
of me	thods	sand	data an	alvsis	5	
•••••						
8.0-41			Desult			
Phas	se II	Phase III	Phase II	Phase	II & III	
In vivo	In vitro	In vitro	Correlation	Intra Jah	Inter-lab	
(mouse)	(Vero)	(Vero)	mouse/Vero	Intra-lay	Inter-lap	
MLD	MLD	MLD	Factor*		Factor	
MLD	MLD	MLD			Factor	
MLD	MLD	TNE+	Corr	GCV**	GCV	
ТСР	ТСР	ТСР	Corr	CV	CV	
Factor* Fo	d-differe	nces				
GCV** Geo	ometric Cc	oefficient o	f Variation			
CV*** Coe	efficient of	Variation				
	Meth Phas In vivo (mouse) MLD MLD MLD TCP Factor* Fo GCV** Geo	Metbods perfo Phase II In vivo In vitro (mouse) (Vero) MLD MLD MLD MLD MLD MLD MLD MLD Factor* TCP Factor* GCV** GCV* Commetric	Metbods performed Phase II Phase III In vitro In vitro In vitro In vitro In vitro In vitro (Muse) (Vero) (Vero) MLD MLD MLD MLD MLD MLD MLD MLD TNE+ TCP TCP TCP Factor*Fold-differences TCP TCP	Met→os performedResultPhase IIPhase IIIPhase IIIn vivoIn vitroIn vitroCorrelation(mouse)(Vero)(Vero)mouse/VeroMLDMLDMLDFactor*MLDMLDMLDFactor*MLDMLDTNE+CorrTCPTCPTCPCorrFactor* Fold-differencesGCV** Geometric Coefficient of Variation	Phase II Phase III Phase II Phase II Phase II In vivo (mouse) In vitro (Vero) In vitro (Vero) Correlation mouse/Vero Intra-lab MLD MLD MLD Factor* Intra-lab MLD MLD MLD Factor* Intra-lab MLD MLD MLD Corr GCV** TCP TCP TCP Corr CV Factor* Fold-differences GCV** Geometric Coefficient of Variation GCV**	

Ceva

Sensitivity

- Large sensitivity differences found among the participants' mouse strains and also among their Vero cell lines. This may lead to high inter-lab variance in both the in vivo and the in vitro results.
- The sensitivity difference between the mouse versus Vero cell systems are in the range of 3 logs. This has implications in protocol design and result interpretation.

Cevo

<u>In vivo pre-test</u> <u>In v</u>	<u>vitro</u> MLD F	requen	cy of	Late	nt To	xicity	End	-Point	ts (In	verse I	Dilution)
All test toxoids included	Material	Low	5	10	20	40	80	160	320	640	Median
in Phase III have been	TdA			5	3	7	1	2			40
pre-tested in mice for	TdC				3	8	8	1			40
residual toxicity with	TdD	3	9	4	2			2			5
negative results	TdN	16	2								Low
	TdO				,		5	3	7	3 🤇	320
	TdP	1		4	3	3	5	3			40
	VI	20					0		Service and		Low

Toxicity of toxins with MLD (Phase II, in vivo)

1st approach: "Absolute" MLD – Differences in the sensitivity of the mouse strains was NOT corrected **2nd approach: "Relative" MLD** – Sensitivity differences corrected by CSTx → Inter-lab CV improved

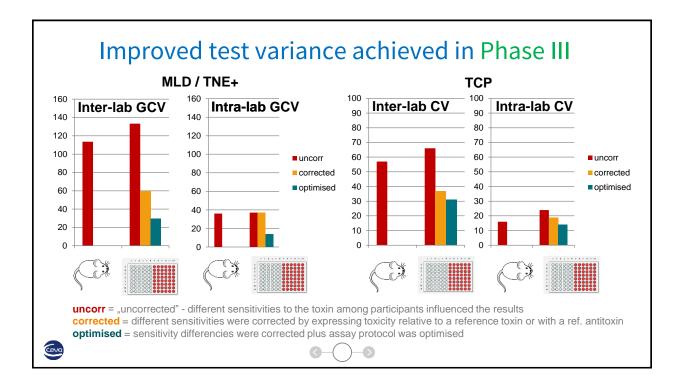
"Absolute" MLD, expre	essed as th	e inverse o	of the final	dilution c	aused deat	th in both r	nice
	CSTx	TxA	ТхВ	TxC	TxD	TxE	TxF
Overall GM	834	73	74	5	12	128	110
Inter-lab GCV	-	113	117	91	81	69	75
Median intra-lab GCV	-	25	47	33	33	25	28
"Relative" MLD, expre	ssed relati	ve to the C	STx				
	(CSTx)	TxA	ТxВ	TxC	TxD	TxE	TxF
Overall GM	-	0.088	0.089	0.006	0.014	0.153	0.132
Inter-lab GCV	-	49	91	65	82	72	84
Median intra-lab GCV	-	25	47	33	33	25	28

Ceva

Γ

	Toxicity of				-		·		
1st ap	proach: "Absolute" M	LD – Diffe	erences ir	the sens	itivity of th	ne Vero c	ell lines w	ere NOT	corrected
2nd a	pproach: "Relative" MI	D – Sen	sitivity diff	erences of	corrected	by CSTx	→ Inte	r-lab CV i	i mproved
	"Absolute" MLD, expre	essed as th	e inverse o	of the final	dilution ca	aused deat	th to Vero (cells	
		CSTx	TxA	TxB	TxC	TxD	TxE	TxF	
	Overall GM	216813	15901	13292	680	2694	25201	25617	
	Inter-lab GCV	-	145	176	183	173	143	174	
	Median intra-lab GCV	-	29	25	50	28	24	26	
	"Relative" MLD, expre	ssed relati	ve to the C	STx					
		(CSTx)	TxA	ТхВ	TxC	TxD	TxE	TxF	
	Overall GM	-	0.073	0.061	0.003	0.012	0.116	0.118	
	Inter-lab GCV	-	55	77	60	59	43	50	
	Median intra-lab GCV	-	29	25	50	28	24	26	

Toxicity of toxins with TNE+ (Phase III)

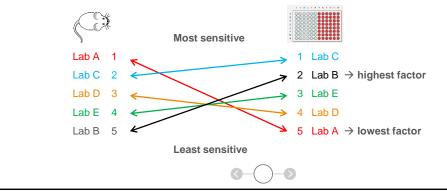

- MLD is highly dependent on Vero sensitivity to the toxin → high inter-lab CV in Phase II •
- **TNE+** replaced MLD in Phase III, corrected for Vero sensitivity → improved inter-lab AND intra-lab CV .

		(CSTx)	TxA	ТхВ	TxC	TxD	TxE	TxF
	Overall GM	-	0.073	0.061	0.003	0.012	0.116	0.118
	Inter-lab GCV	-	55	77	60	59	43	50
	Median intra-lab GCV	-	29	25	50	28	24	26
Phase III	TNE+ values in IU/mL							
		CSTx2	TxR	TxS	TxV	TxW	TxY	TxZ
	Overall GM	290	15	27	27	165	225	85
	Inter-lab GCV	20	51	37	49	20	28	21
	Median intra-lab GCV	5	20	16	15	13	14	11

TCP in mice							
	TdG	TdH	TdJ	TdK	TdL	TdM	
Overall GM	142	48	21	178	69	71	
Inter-lab GCV	33	42	51	31	73	110	TCP already includes a referer
Median intra-lab GCV	15	20	0	10	21	31	antitoxin → mouse or Vero line
							sensitivity differences compens
TCP on Vero cells, unco	orrected fo	or sensitivi	ty				, , , , , , , , , , , , , , , , , , , ,
	TdG	TdH	TdJ	TdK	TdL	TdM	ightarrow low impact on the inter-lab (
Overall GM	104	46	36	125	72	77	
Inter-lab GCV	84	61	51	58	67	77	
Median intra-lab GCV	35	20	13	25	26	24	
TCP on Vero cells, corre	ected						Of the fourth an instable and a summation of
	TdG	TdH	TdJ	TdK	TdL	TdM	Still, further method corrections
Overall GM	142	52	30	157	76	63	could improve the variance.
Inter-lab GCV	41	40	42	25	30	46	
Median intra-lab GCV	24	20	10	15	17	28	

Antigenicity of tox	oids (Phase II, TCP)
Antigementy of tox	

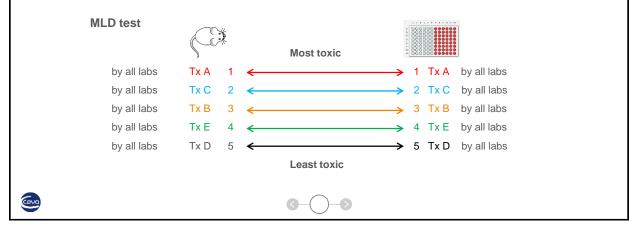
ŀ	Antigenio	city o	ftox	oids (Phas	e III,	TCP)
In vitro TCP f	urther optimised	→ Inter-la	ab AND ir	ntra-lab C	V improv	ed. BUT!.	
	oids with low TCI						
Phase II TCP	on Vero cells, corr	octod —					
Filase II TCP	on vero cens, com	TdG	TdH	LpT	TdK	TdL	TdM
Ove	rall GM	142	52	30	157	76	63
Inter	r-lab GCV	41	40	42	25	30	46
Med	ian intra-lab GCV	24	20	10	15	17	28
Phase III TCP	on Vero cells, opti	mised					
		TdA	TdC	TdD	TdN	TdO	TdP
Ove	rall GM	76	7	32	17	112	105
	rall GM r-lab CV	76 13	7 51	32 39	17 52	112 15	105 15

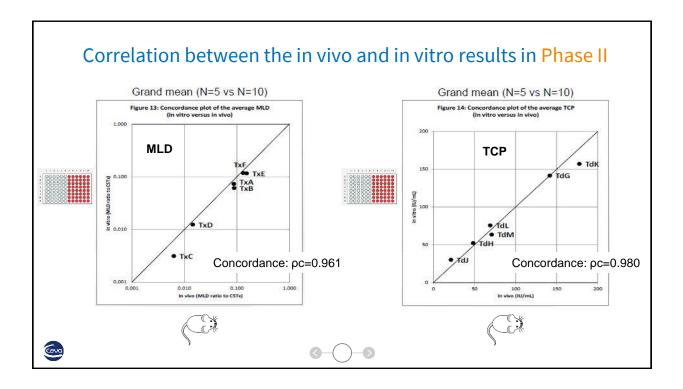

Correlation between the in vivo and in vitro results in Phase II

Methodological difficulties:

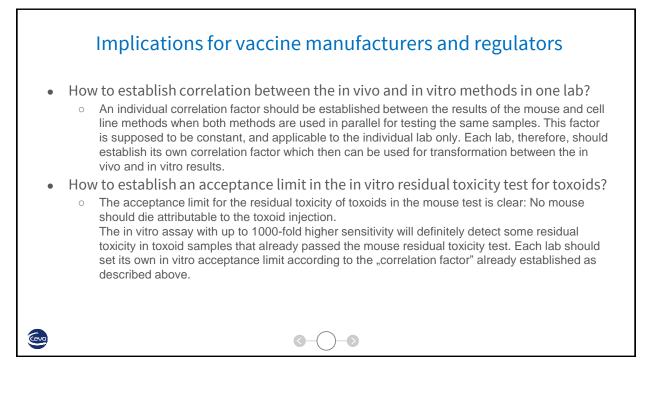
Cevo

The random distribution of mouse strains and Vero cell lines with highly different sensitivity to *C. septicum* toxin among the participants made the establishment of correlation at multiple labs level a real challenge.


Sensitivity ranking of the mouse strains and the Vero cell lines, and the lab-specific "correlation factors"



Correlation between the in vivo and in vitro results in Phase II


Methodological difficulties solved, concordance demonstrated:

Lab-specific unique correlation factors eliminated by ranking the test toxins (and toxoids) in the mouse test and in the cell line assay by the participating laroratories.

