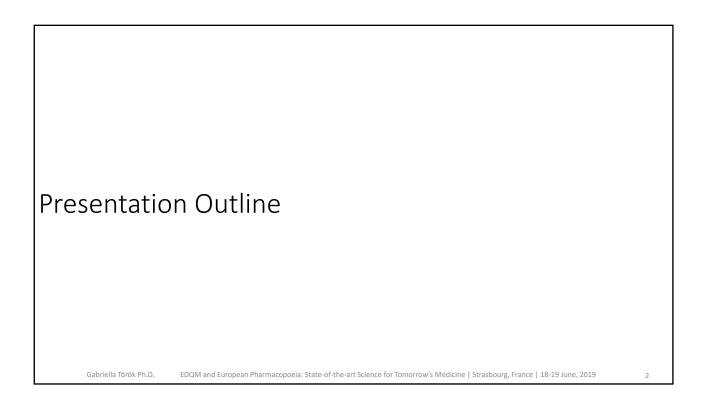


Impurity Control in the European Pharmacopoeia (Ph.Eur.)

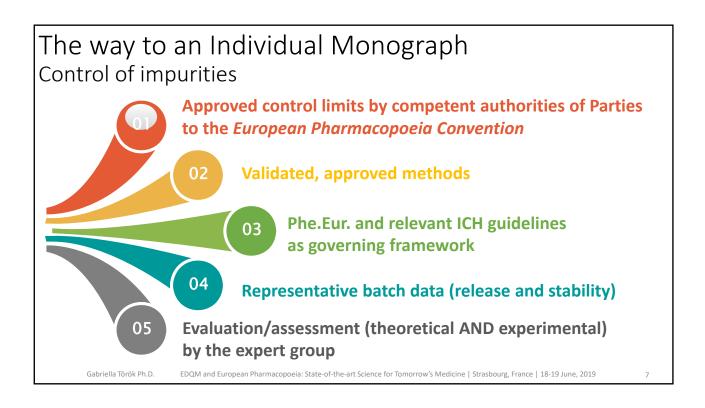

EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine International Conference by the EDQM, Council of Europe Strasbourg, France | 18-19 June, 2019

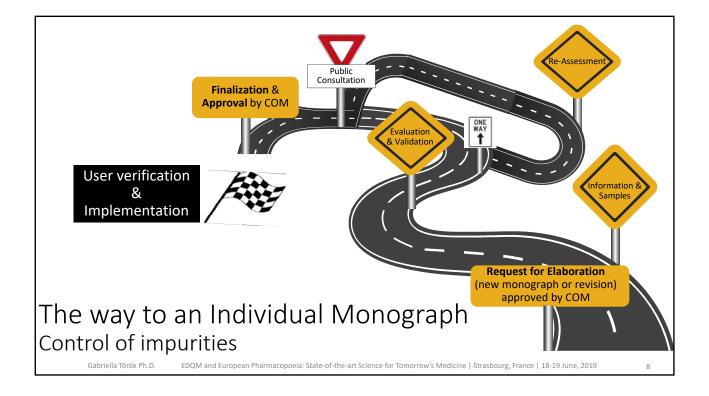
Gabriella Török Ph.D. Chair of the Ph.Eur. Group of Experts on Organic Chemistry (10B)

Director

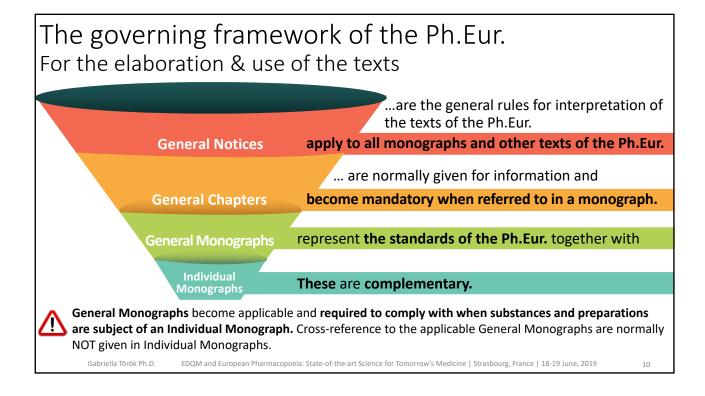
Janssen

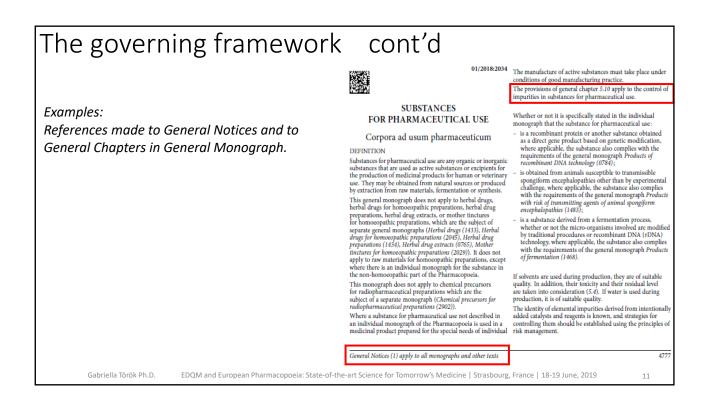
Janssen Pharmaceutica N.V. | Janssen Supply Chain – Quality Control Analytical Capabilities Centre of Excellence


Presentation Outline Control of impurities in the Ph.Eur. | General considerations The way to an Individual Monograph The governing framework of the Ph.Eur. Organic impurities and Genotoxic (DNA reactive/mutagenic) impurities Requirements & Type of impurities and tests Description in the individual monographs • Establishment of a new test and related validation considerations Revision of an existing test and related validation considerations Calculation of impurity content and Limits. Inorganic- / Elemental impurities Residual Solvents The user perspective Q&A Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019



Control of impurities in the Ph.Eur.


- The current general policy of the Commission is to include quantitative test(s) for impurities/degradants in monographs for both chemically defined active substances (active pharmaceutical ingredient, API) and finished product (FP) monographs containing chemically defined active substances.
- The impurities/degradants present in those substances/products have been evaluated by the competent authorities and are qualified with respect to safety at the maximum authorized content (at the maximum daily dose) unless new safety data become available and justify lower limits.
- The tests included in the Ph.Eur. are intended to cover for organic impurities incl. genotoxic impurities (DNA reactive / mutagenic), inorganic/elemental impurities (as relevant) and Residual Solvents.
- The test methods in the Monographs and General Chapters have been validated according to current guidelines on analytical validation and at least second laboratory has performed verification during the elaboration of the monograph.



The governing framework The Ph.Eur. context cont'd

The governing The Ph.Eur. cont	ext cont'd	 a variety of chemically modified supports prepared from polymers, silica or porous graphite, used in normal-phase and reversed-phase LC (non-polar attionary phase and polar mobile phase), where the separation is based principally on paritino of the molecules; resins or polymers with acidic or basic groups, used in ion-exchange chromatography, where separation is based on competition between the ions to be separated and those in the mobile phase; porous silica or polymers, used in size-exclusion chromatography (22.30), where separation is based on differences between the volumes of the molecules, 	particles, and when special detectors, e.g. light scattering detectors, are used). Multicomponent mobile phases are prepared by measuring the required volumes (unless masses are specified) of the individual components, followed by individual pumps controlled by proportioning valves, by which mitting is performed according to the desired proportion. Solvents are normally degased before pumping vaparing with helium, sonication and/or using on-line membrane/vacuum modules to avoid the creation of gas bubbles in the detector cell. Solvents for the preparation of the mobile phase are normally
Bambuterol hydrochloride IDENTIFICATION A. Infrared absorption spectrophotometry (2.2.24). Preparation: discs. Comparison: hombuterol hydrochloride CRS. If the spectra obtained show differences, dissolve the substance to be examined and the reference abstance separately in a muture of 1 volume of switer R and 6 volumes of accrone R, cool in set to precipitate and dry both precipitates in vacuo at 50 °C to constant weight. Record new spectra using the residues.	EUROPEAN PHARMACOPOEIA 9.0 Sulfated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g. ASSAY Dissolve and 50.0 g in 50 mL of ethanel (96 per cent) R and add 5 mL of 0.0.1 M hydrodhoric acid. Carry out a potentiometric titration (2.2.30), using 0.1 M sudium hydroxide. Read the volume added between the 2 points of inflexion. 1 mL of 0.1 M sudium hydroxide is equivalent to 40.39 mg of Galb ₂ CMO ₂ .	corresponding to steric exclusion; specially modified stationary phases, e.g. cellulose or amylose derivatives, proteins or petitides, cyclodextrins etc., for the separation of enantioners (chiral chromotypaphy). Most separations are based on reversed-phase LC utilising chemically modified allica as the stationary phase. The surface of the support Le the salance groups of sile. is reacted with various silanc reagents to produce covalently bound on the surface of the support The nature of the bound phase is an important parameter for determining the separation properties of the chromatographic system. 	free of stabilisers and, if an ultraviolet detector is employed, are transparent at the wavelength of detection. Solvents and other components employed are to be of appropriate quality, in particular, water for chromolography R is used for the preparation of mobile phases when water, or an aqueous solution, is 10 the components. Any necessary adjustments of the second second second second second second phases when a second second second second second oblicity are under the second second second second oblicity are used, adequate training of the system is carried out with a mixture of water and a small proportion of the organic part of the mobile phase (5 per cent I/Y) to prevent crystallisation of salts after completion of the analysis. Mobile phases may contain other components, for example a counter-ion for ion-pair chromatography or a chiral selector or chiral chromatography using an achiral stationary phase.
 R. It gives reaction (a) of chlorides (2.3.1). TESTS Solution S. Dissolve 4.0 g in carbon dioxide-free water R and dilute to 20.0 mL with the same solvent. Acidity or adkinistry. To 10 un. of solution S add 0.2 mL of methyl red solution R and 0.2 mL of 0.01 M hydrochloric acid. The solution is red. Add 0.4 mL of 0.01 M hydrochloric acid. Optical rotation (2.2.7): - 0.10° to + 0.10°. Dilute 1 mL of solution 5 to 10 mL with carbon dioxide-free water R. Related substances. Liquid chromatography (2.2.29). Test solution. Dissolve 5.0 mg of the substance to be examined in the mobile phase and dilute to 10.0 mL with the mobile phase. Mix 0.8 mL of this solution with 0.4 mL of the nobile phase. 	$\begin{split} & \text{IMPURTTES} \\ & \text{Specified impurities: A, B, C, D, E, F.} \\ & \text{impurities: A, B, C, D, E, F.} \\ & \text{impurities: A, B, C, D, E, F.} \\ & impurities: A, C, C,$	Unless otherwise stated by the manufacturer, silica-based reversed-phase columns are considered to be table in mobile phases having an apparent pH in the range 2.0 to 8.0. Columns containing porous graphite or particles of polymeric materials such as styrene-divnylbenzene copolymer are stable over a wider pH range. Analysis using normal-phase LC with unmodified silica or polar chemically modified silica (e.g. c., canopropyl or diol) as the stationary phase, with a non-polar mobile phase is applicable in certain cases. For analytical separations, the particle size of the most commonly used stationary phases varies between 2 and 10 µm. The particles may be spherical or irregular, and of varying poroily and specific surface area. These properties contribute to the chromatographic behaviour of a particular stationary phase. In the case of reversed phases, the nature of the stationary phase, the extent of bonding, e.g. expressed as the carbon loading, and whether the stationary phase, is end-capped (i.e. part of the residual silanol groups are significable of the siland silanol groups are significable and the siland silanol groups are signal groups are present.	DETECTORS Ultraviolet/visible (UU/Vis) opectrophotometers (including diode array detectors) (2.2.25), are the most commonly employed detectors. Fluorescence spectrophotometers, differential refractometers (RD), electrochemical detectors (CAD), mass spectrometers (MS) (2.2.43), radioactivity detectors, multi-angle light saturiting (MALS) detectors or other detectors may be used. PROCEDUEE Equilibrate the column with the prescribed mobile phase and flow rate, at most temperature or at the temperature specified in the monograph, until a stable baseline is achieved reprace the solution(s) of the subtance to he canimoted and the reference solution(s) required. The solutions must be free from solid particles. Criteria for assessing the suitability of the system are describe in general chapter 2.2.46. Crimotagraphic segmation rebringues. The extent to which adjustments of parameters of the chromatographic system can be made to satisfy the criteri of system suitability are also given in this chapter.

2.2.29. LIQUID CHROMATOGRAPHY

Control of impurities in the Ph.Eur Organic Impurities

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

Control of impurities in the Ph.Eur Organic Impurities

- Essential part of the control strategy and thus of the Individual Monographs.
- Principles follow ICH Q3A for active substances and Q3B for finished products and are described in:
 - General Monograph "Substances for pharmaceutical use (2034)".
 - General Monograph "Pharmaceutical preparations (2619)".
 - General Chapter 5.10. "Control if impurities in substances for pharmaceutical use".
- The Ph.Eur. enforces ICH M7 and must be complied with for genotoxic impurities (DNA reactive / mutagenic) in actives substances in case defined in the scope of the guideline.
- Unless otherwise prescribed or justified and authorized, organic impurities/degradants in active substances/finished products are to be reported, identified wherever possible and qualified (see requirements on next slides).

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

	Control of impurities in the Ph.Eur Organic Impurities cont'd				
•	Requirements for	active subst	ances (excl. s	synthetic peptides)	2034 and ICH Q3A
	Use	Maximum daily dose	Reporting threshold	Identification threshold	Qualification threshold
	Human or Human and Veterinary	≤ 2 g/day	> 0.05 per cent	> 0.10 per cent or a daily intake of >1.0 mg (whichever lower)	> 0.15 per cent or a daily intake of > 1.0 mg (whichever lower)
	Human or	> 2 g/day	> 0.03 per cent	> 0.05 per cent	> 0.05 per cent

Specific thresholds may be applied for impurities known to be unusually potent or to produce toxic or unexpected pharmacological effects.

> 0.20 per cent

> 0.50 per cent

15

16

> 0.10 per cent

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

Control of impurities in the Ph.Eur Organic Impurities cont'd

Not applicable

Human and Veterinary Veterinary only

Requirements for pharmaceutical preparations (finished products) ICH Q3B Attachment 1.

Maximum daily dose (amount of the active substance)	Reporting threshold	Maximum daily dose (amount of the active substance)	Identification Threshold (of the degradant)
≤1g/day	> 0.1 per cent	< 1 mg 1 mg - 10 mg > 10 mg - 2 g > 2 g	1.0 per cent or 5 μ g daily intake (whichever lower) 0.5 per cent or 20 μ g daily intake (whichever lower) 0.2 per cent or 2 mg daily intake (whichever lower) 0.10%
> 1 g/day	> 0.05 per cent	< 10 mg 10 mg - 100 mg > 100 mg -2 g > 2 g	1.0 per cent or 50 μg daily intake (whichever lower) 0.5 per cent or 200 μg daily intake (whichever lower) 0.2 per cent or 3 mg daily intake (whichever lower) 0.15%
•			for degradation products known to be c or unexpected pharmacological effects.

Control of impurities in the Ph.Eur Organic Impurities cont'd

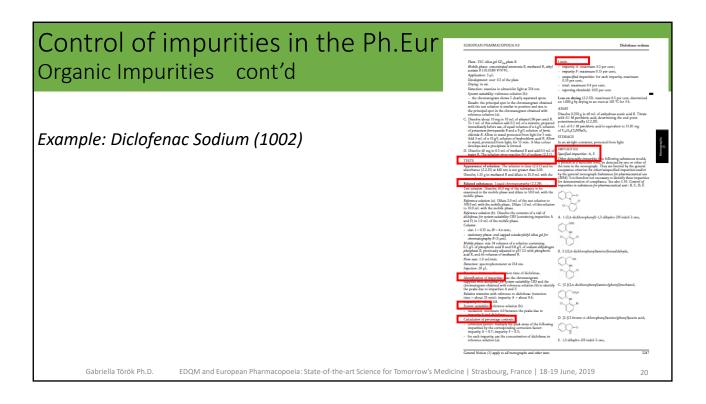
- Specified impurities (degradants) are individually listed and limited with a specific acceptance criterion in a Monograph.
 - Identified specified impurities (degradants) have structural characterization.
 - Unidentified specified impurities (degradants) have NO structural characterization.
- Unspecified impurities (degradants) are impurities limited by a general acceptance criterion and not individually listed with their own acceptance criterion.
- Other detectable impurities (degradants) are potential impurities with a defined structure and are known to be detected by the tests in the monograph but not know to be normally present above the identification threshold. These are unspecified impurities (degradants) and thus are limited by a general acceptance criterion.

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

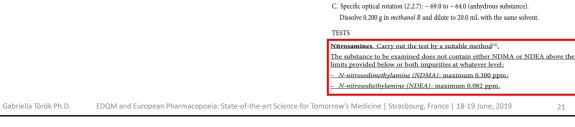
Control of impurities in the Ph.Eur Organic Impurities cont'd

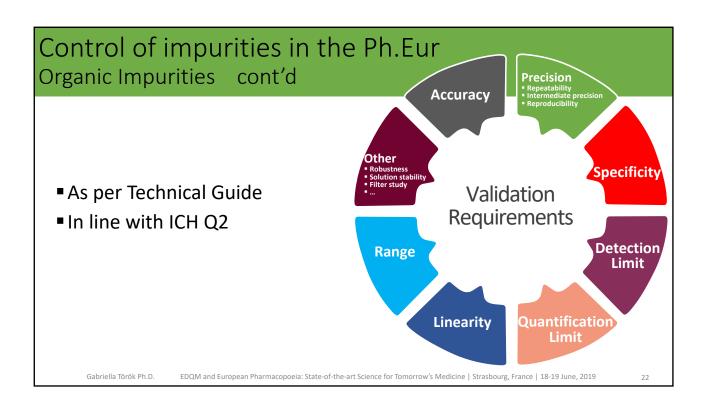
Most often separation techniques (LC, GC, TLC, CE etc.) in combination with different detection techniques (UV/VIS, RI, MS, ELSD, CAD, FID etc.) are being used for the determination of organic impurities.

For special intended use other analytical techniques e.g. UV absorption spectrophotometry (e.g.: riboflavin) or titration (e.g. free acids in testosterone esters) are also an option.


For pharmaceutical preparations (finished products) only degradation products are in scope.

Control of impurities in the Ph.Eur Organic Impurities cont'd


- ... in the Individual Monographs is described under the TESTS | Related Substances section. Instructions may be included in the PRODUCTION section of a monograph.
- Procedures for Identification of the relevant peaks, System Suitability and Calculation for percentage content are described.
- Limits are defined for
 - Specified impurities.
 - Unspecified impurities.
 - Total (of impuritites).
 - Reporting Threshold (disregard limit).


 The IMPURITIES section at the end of each Individual Monograph includes the impurities (structure and name, wherever possible) that are known to be detected by the tests described in the Individual Monograph.
 Specified impurities and as applicable and indicated other detectable impurities, the

latter for information only, are listed.

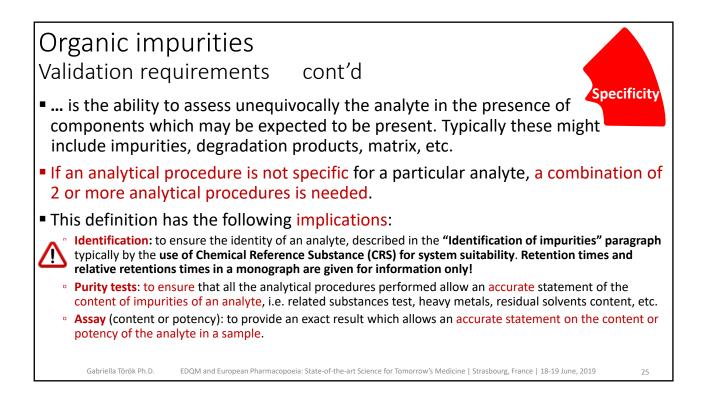
Control of impurities in the Ph.Eur Organic Impurities (genotoxic, DNA reactive / mutagenic) cont'd PRODUCTION As N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) are classified as probable human carcinogens, manufacturers must ensure that their manufacturing process does not generate such impurities. To allow manufacturers to make the necessary Example: Valsartan (2423) changes to their process, a transition period has been agreed by Competent Authorities and strict temporary limits on levels of these impurities introduced in the Test section. DRAFT MONOGRAPH CHARACTERS Appearance: white or almost white, hygroscopic powder. Solubility: practically insoluble in water, freely soluble in anhydrous ethanol, sparingly soluble in methylene chloride. IDENTIFICATION Carry out either tests A, B or tests A, C. A. Infrared absorption spectrophotometry (2.2.24). Comparison: valsartan CRS. B. Enantiomeric purity (see Tests).

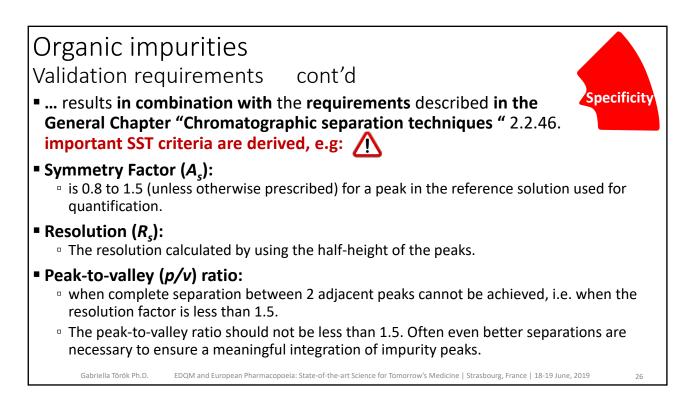
Organic impurities Validation requirements	cont'd	Accuracy
 of an analytical procedure explored explored explored either a reference value and the value for the value for	as a conventional	
 should be established across using a minimum of 9 determin covering the specified range (e.) 	nations over a mir	nimum of 3 concentration levels
 should be assessed on sample cases where it is impossible to o degradation products, it is accept independent procedure. The rest 	obtain samples of ptable to compare	certain impurities and/or e results obtained by an

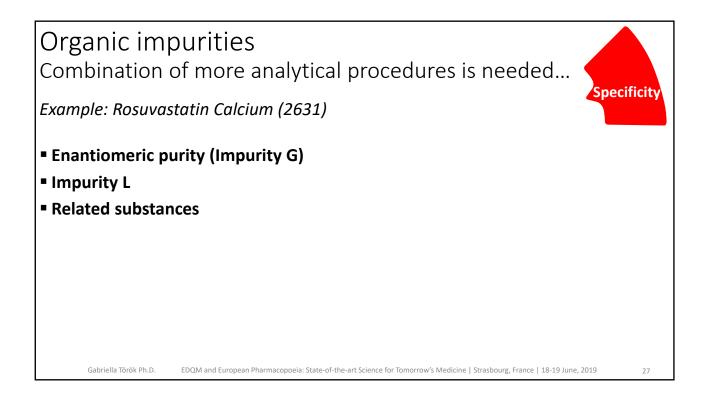
EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

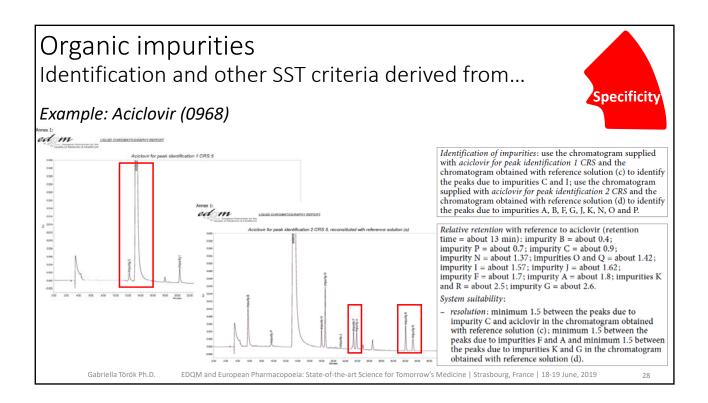
Precision

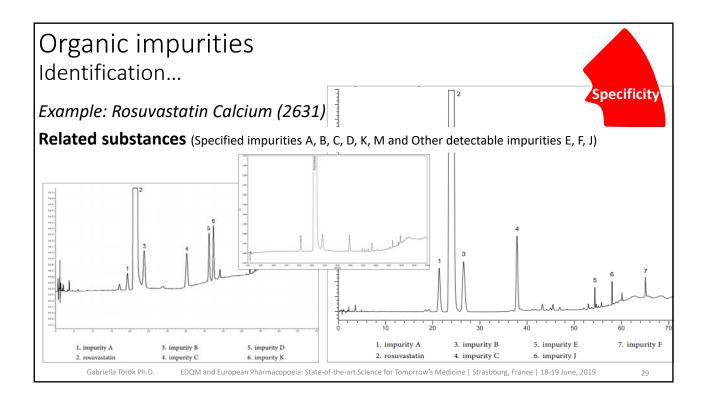
24

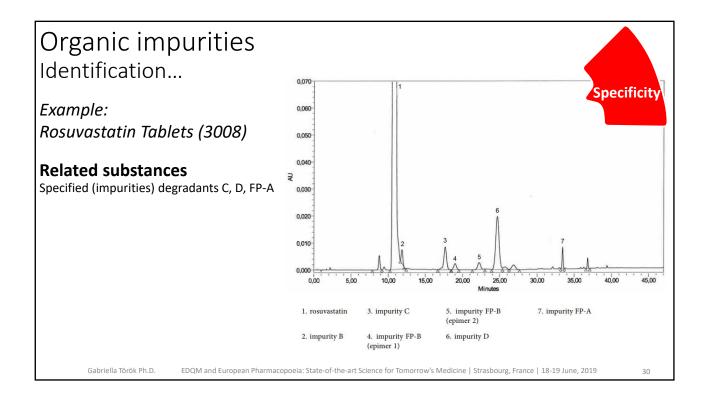

Organic impurities Validation requirements cont'd

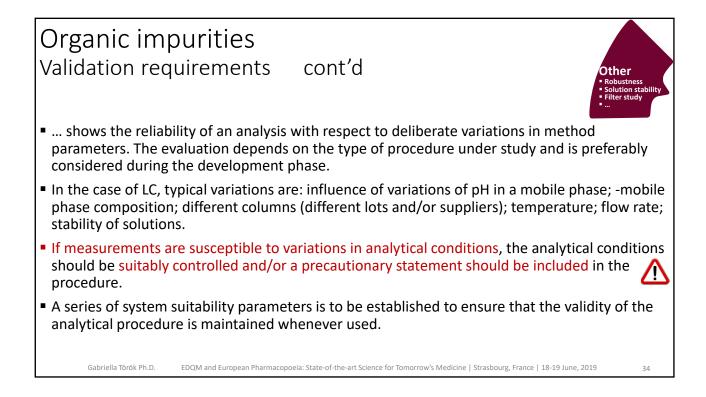

Gabriella Török Ph.D

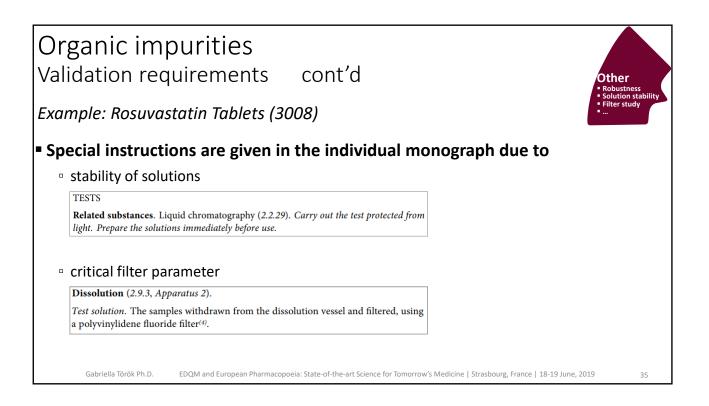

- ... of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions.
 - Repeatability: expresses the precision under the same operating conditions over a short interval of time. A minimum of 9 determinations covering the specified range for the procedure (e.g. 3 concentrations/3 replicates each) or a minimum of 6 determinations at 100 % of the test concentration.

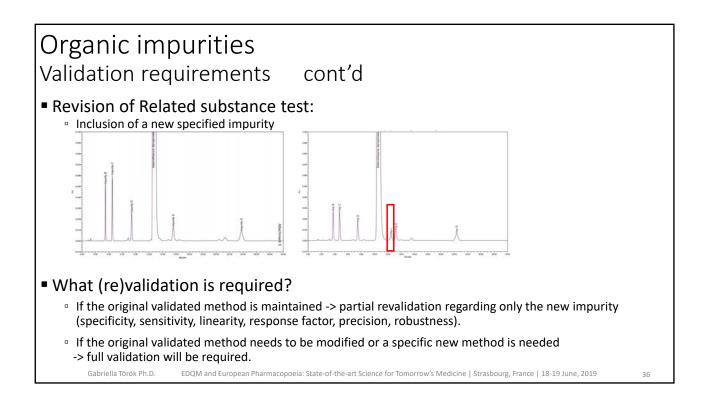

Requirements apply for SST as per General Chapter "Chromatographic separation techniques " 2.2.46.


- Intermediate precision: expresses variations within laboratories: different days, different analysts, different equipment, etc.. In case reproducibility has been performed, this is not needed.
- Reproducibility: expresses the precision between laboratories (collaborative studies, usually applied to standardisation of methodology).



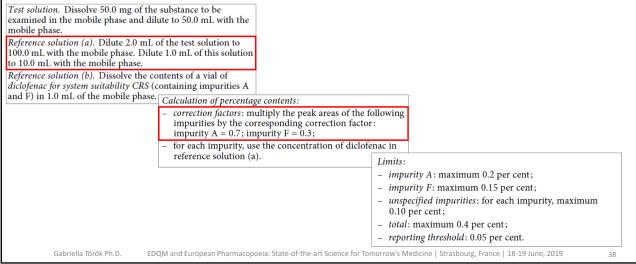





Organic impurities Validation requirements	cont'd	Detection Limit
 The detection limit of an individual a the lowest amount of analyte in a sa not necessarily quantitated as an ex 	mple which can be detected but	Quantification Limit
The quantification limit of an individ in a sample which can be quantitative	<i>i i</i>	-
 Several approaches are possible: visual evaluation, signal-to-noise (S/N ratio), standard deviation of the response and 	the slope of the calibration curve.	
■ Quantification Limit must be ≤ than	the reporting threshold (disregard	limit).
 S/N ratio ≥ 10 at the reporting thresh General Chapter "Chromatographic Additional sensitivity criterion may be neces 	separation techniques " 2.2.46.	
Gabriella Török Ph.D. EDQM and European Pharmacopo	peia: State-of-the-art Science for Tomorrow's Medicine Strasbourg, F	rance 18-19 June, 2019 31

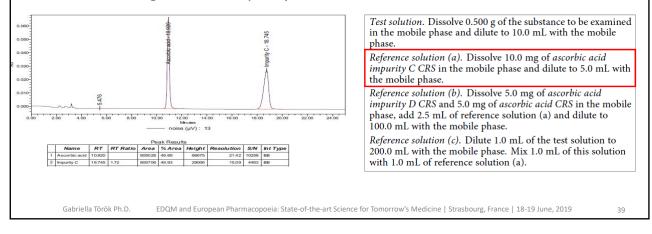
Organic impu SST criteria deriv		Detection Limit
Example: Ascorbic acid (0253)	 System suitability: resolution: minimum 3.0 between the peaks due to ascorbic acid and impurity C in the chromatogram obtained with reference solution (c); signal-to-noise ratio: minimum 20 for the peak due to impurity C in the chromatogram obtained with reference solution (b). 	Quantification Limit
	 Limits: <i>impurities C, D</i>: for each impurity, not more than 1.5 times the area of the corresponding peak in the chromatogram obtained with reference solution (b) (0.15 per cent); <i>unspecified impurities</i>: for each impurity, not more than the area of the peak due to ascorbic acid in the chromatogram obtained with reference solution (b) (0.10 per cent); <i>sum of impurities other than C and D</i>: not more than twice the area of the peak due to ascorbic acid in the chromatogram obtained with reference solution (b) (0.2 per cent); <i>disregard limit</i>: 0.5 times the area of the peak due to ascorbic acid in the chromatogram obtained with reference solution (b) (0.05 per cent). 	
Gabriella Török Ph.D. EDQ	M and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine Strasbourg, Fr	ance 18-19 June, 2019 32

Organic impurities Validation requirements cont'd
 Linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration Linearity (amount) of analyte in the sample.
The range of an analytical procedure is the interval between the upper and lower concentration (amounts) of analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity.
A minimum of 5 concentrations is recommended to be included. For the determination of an impurity/degradant: from QL or from 50 % of the specification of each impurity/degradant, whichever is greater, to 120 % of the specification.
 It is also essential to demonstrate the similarity of response of the substance and known impurities, to establish Response- and Correction Factors for the Calculation of impurity content. Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine Strasbourg, France 18-19 June, 2019



Organic impurities Calculation of impurity content and Limits
If the response factor of an individual impurity is < 0.8 or > 1.2 correction factor (CF) (reciprocal value of the response factor) or individual impurity as an external standard (if the CF value to be applied is >5) must be applied when the proposed limit is 0.1 % or greater.
For the response factor determination the purity of the substances and the salt forms must be considered.
 Limits are based on: normal analytical errors and acceptable variations in manufacturing, compounding, deterioration to an acceptable extent (stability considerations), qualified/approved specification levels, which might become more stringent if NOT supported by actual batch data.
 Calculation Option 1: External calibration Dilution of the test solution -> the preferred methodology by the Ph.Eur., Using an impurity standard.
Calculation Option 2: Peak area normalization Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine Strasbourg, France 18-19 June, 2019 37

Organic impurities Calculation of impurity content | Option 1: Dilution of test solution


Example: Diclofenac Sodium (1002)

Organic impurities Calculation of impurity content | Option 1: Impurity standard

Example: Ascorbic acid (0253)

Solution containing 8x more Impurity C than ascorbic acid

Organic impurities Calculation of impurity content | Option 2: Peak area normalization

Example: Aciclovir (0968)

Test solution. Dissolve 25 mg of the substance to be examined in 5.0 mL of dimethyl sulfoxide R and dilute to 25.0 mL with water R.

Reference solution (a). Dissolve 5 mg of aciclovir for system suitability CRS (containing impurities A, B, J, K, N, O and P) in 1 mL of dimethyl sulfoxide R and dilute to 5.0 mL with water R.

Reference solution (b). Dilute 1.0 mL of the test solution to 100.0 mL with the solvent mixture. Dilute 1.0 mL of this solution to 10.0 mL with the solvent mixture.

Reference solution (c). Dissolve the contents of a vial of aciclovir for peak identification 1 CRS (containing impurities C and I) in 200 µL of dimethyl sulfoxide R and dilute to 1.0 mL with water R.

Reference solution (d). Dissolve the contents of a vial of aciclovir for peak identification 2 CRS (containing impurities F and G) in 1.0 mL of reference solution (a).

- Limits:
- correction factor: for the calculation of content, multiply
- the peak area of impurity I by 1.5; impurity B: not more than 7 times the area of the principal
- peak in the chromatogram obtained with reference solution (b) (0.7 per cent);
- sum of impurities O and O: not more than 3 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.3 per cent);
- sum of impurities K and R: not more than twice the area of the principal peak in the chromatogram obtained with reference solution (b) (0.2 per cent);
- impurities A, G, J, N, P: for each impurity, not more than twice the area of the principal peak in the chromatogram obtained with reference solution (b) (0.2 per cent);
- impurities C, F, I: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.1 per cent);
- unspecified impurities: for each impurity, not more than 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent);
- total: not more than 15 times the area of the principal peak in the chromatogram obtained with reference solution (b) (1.5 per cent);
- disregard limit: 0.3 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.03 per cent).

Gabriella Török Ph.D

EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

Control of impurities in the Ph.Eur Inorganic-/Elemental Impurities

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

41

42

Control of impurities in the Ph.Eur Inorganic-/Elemental Impurities

- Inorganic impurities (inorganic salts, residues of processing aids/reagents, heavy metals) and other residual elemental impurities (metal catalysts or -reagents) are controlled by the following tests:
 - Sulfated ash (General Chapter 2.4.14.).
 - Heavy metals (General Chapter 2.4.8., for substances and products for veterinary use only).
 - Specific tests (AAS, AES, ICP-AES, ICP-MS) for elemental impurities.
- Principles are aligned with ICH Q3D and apply to human medicinal products and thus Individual Monographs of substances for pharmaceutical use (with the exception of substances for veterinary use) do NOT contain the requirement for elemental impurities, unless otherwise specified.
- The requirements are given in:
 - General Monograph "Substances for pharmaceutical use (2034)"
 - General Monograph "Pharmaceutical preparations (2619)"
 - General Chapter 5.20. "Elemental impurities"
 - General Chapter 2.4.20. "Determination of elemental impurities"

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

43

44

Control of impurities in the Ph.Eur Residual Solvents

• Principles are aligned with ICH Q3C and the requirements are given in:

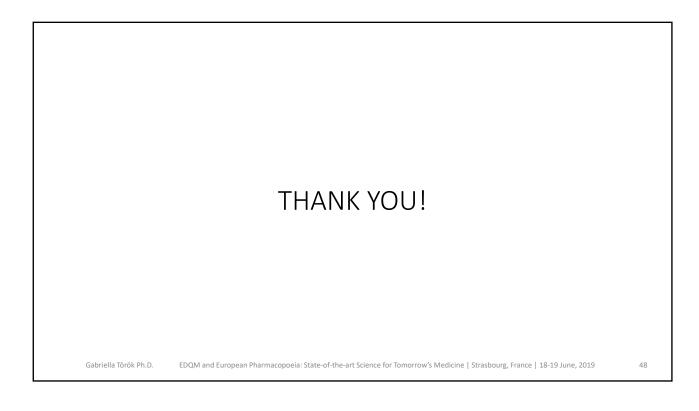
- General Monograph "Substances for pharmaceutical use (2034)".
- General Monograph "Pharmaceutical preparations (2619)".
- General Chapter 5.4. "Residual solvents".
- General Chapter 2.4.24. "Identification and control of residual solvents".

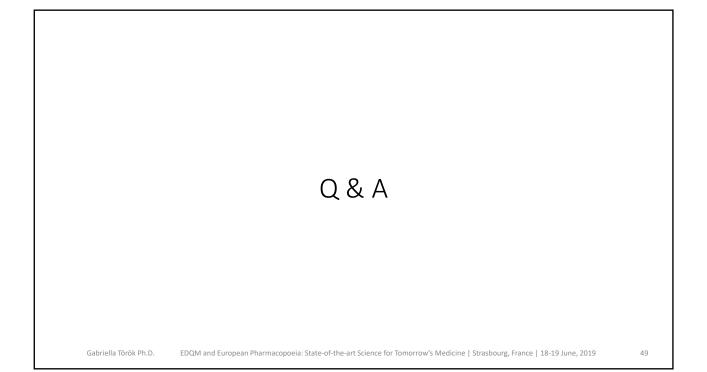
All active substances, excipients and medicinal products are subject to test for residual solvents, if a solvent is used during its manufacture, even when the Individual Monograph does NOT specify this test.

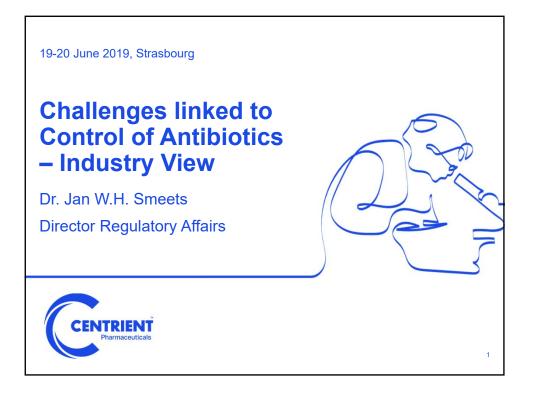
Control of impurities in the Ph.Eur Residual Solvents cont'd

- Only Class 3 solvents used <u>AND</u> limit $\leq 0.5\% \rightarrow$ test for Loss on drying.
- Only Class 3 solvents used <u>AND</u> limit > 0.5% or when Class 2 or 1 solvents are used → specific test is needed, preferably as per General Chapters 2.4.24.
 "Identification and control of residual solvents" by gas chromatography with static head-space injection (2.2.28) or other suitable validated method.
- When a quantitative determination of a residual solvent is performed and Loss on drying is not tested, the result is taken into account for the calculation of the assay content of the substance, the specific optical rotation and the specific absorbance.

Gabriella Török Ph.D. EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

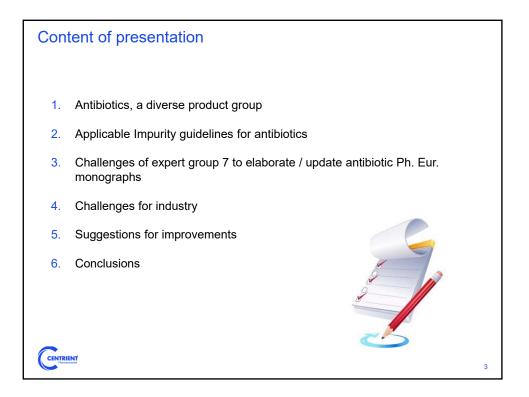


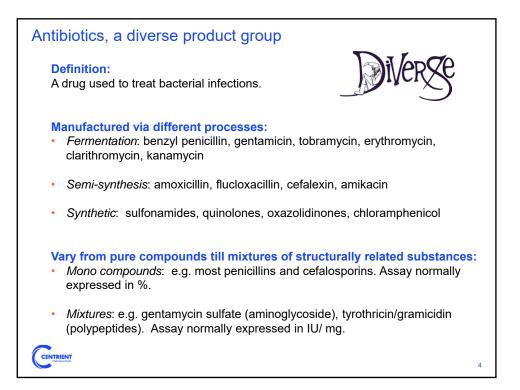

Control of impurities in the Ph.Eur. The user perspective A Compliance with all applicable texts (General Notices, -Chapters, -Monographs) of the Ph.Eur. is required. Compliance with the individual monograph by the user may be established by carrying out only the tests relevant to the known impurity/degradant profile for the source of the substance/product. If the Individual Monograph does not provide suitable control for a new impurity, a suitable test for control must be developed/validated and included in the specification of the substance/product by the manufacturer. Unless otherwise stated, validation of the test methods by the user is NOT required, only verification.

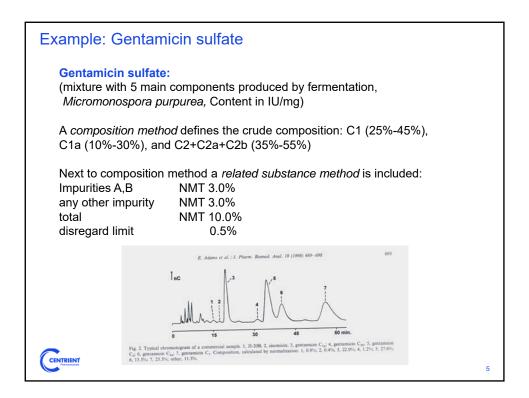

EDQM and European Pharmacopoeia: State-of-the-art Science for Tomorrow's Medicine | Strasbourg, France | 18-19 June, 2019

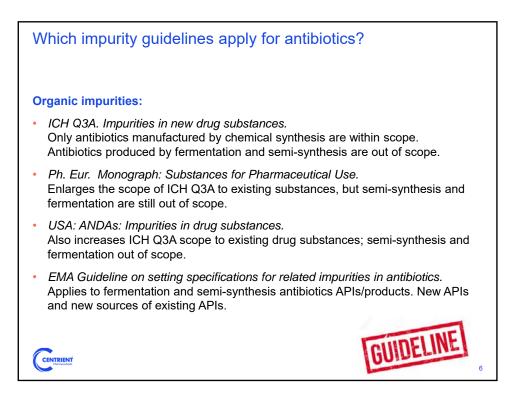
47

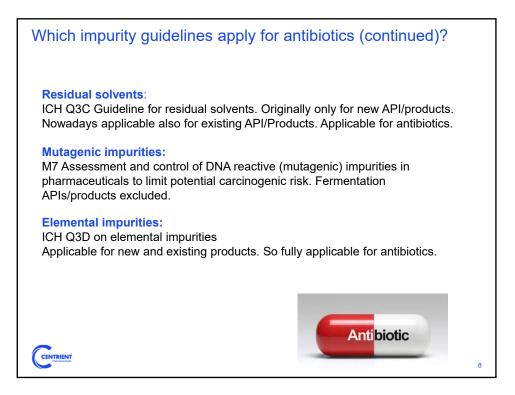
Gabriella Török Ph.D.

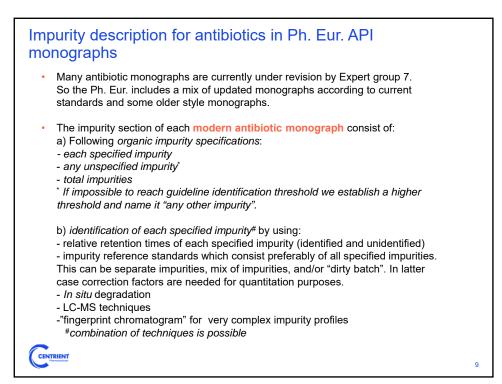


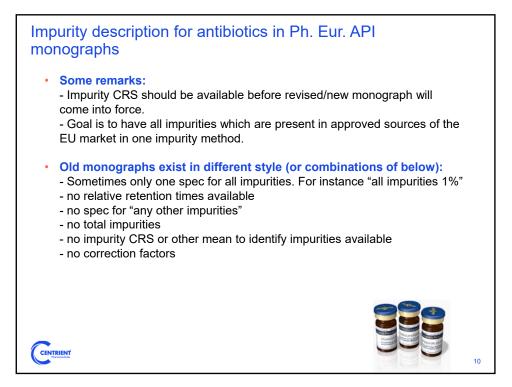

About Centrient Pharmaceuticals

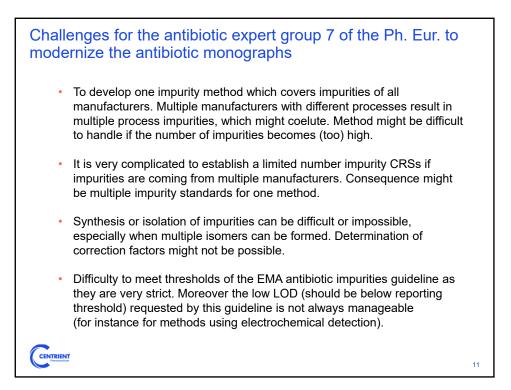

- We are a leading manufacturer of betalactam antibiotics, and a provider of next generation statins and anti-fungals
- We produce and sell intermediates, active pharmaceutical ingredients (APIs) and finished dosage forms (FDFs)
- Quality, Reliability and Sustainability shape how we do things as a company
- Our world-leading proprietary enzymatic technology ensures an unmatched ecofriendly production process for high-quality products
- Our backward-integrated global manufacturing footprint ensures security of supply

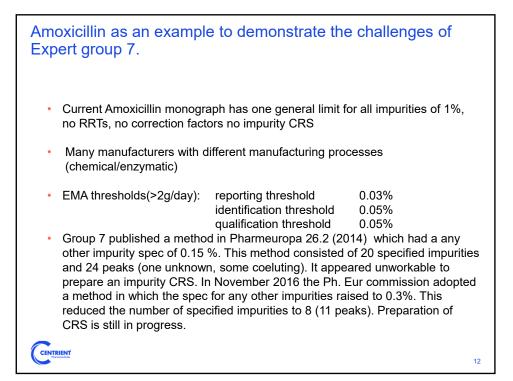

CENTRIENT

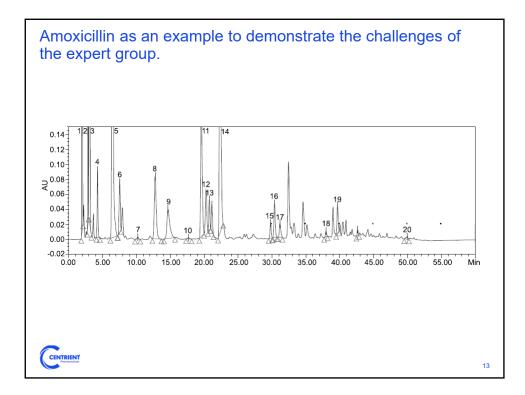


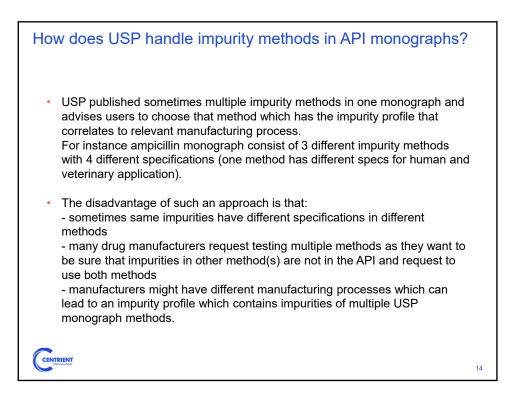


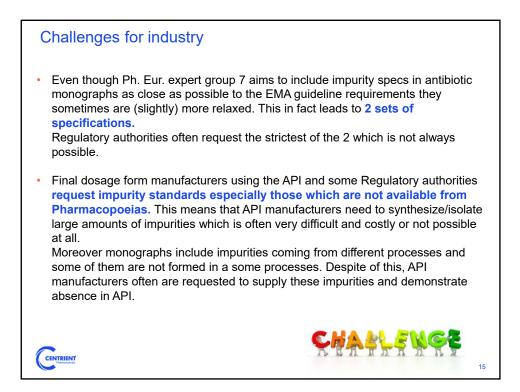


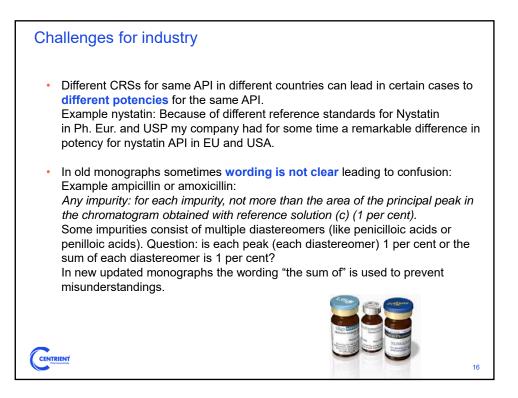


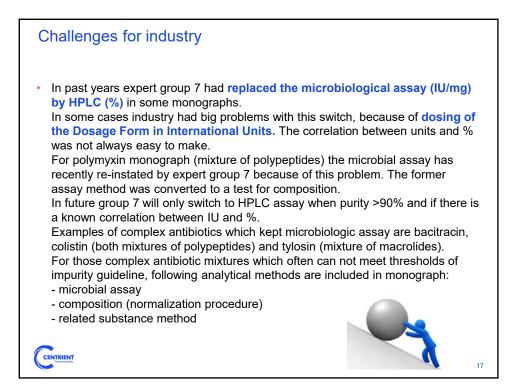

U	nas come into eff	specification fect 30 June 201 and new sources	3.	·
API thresholds human	Semi- synthetic*	Fermentation single	Fermentation family	Peptides
Reporting	0.05%/0.03%	0.10%	0.10%	0.1%
Identification	0.10%/0.05%	0.15%	0.15%	0.5%
Qualification	0.15%/0.05%	0.15%	0.50%**/0.2%	1.0%
family may be	necessary	ily of compounds, i		fermentation,

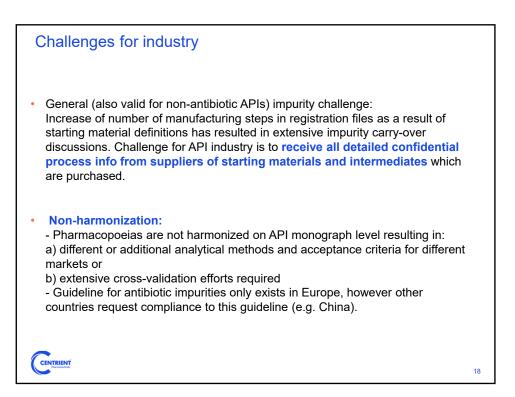


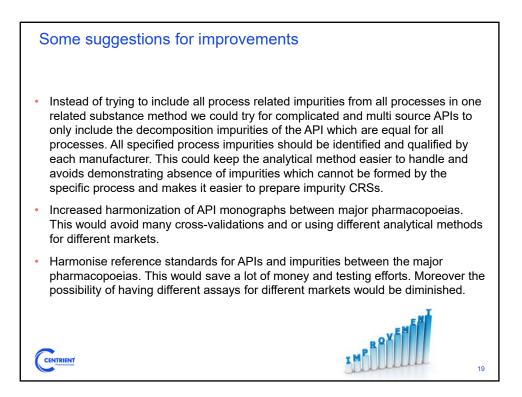


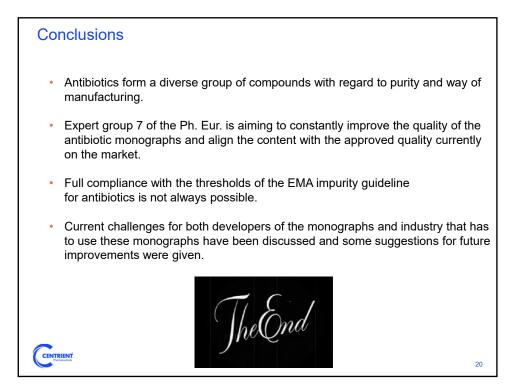


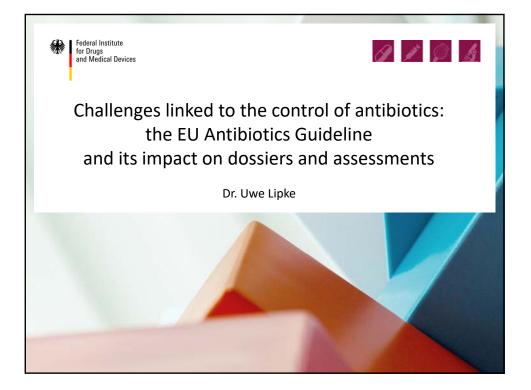


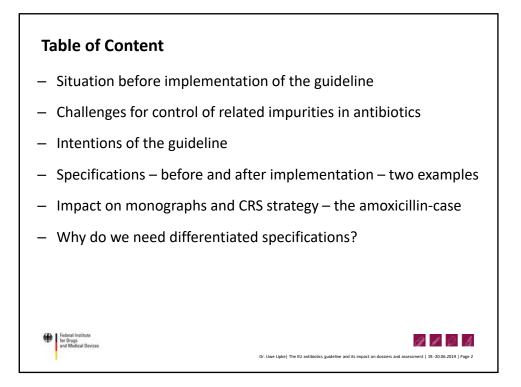


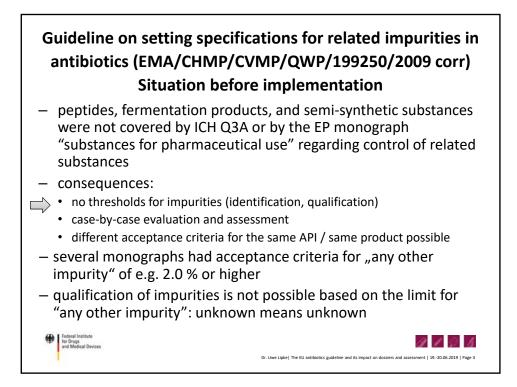


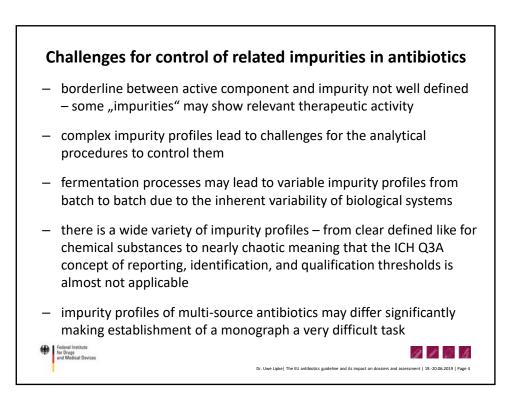


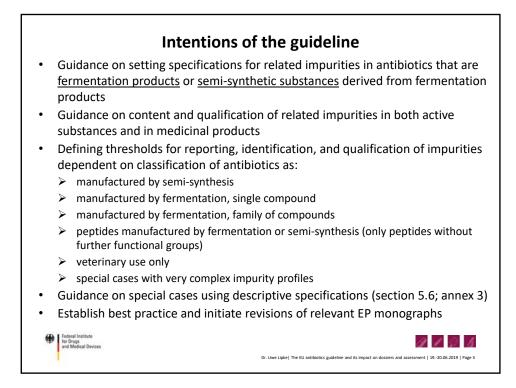


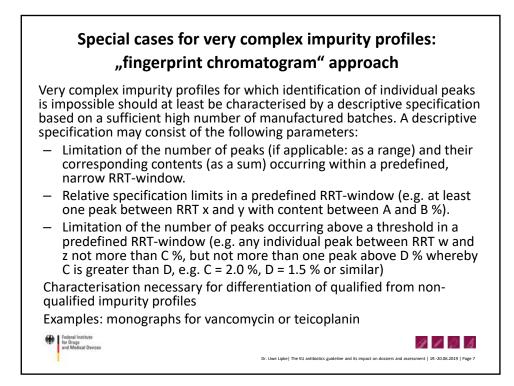


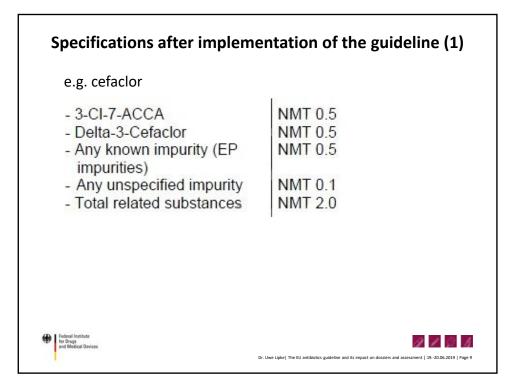


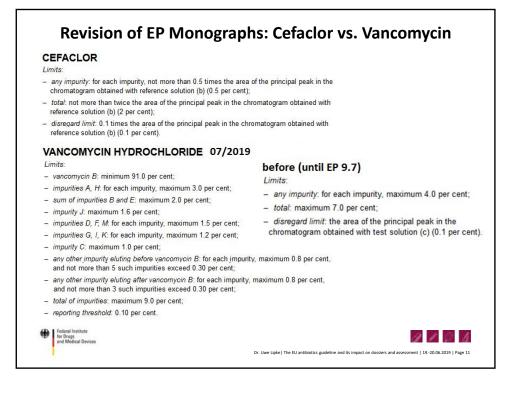


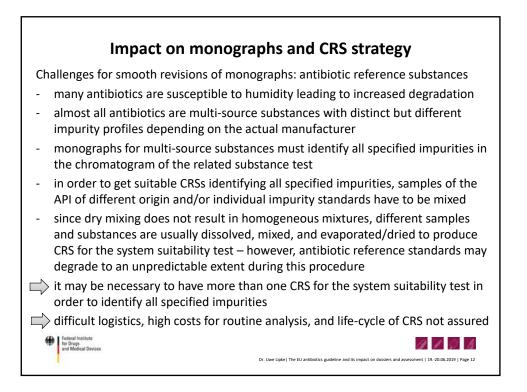


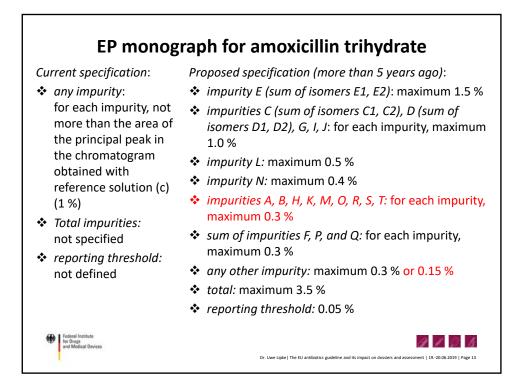


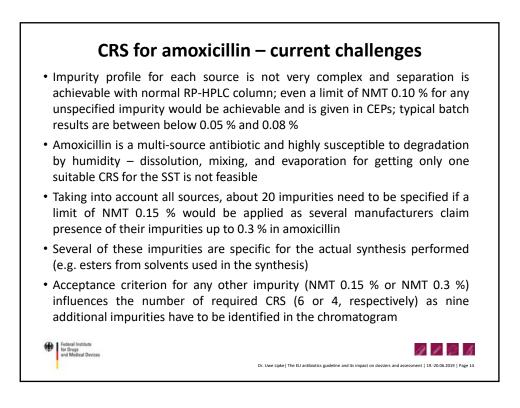


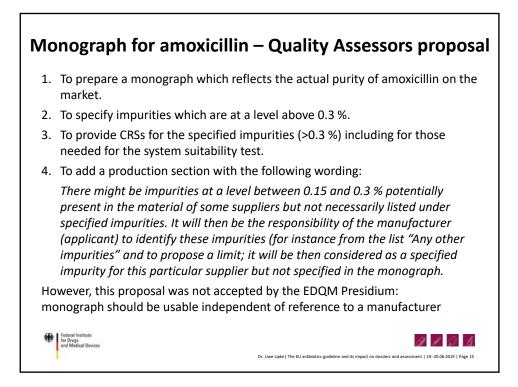


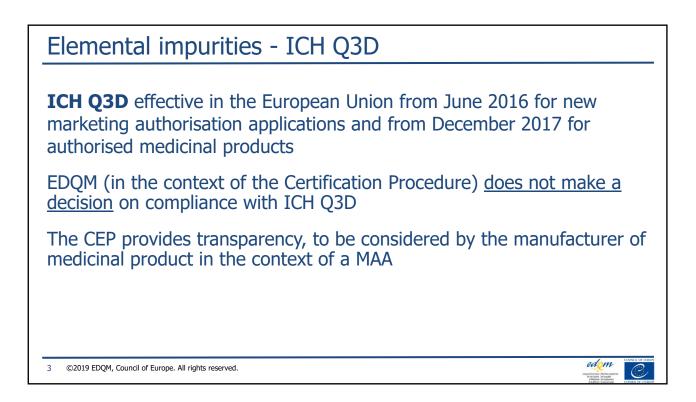

Produc- tion	Single/ family	Reporting threshold %	Identification threshold %	Qualification threshold %	Remark
Semi-	Single	0.05/0.03	0.10/0.05	0.15/0.05	same as ICH Q3A; 2 nd value for maximum daily dose ≥ 2g/day
synthetic	Family	0.10	0.15	0.50/0.2	0.50 % is for structurally closely related impurities only
Fermen-	Single	0.10	0.15	0.15	
tation	Family	0.10	0.15	0.50/0.2	0.50 % is for structurally closely related impurities only
Peptides	n/a	0.1	0.5	1.0	only for peptides without any additional functional group
Veteri- nary only	n/a	0.10	0.20	0.50	if manufactured by fermentation and consisting of a family of compounds, threshold is assessed case-by-case
Special	cases		case-by-case		descriptive specifications for very complex impurity profiles

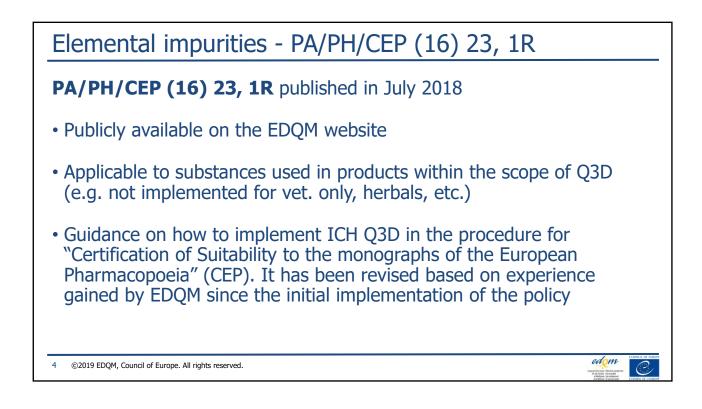


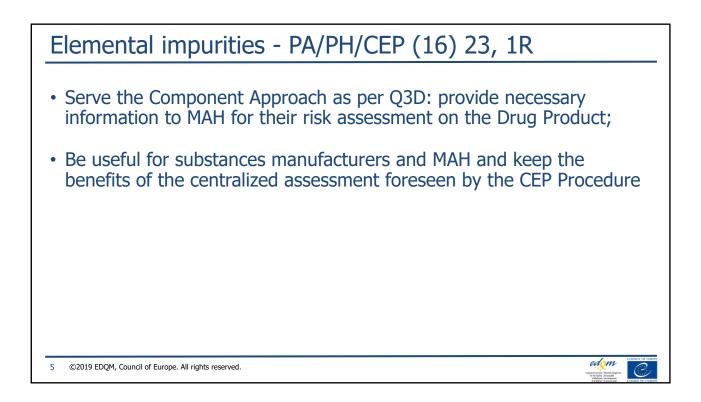

e.g. cefaclor (first ge sporine; semi-synth compound)		•		Ilts cefacl	or
Related substances (% w/w) Highest individual unknown related Highest individual known related		NMT 0.2 NMT 0.5 NMT 2.0	RELATED SUBSTANCES - Maximum individual related substance - Total related substances	0.11 % w/w 0.11 % w/w	NMT 0.5 % w/w NMT 2.0 % w/w
Total related substances		NM1 2.0			
		le;	result	s vancom	ycin
e.g. vancomycin (gly ermentation produ compounds) Vancomycin B	uct; family Not less th	le; ⁄of an 93.0%		t	ycin 93.3
e.g. vancomycin (gly	uct; family	le; ⁄of an 93.0%	Chromatographic Purity	6) 93.2	




	Spe	cification		Results
e.g. vancomycin	Name	rRT	Limit	1 1
	Peaks ahead of vancomycin	B		·
	(rRT with reference to Vanc	omycin B)		
	Impurity vb1	0.17-0.20 (VanB)	≤ 1.5 %	0.10%
	Impurity vb2	0.27-0.31 (VanB)	≤ 1.5 %	0.08%
	Impurity vb3	0.43-0.47 (VanB)	≤ 1.5 %	0.31%
	Impurity vb4	0.51-0.55 (VanB)	≤ 1.5 %	0.09%
	Impurity vb5	0.56-0.60 (VanB)	≤ 1.5 %	1.11%
	Impurity vb6	0.66-0.68 (VanB)	≤ 1.5 %	n.d.
	Impurity vb7 Impurity vb8	0.69-0.71 (VanB) 0.73-0.76 (VanB)	≤ 1.5 % ≤ 1.5 %	0.42%
	Impurity A	0.78-0.80 (VanB)	≤ 4.0 %	0.26%
	N-demethylvancomycin B	0.70-0.00 (Valib)	- 4.0 %	0.2070
	Impurity vb9	0.89-0.94 (VanB)	≤ 1.5 %	n.d.
	Peaks after Vancomycin B			
However, what we	(rRT with reference to Desa	midovancomycin B)		
lowever, what we	Impurity da1	0.63-0.65 (Desam.)	≤ 1.5 %	n.d.
really get to see in a	Impurity da2	0.75-0.82 (Desam.)	≤ 1.5 %	0.15%
, 0	Impurity da3	0.83-0.87 (Desam.)	≤ 1.5 %	n.d.
dossier depends mainly	Impurity D	0.95-0.98 (Desam.)	≤ 4 .0 %	1.36%
on the relevant FP	Desvancosaminylvancomycin E		10.01	0.000/
	Impurity B Desamidovancomycin B	approx. 1.00 (Desam.)	≤ 4 .0 %	0.26%
monograph in force at	Impurity da4	1.06-1.09 (Desam.)	≤ 1.5 %	n.d.
0 1	Impurity C	1.10-1.12 (Desam.)	≤ 4.0 %	n.d.
the time of submission.	Aglucovancomycin B			
	Impurity da5	1.22-1.24 (Desam.)	≤ 1.5 %	0.08%
	Unspecified impurities, single		≤ 0.5 %	n.d.
	Total impurities		≤ 7.0 %	4.41%


THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)





edom

Elemental impurities - PA/PH/CEP (16) 23, 1R 2 possible options in a CEP dossier: 1. The substance manufacturer can submit a risk management summary (RMS) for elemental impurities (component approach). This helps the DP manufacturer's risk assessment and it is evaluated by assessors 2. No RMS given by the substance manufacturer. The EDQM encourages the submission of a RMS in the CEP Dossier.

Applicants are also reminded that it is a requirement to submit the synthesis of the API in the Dossier including information on metal catalysts or reagents used.

edom

C

If the RMS is included in the Dossier... It should be apparent that this approach is followed The RMS should provide the reasons why certain impurities are considered and the justification of the chosen control strategy The RMS table is intended to carry necessary information about the level of contamination of the substance source, in order to implement the ICH Q3D component approach in the finished medicinal product. A screening alone is not a risk management summary. Screening results may support but do not replace a RMS Where insufficient data is given to support this option, the application is considered as if no RMS is provided.

How to build the RMS

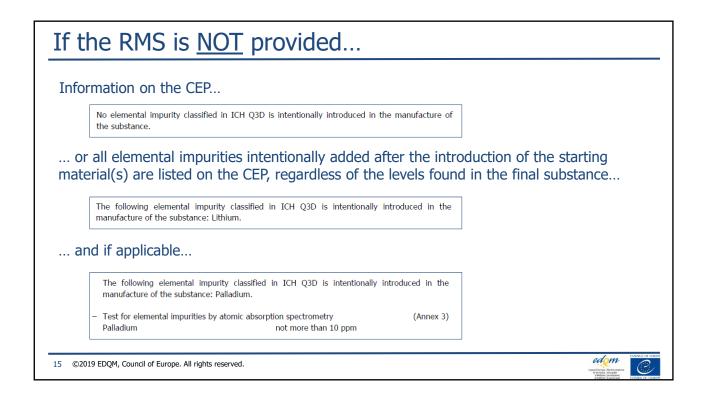
- The RMS should consider all potential sources of contamination; including elemental impurities intentionally introduced into the process after the introduction of the starting material(s), contributions from materials (starting materials, reagents, solvents, catalysts, process aids, water, etc.), equipment and packaging
- The intended route of administration / use of the substance should be indicated. This forms the basis of the risk management discussion

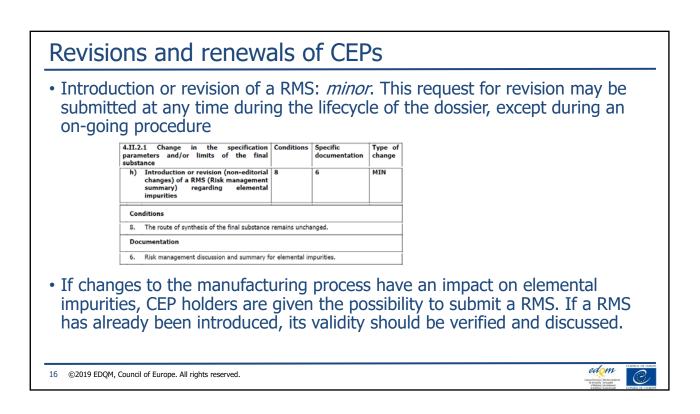
edom

0

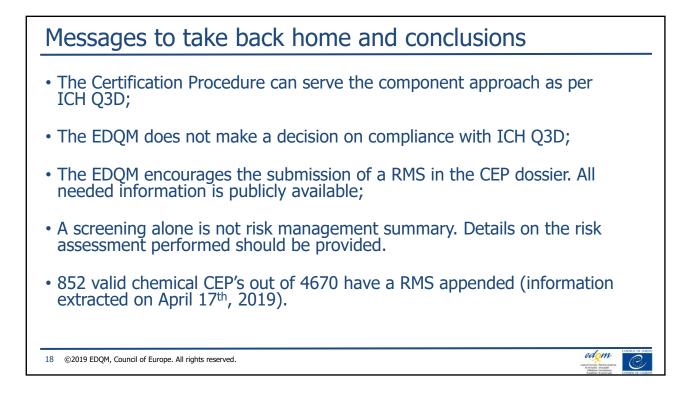
 The RMS should take into consideration all 24 elemental impurities mentioned in ICH Q3D

How to define the control strategy
 The control strategy should focus on absence/presence of elemental impurities (using preferably option 1 of the ICH Q3D guideline)
 An elemental impurity is absent when purged to levels consistently below 30% of the calculated concentration limit based on the indicated route of administration and on the option 1 daily intake, in a minimum of 3 consecutive commercial or 6 consecutive pilot batches of final substance. Other approaches may be considered, if scientifically justified
• When applicable, a justified specification for elemental impurities in the final substance should be introduced. For elemental impurities intentionally introduced into the last synthetic step, specifications in the final substance are normally expected unless levels below 30% of ICH Q3D option 1 limit.
9 ©2019 EDQM, Council of Europe. All rights reserved.


<section-header><section-header><text><list-item><list-item><list-item><page-footer><page-footer>



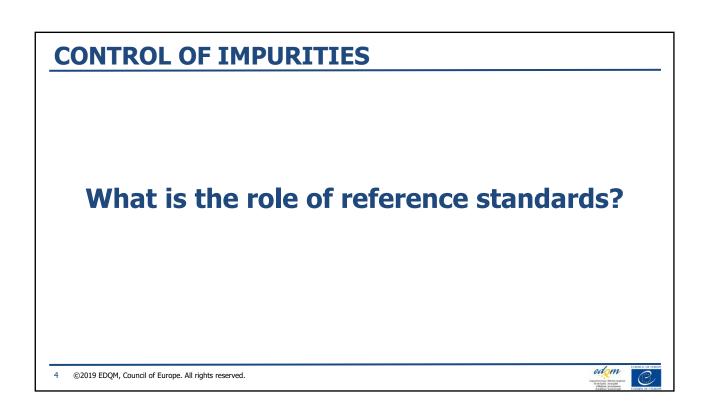
 - or "< X ppm", - or "No risk identified" Individual batch results	should not be included in the table	2
Batch results for an EI	To be reported in the table as	
	conclusion	
0.2 ppm / 0.1 ppm / 0.4 ppm	< 0.5 ppm or < 1 ppm or < 5 ppm	


A risk management s	(Annex 2)		
d if applicable. A risk management	 summary for elemental impurities has been provided.	(Annex 2)	
	impurities by ICP-MS	(1	
Palladium Nickel	not more than 3 ppm not more than 6 ppm	(Annex 3) (Annex 4)	

If the RMS is <u>NOT</u> provided
The following points should be addressed in the CEP application:
 Any elemental impurities (whatever the class) intentionally introduced should be declared; data showing their level in the final substance should be provided
 For any elemental impurity intentionally introduced into the last synthetic step, a specification in the final substance is normally expected unless levels below 30% of ICH Q3D option 1 limit
 The limits applied to control elemental impurities in the final substance should reflect the process capabilities. The PDE of ICH Q3D may be used as reference
 The method used to control elemental impurities in the final substance should be described in detail (in a format to be annexed to the CEP) and validation data according to ICH Q2 should be submitted
14 ©2019 EDQM, Council of Europe. All rights reserved.

Revisions and renewals of CEPs
 Changes to the control strategy: to be classified according to the applicable guideline on revisions/renewals of CEPs.
 The renewal application is also an opportunity for CEP holders to submit a RMS in their application
17 ©2019 EDQM, Council of Europe. All rights reserved.

THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)



OUTLINE

- > Role of reference standards
- Establishment of reference standards
- > Challenges
- ➤ Example
- ➢ Final remarks

©2019 EDQM, Council of Europe. All rights reserved.

3

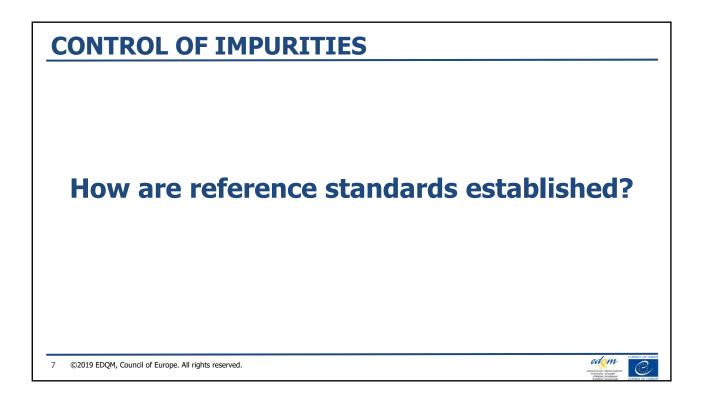
edom

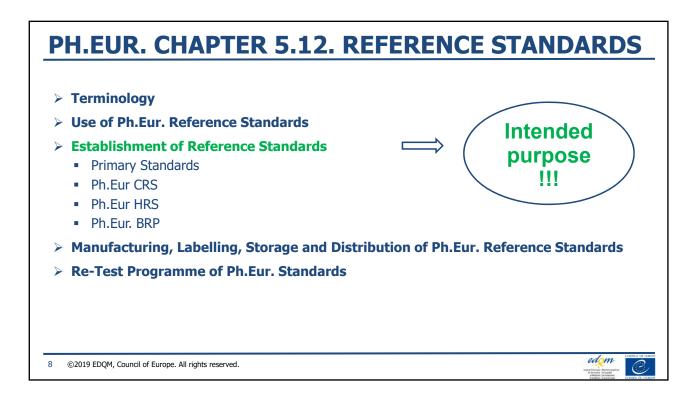
C

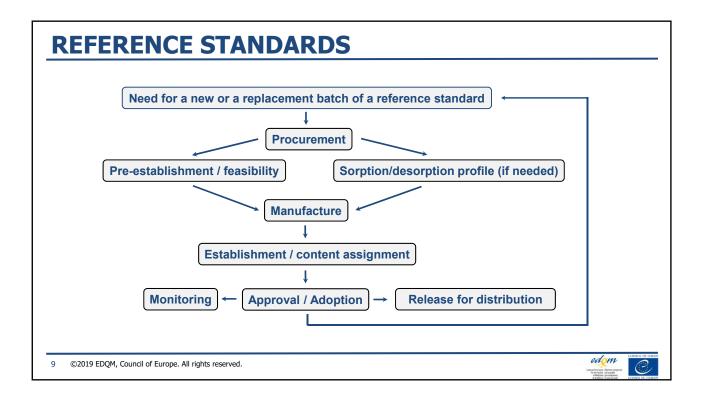
ROLE OF REFERENCE STANDARDS

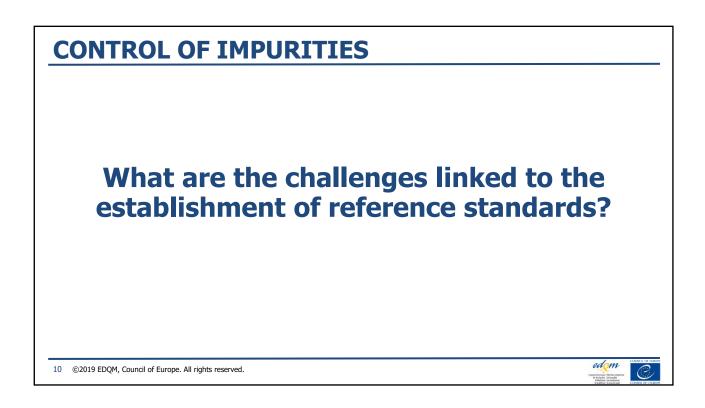
Technical guide for the elaboration of monographs (7th edition – 2015)

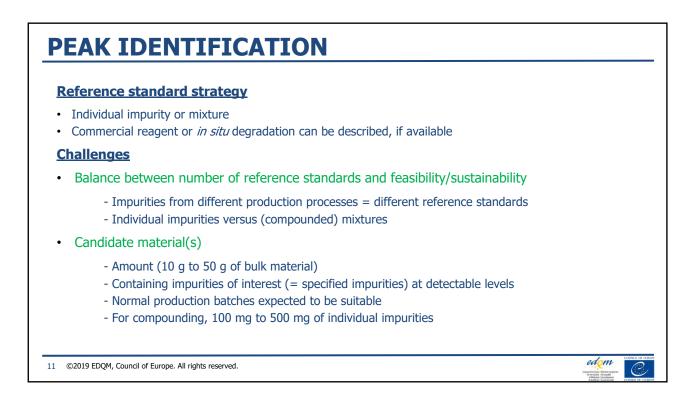
A large difference in the detector response of an impurity necessitates the use of a specific external standard, which may be:


- a solution of the impurity, normally in form of a reference standard (preferred option);
- a solution of the substance to be examined containing a known amount of the impurity.


\rightarrow Quantification


\rightarrow System suitability


(In-situ degradation ... offers an alternative approach to define the suitability of the system ... to produce decomposition products, the peaks of which can be used to determine a resolution or a peak-to-valley ratio. This may be a useful approach to avoid the use of impurity **reference standards**.)



PEAK IDENTIFICATION

Challenges

- Manufacture
 - Compounding: solubility, stability, homogeneity \rightarrow feasibility study
- · Confirmation of identity of impurity peaks in mixtures (traceability)
 - CRS 1: availability of authentic samples of impurities for spiking (10 to 50 mg)
 - CRS n+1: spike with CRS n (but not always appropriate for complex profiles)
 - Alternative detection e.g. LC/MS but pre-requisites (mobile phase, ionisation, difference in m/z, ...)

edom

0

- Sustainability
 - Stability of impurities
 - Batch-to-batch: identity, not necessarily content of impurities
 - Evolution in impurity profile/API synthesis ightarrow adapt monograph/reference standard
 - Changes in method: need to confirm once more identity of impurity peaks

QUANTIFICATION

Reference standard strategy

- Individual impurity
- Semi-quantitative (e.g. TLC): use of a commercial reagent may be considered, if available sufficiently pure and well defined in corresponding Ph.Eur. Chapter

Challenges

- Candidate material(s)
 - Amount (25 g to 100 g): more material needed due to extensive characterisation and increased amount per vial (sufficient for preparation of two solutions), compared to "peak identification"

edom

edom

0

- Content preferably above 95.0 %
- Manufacture
 - Homogeneity \rightarrow water sorption/desorption study

13 ©2019 EDQM, Council of Europe. All rights reserved.

QUANTIFICATION

Challenges

- Content determination
 - Mass balance/related substances: method corresponding to the intended use (solubility, differences in response, late eluting compounds)
 - Inorganics/residual solvents: high amount of sample required
 - Orthogonal methods (e.g. qNMR): selectivity
 - Hydrates/differences in salt form (stoichiometric conversion factor)
- Sustainability
 - Stability
 - Batch-to-batch: identity and content
 - Changes in method: verify impact on content / change batch if impact

SYSTEM SUITABILITY

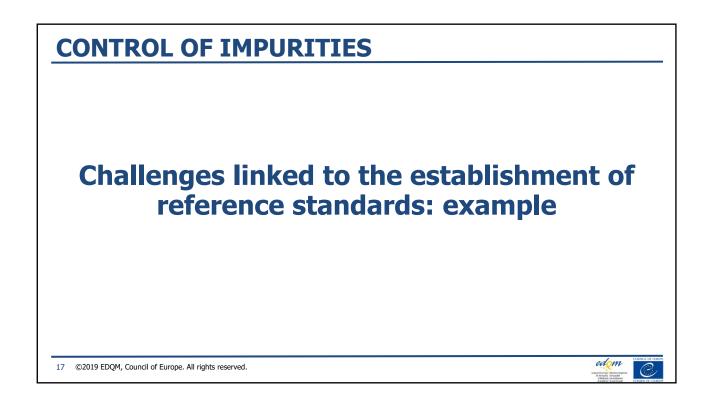
Reference standard strategy

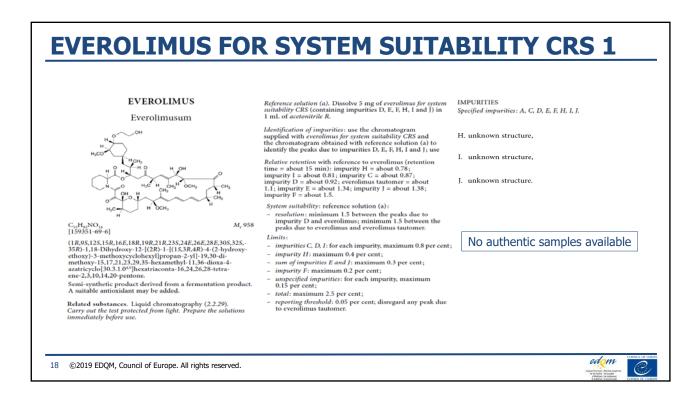
- Individual impurity or mixture
- Commercial reagent or in situ degradation can be described if available, but cave impact
- Cave test solution to which an individual impurity is added
- Compliance with monograph is not required

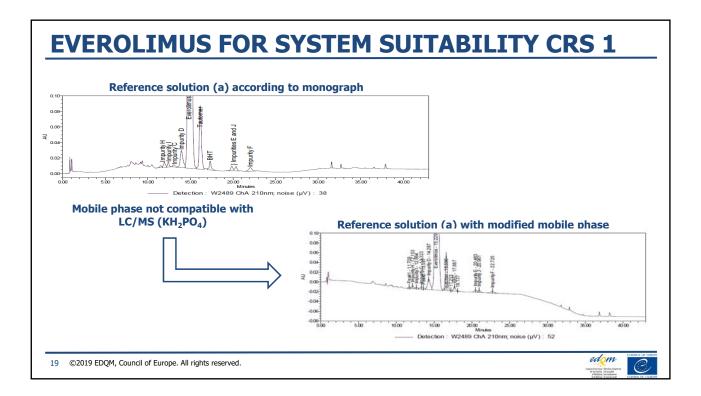
Challenges

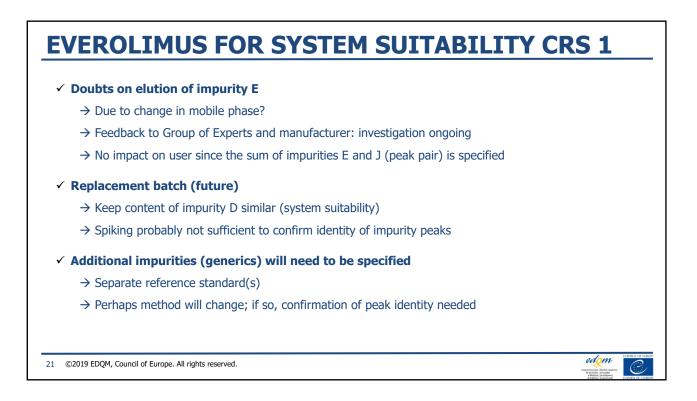
- Candidate material(s)
 - Amount (10 g to 50 g of bulk material)
 - Containing impurities of interest <u>at appropriate levels</u>, especially for peak-to-valley ratio criterion (method validation composition of reference standard is integral part of system suitability test)
 - If impurity is not specified or an impurity level far from specification is needed

15 ©2019 EDQM, Council of Europe. All rights reserved.

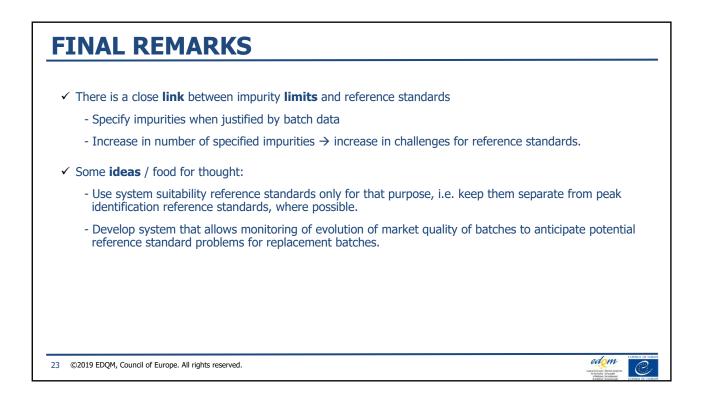

SYSTEM SUITABILITY


Challenges


- Confirmation of identity of impurity peaks in mixtures (traceability)
 - Cfr. "Peak identification"
- Sustainability
 - Batch-to-batch: identity and content of impurities
 - In-house compounding provides more control on impurity levels, but feasibility (solubility, stability, homogeneity) needs to be tested
 - If content varies between batches, impact on intended use needs to be assessed


edom

	Louisto	suits for re	terence soluti	on (a) (ESI in	positive and	d negative mode)
Retention time	Identity according to monograph	Adduct	Theoretical sum formula (adduct)	Theoretical monoisotopic m/z	Concordance m/z found with theory?	Comment
12.2 min	Impurity H	[M+NH4] ⁺ [M+HCOO] [*]	N/A*	N/A*	N/A*	Sum formula could be determined
12.7 min	Impurity I	[M+NH4] ⁺ [M+HCOO] ⁺	N/A*	N/A*	N/A*	Sum formula could be determined
		[M+NH4]*	C53H87N2O14	975.6152	Yes	Everolimus and impurities B and D
14.3 min	n Impurity D	[M+HCOO]	C54H84NO16	1002.5796	Yes	have the same monoisotopic mas and cannot be distinguished by M
00 E	In the State	[M+NH4]*	C52H83N2O14	959.5839	No	Sum formula could be determined
20.5 min	Impurity E	[M+HCOO]	C53H80NO16	986.5483	No	
	+	[M+NH4]*		N/A*	N/A*	Major signal: sum formula could be determined
21.0 min	Income and		N/A*			Minor signal: concordant with impurity E
21.0 min	Impurity J	TOOOH+M	N/A"	N/A"	N/A"	Major signal: sum formula could be determined
		[MITHOOO]				Minor signal: concordant with impurity E
22.7 min	Impurity F	[M+NH4]*	C55H93N2O16	1037.6520	Yes	
		[M+HCOO]	C56H90NO18	1064.6163	Yes	



FINAL REMARKS

- ✓ An important challenge is to cope with the **availability** of suitable candidate material and authentic samples of impurities. Cooperation with manufacturers is key to overcome this challenge.
- ✓ Devising a "**smart**" reference standard **strategy** is of paramount importance:
 - Only describe a reference standard when there is a real need
 - Make best use of what is available (and what can be expected to be available in the future)

edom

- Keep it simple; don't try to create an ideal, all-purpose reference standard.
- ✓ Do not compromise on confirmation of **identity** of impurity peaks
- ✓ Encourage use of **volatile** mobile phases so that LC/MS can be applied directly.

