 FEB 2023 - CONFIDENTIAL

25

Acknowledgements : K. Thibault-Duprey, H. Chausse, T. Bonnevay, K. Mathews, M. Fowlers, S. Vydelingum, S. Mlatese, C. Mallet, N. Nougarede

ullet	
ullet	
This work was funded by Sanofi.	
The authors are Sanofi employees and may hold shares and/or stock options in the company.	

sanofi