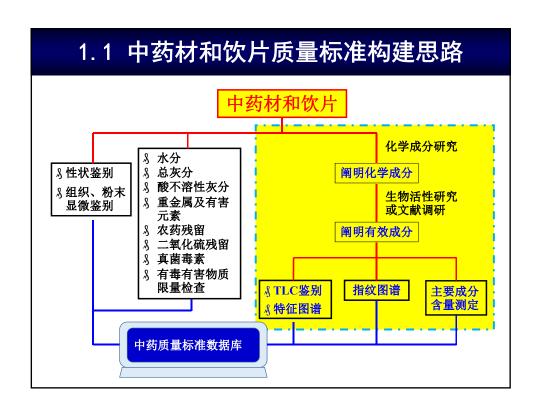
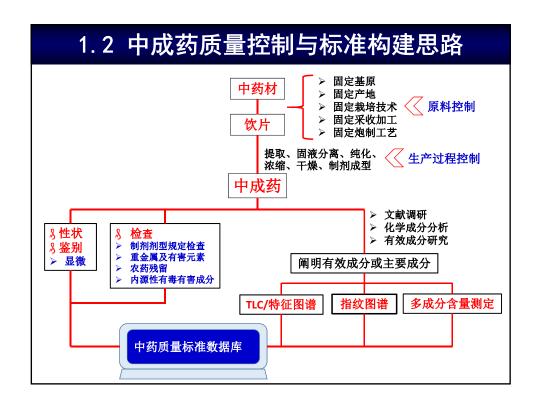
中药质量标准研究与 《中国药典》2015版中药材质量标准增修订

屠鹏飞 中国药典委员会中药材饮片专业委员会

概述

- 中药为中华民族防病治病的传统药物,为中 华民族的繁衍昌盛做出了巨大贡献。
- 《神农本草经》(东汉,公元一至二世纪):记载中药材365种;
- 《新修本草》(唐朝,公元659年):中国 第一部药典,收载中药材884种;
- 《本草纲目》(明朝,公元1578年): 收载 中药材1892种;
- 《中国药典》**2015**年版:收载中药材616 种:
- 第三次中药资源普查: 12807种;
- 常用中药材:约1200种。

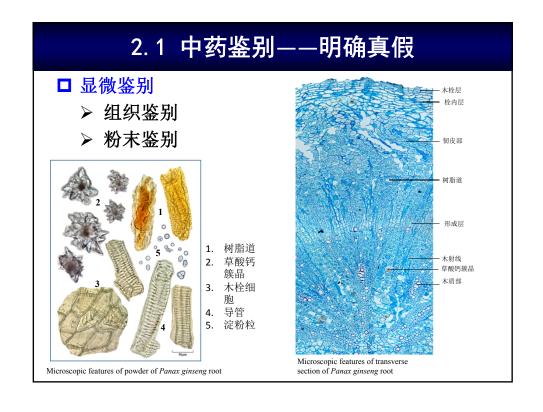


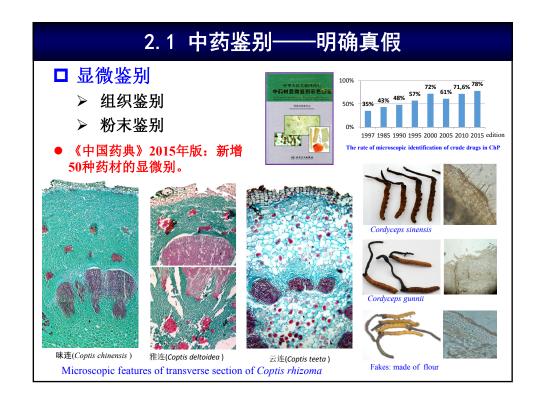

1.1 中药材和饮片质量标准构建思路

- 鉴别——明确真假——吃真药
- 检查——保障安全——吃安全药
- 指纹图谱+含量测定——评价优劣——吃好药

《中国药典》中药材和饮片质量标准体系

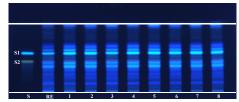
- 名称
- 检查
- 来源
- ▶ 水分 ▶ 总灰分
- 性状
- ▶ 酸不溶性灰分
- ▶ 重金属及有害元素 ▶ 农药残留
- 鉴别
- ▶ 显微鉴别 ▶ 色谱鉴别
- > 真菌毒素
- ▶ 二氧化硫残留
- > 有毒有害物质限量检查


- 指纹图谱/特征图谱
- 浸出物
- 含量测定
- 炮制
- 性味与归经
- 功能与主治
- 用法与用量
- 注意
- 贮藏

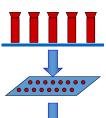


1.2 中成药质量控制与标准构建思路 《中国药典》中成药质量标准体系 检查 名称 • 指纹图谱/特征图谱 • 处方 • 含量测定 ▶制剂剂型要求 • 制法 • 功能与主治 ▶重金属及有害 性状 元素 • 用法与用量 • 鉴别 > 农药残留 注意 ▶显微鉴别 • 规格 ▶ 内源性有毒有 ▶色谱鉴别 害物质 • 贮藏

2 中药质量标准研究与《中国药典》 2015年版中药材质量标准增修订



2.1 中药鉴别——明确真假

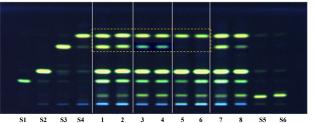

- **TLC鉴别**
- > 现状: 对照品、对照药材
- > 发展: 以对照提取物为对照的中药TLC鉴别

HPTLC images of the roots of *Polygala tenuifolia* (远志)
1~8: the roots of *Polygala tenuifolia*, SI: 3.6-disinapoyl sucrose; S2: polygalaxanthone III; RE: reference extract

对照提取物的优势:

- 多成分对照,专属性强
- 大批量生产,一致性、 均一性强,成本低
- 微量化、芯片化,携带、使用方便,成本更低
- 说明书附TLC图片,鉴 定更加准确、明了

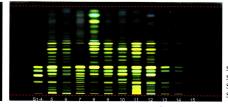
HPTLC of the barks of Magnolia officinalis (厚朴) (by Z. T. Wang, et al)


A: 1%香草醛10%硫酸乙醇溶液显色; B: 0.04% DPPH乙醇溶液显色

.....

2.1 中药鉴别——明确真假

■ TLC鉴别


● 《中国药典》2015 年版: 所有植物性 药材基本都收载 TLC鉴别。

HPTLC images of the rhizomes of *Coptis* (by Z. T. Wang, et al.)

1,2,7: Coptis chinensis; 3,4,8: Coptis deltoidea; 5,6: Coptis teeta S1: palmatine; S2: berberine; S3: epiberberine; S4: coptisine; S5: jatrorrhizine; S6: columbamine

S1:saikosaponin f S2:saikosaponin b2 S3:saikosaponin a S4:saikosaponin d

HPTLC images of the roots of Bupleurum (by P. S. Xie, et al.)

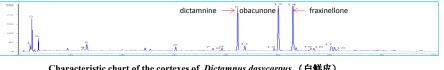
1,2,5: B. chinensis; 3,6: B. scorzonerifolium; 4,12: B. falcatum; 7: B. longiradiatum; 8: B. bicule; 9: B. polyclonum; 10: B. wenchuanense; 11: B. marginatum; 13: B. yinchowense; 14: B. simithii var. parvifolia; 15: B. tenue

2.1 中药鉴别—— -明确真假 □特征图谱鉴别

● 优势:

- ▶ 分离度高
- ▶ 信息量丰富
- ▶ 专属性强
- ▶ 峰面积比值的制定,可实现 半定量控制

● 评价方法


- > 特征峰的保留时间或相对保留 时间
- > 特征峰的峰面积比值
- > 对照药材或对照提取物对照

● 分析方法

- > HPLC
- **>** GC
- > HPCE

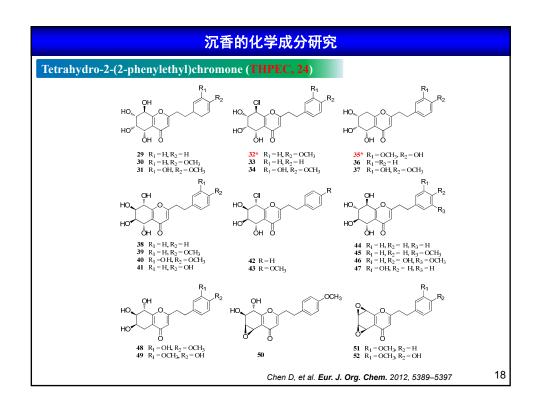
● 适用中药

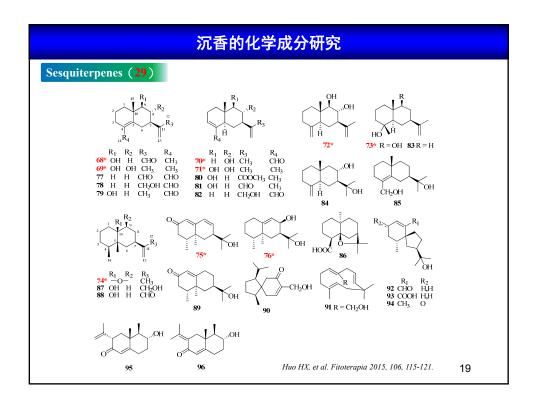
- 贵重药材
- ▶ 易混药材
- > 中药提取物
- ▶ 配方颗粒
- 中成药

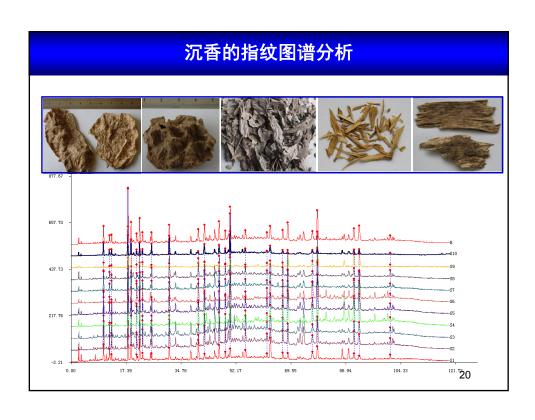
Characteristic chart of the cortexes of Dictamnus dasycarpus (白鲜皮)

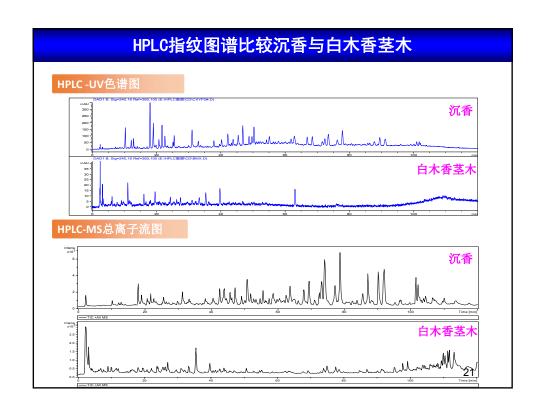
沉香的特征图谱研究及其标准的建立

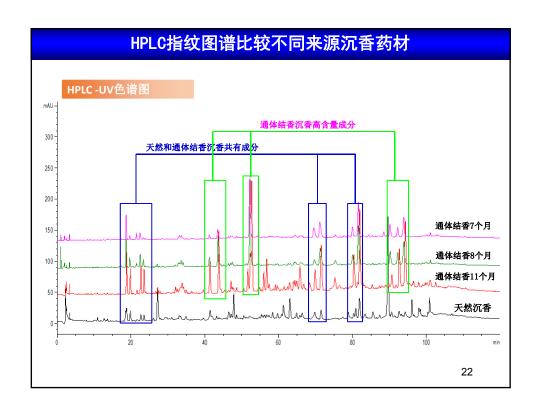
- □ 瑞香科植物白木香 Aquilaria sinensis (Lour.) Gilg含树脂的木材。
- □ 名贵中药材:具有行气止痛,温中止呕,纳气平喘的功效,用于胸腹胀闷疼痛,胃寒呕吐呃逆,肾虚气逆喘
- □ 名贵香料。
- □ 名贵工艺品原料和收藏品

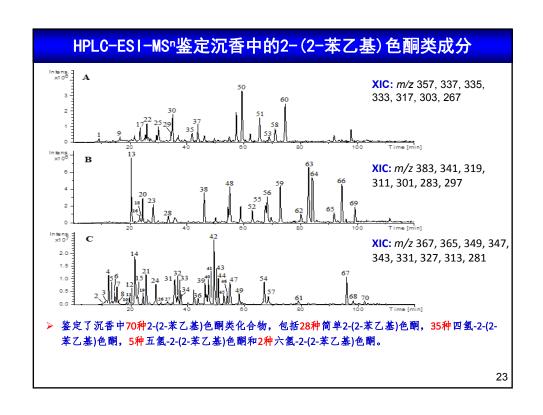


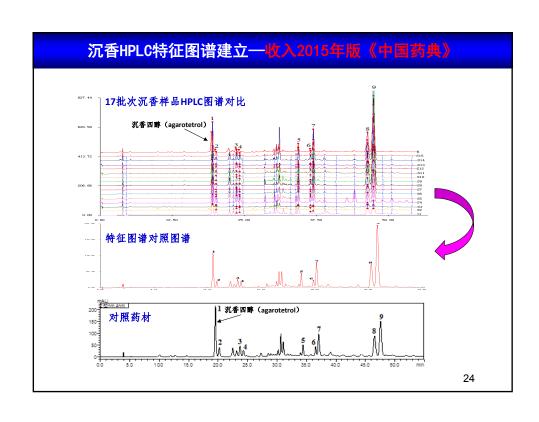


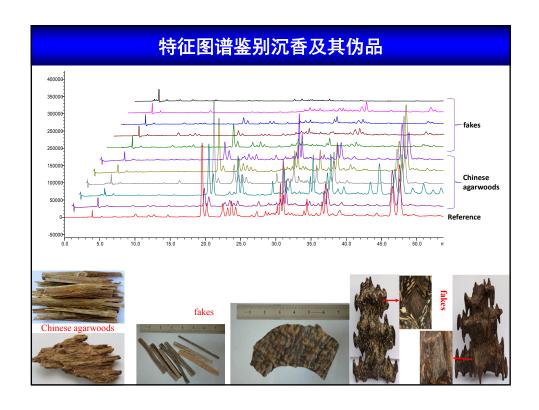


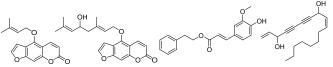



	***	= H	,,,,,	学成:	/J 17/	176			
(2-phenylethyl)chromon	e (P)	EC, 2	8)						
	_	R ₁	R ₂	R ₃	R_4	R ₅	R ₆	R ₇	R ₈
	1*	Н	OCH ₃	OCH ₃	Н	Н	Н	Н	OH
	2*	OH	OCH_3	OCH_3	H	H	H	OCH_3	H
	3	Н	OCH_3	H	Н	H	H	OH	H
	4	H	OH	H	OH	H	OH	OCH_3	H
	5	H	OH	H	H	H	OH	OCH_3	H
Б	6	H	H	H	H	OH	H	H	H
R_6	7	H	OH	H	H	H	H	OCH_3	H
R_5 R_5	, 8	H	OH	H	H	H	H	H	H
R ₄	9	H	OCH_3	H	H	H	OCH_3	OH	H
	10	H	OCH ₃	OCH_3	H	H	Н	OCH_3	H
	11	Н	OH	Н	Н	H	OCH_3	OH	H
R ₈	12	H	OCH_3	OCH_3	H	H	OCH_3	H	H
$\gamma \gamma \gamma$	13	H	OCH ₃	Н	H	H	H	H	H
Ŕ₁ Ö	14	H	OCH ₃	H	H	H	OCH ₃	H	H
	15	H	OH	H	OH	H	H	H	H
	16	H	H	OH	H	H	H	H	H
	17	OH	H	H	OH	H	H	OCH ₃	H
	18	OH	H	H	OH	H	H	Н	H
	19	H	OCH ₃	OH	H	H	OH	OCH ₃	H
	20	H	Н	H	H	H	H	Н	H
	21	H	OH	H	C1	H	H	H	H
	22	H	OH	H	H	H	H	H	H
	23	H	H	OCH ₃	H	H	H	H	H
	24	OH	OCH ₃	Н	H	H	H	H	H
n D, et al. Eur. J. Org. Chem.	26	Н	Н	H	H	H	H	OCH ₃	H
2, 5389–5397	27	Н	OCH ₃	Н	Н	H	H	OCH ₃	H
	28	Н	OCH ₂	OH	Н	H	OCH ₂	OH	н 17

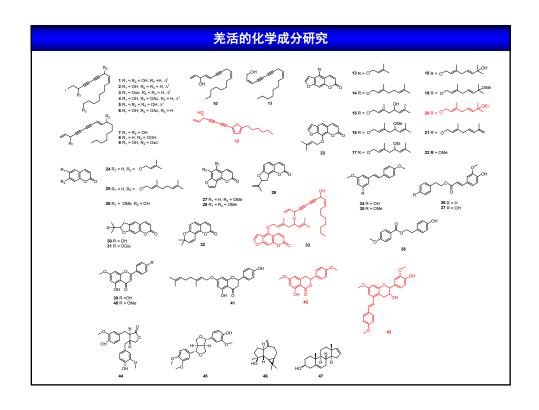


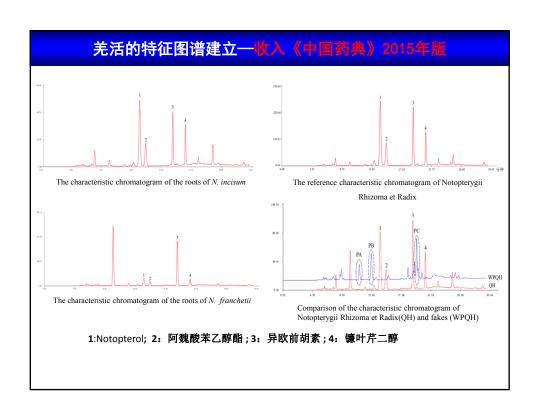


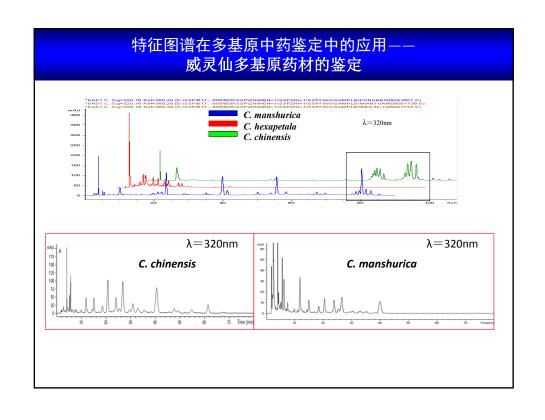


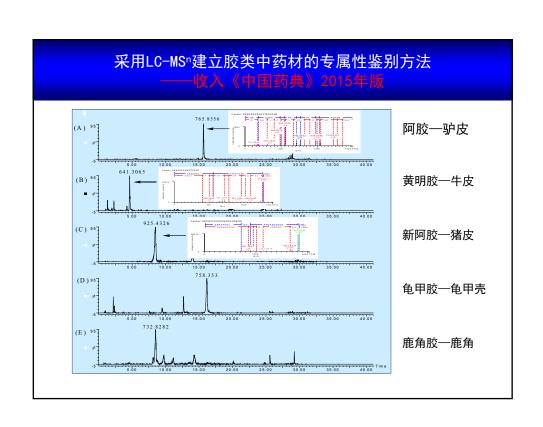

羌活的特征图谱研究与标准制定

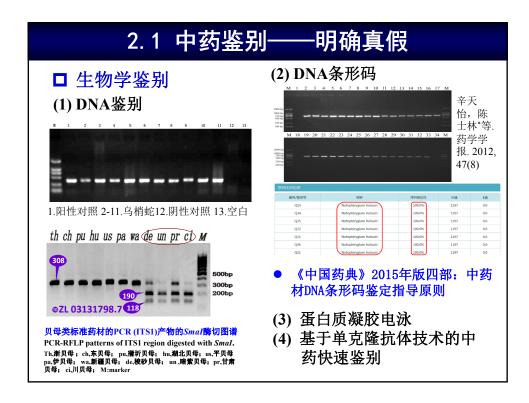
Notopterygium franchetii


- > 伞形科植物羌活Notopterygium incisum Ting ex H. T. Chang或宽叶羌活Notopterygium forbesii H. de Boiss.的干燥根茎和根。
- ▶ 具有解表散寒, 祛风除湿和止痛的功效, 主治风寒感冒,头痛项强,风湿麻痹,肩背 酸痛等症。
- ▶ 根及根茎中含有香豆素、酚酸类、聚炔类、 挥发油、萜类等成分。




异欧前胡素


羌活醇


阿魏酸苯乙醇酯 镰叶芹二醇

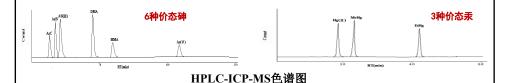
2.2 检查——保障安全

- 杂质与异物:
- 重金属及有害元素: 原子吸收光谱、等离子质谱
- 农药残留: GC、GC-MS、LC-MS
- 真菌毒素: HPLC、LC-MS
- 二氧化硫残留: 离子色谱、气相色谱
- 内源性有毒有害物质检查: HPLC、LC-MS、GC、GC-MS

高效灵敏检测方法:

- ▶ 单克隆抗体
- ▶ 化学反应

2.2 检查——保障安全

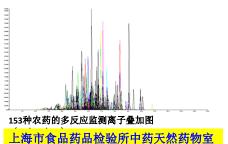

□ 重金属及有害元素

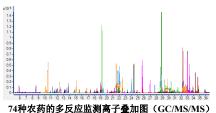
- 样品前处理方法:微波消解、湿法消解、干法消解、压力罐消解。
- ▶ 铅、隔、砷、汞、铜:原子吸收分光光度法、电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-OES)。
- ▶ 汞和砷元素形态及其价态测定: 高效液相-电感耦合等离子体质谱联机法(HPLC-ICP-MS)
- ▶ 2015年版《中国药典》收载品种:
- ✓ 17种药材:黄芪、金银花、西洋参、白芍、丹参、甘草、枸杞子、山楂、阿胶、水蛭、牡蛎、蛤壳、珍珠、昆布、海藻、海螵蛸、蜂胶;
- ✓ 7种提取物:人参茎叶总皂苷、人参总皂苷、三七总皂苷、茵陈提取物、灯盏花素、积雪草总苷、薄荷脑;
- ✓ 所有中药注射剂。

2.2 检查——保障安全

□ 重金属及有害元素

- ◆ 重点关注元素价态
- ▶ 6种价态砷毒性: 亚砷酸(As³+) >砷酸(As⁵+) >一甲基砷 (MMA) >二甲基砷(DMA), AsB和AsC基本无毒。
- ▶ 4种价态汞毒性: 甲基汞>乙基汞>二价汞(Hg²+)>一价 汞(Hg+),甲基汞、乙基汞因亲脂性较强,毒性是无机 汞的几百倍。




上海市食品药品检验所中药天然药物室

2.2 检查——保障安全

□ 农药残留

- 2010年版《中国药典》:有机氯、有机磷及拟除虫菊酯三类共24种农药。
- 2015年版《中国药典》: GC/MS/MS检测76种农药; LC/MS/MS检测153种农药; 合计227种。
- 2015年版《中国药典》收载品种:甘草、黄芪、人参、西洋参、人参茎叶总皂苷、人参总皂苷。
- 中药配方颗粒:栽培中药材均要求进行农药残留研究,对于农药残留明显的品种,要求建立检测标准。

2.2 检查——保障安全

□ 真菌毒素

- ightharpoonup 检测真菌毒素: 黄曲霉毒素 G_2 、 G_1 、 B_2 、 B_1 、伏马毒素 B_1 、 B_2 、T-2毒素、赭曲霉毒素A、呕吐毒素、玉米赤霉烯酮。
- ▶ 检测方法: HPLC、LC-MS。
- 》《中国药典》2015年版收载品种: 桃仁、酸枣仁、僵蚕、陈皮、胖大海、柏子仁、莲子、使君子、槟榔、麦芽、肉豆蔻、决明子、远志、薏苡仁、大枣、地龙、蜈蚣、水蛭、全蝎等19个高危感染品种制定了黄曲霉毒素检查。
- 限度: 黄曲霉毒素B1不得过5μg/kg; 黄曲霉毒素 G2、黄曲霉毒素G1、黄曲霉毒素B2总量不得过 10μg/kg。

(二)检查——保障安全

□ 二氧化硫(SO₂)残留

- 检测方法:酸碱滴定法、离子色谱法和气相色谱法。
- ▶ 限度: 在《中国药典》附录检定通则中规定:
- ✓ 山药、天冬、天花粉、天麻、牛膝、白及、白术、白芍、党参、粉葛等10种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得过400mg/kg;
- ✓ 其他中药材及其饮片的二氧化硫残留量不得过150mg/kg。
- > 修订药材性状。

党参药材硫磺熏蒸与颜色的变化

2.3 指纹图谱结合多成分含量测定 ——评价优<mark>劣</mark>

2.3.1 指纹图谱研究与检测标准的建立

- 中药材、饮片指纹图谱研究与检测标准建立
- LC-DAD-MSⁿ指纹图谱分析与中药化学成分信息 库的构建

2.3.1 指纹图谱研究与检测标准的建立

指纹图谱检测标准的研究

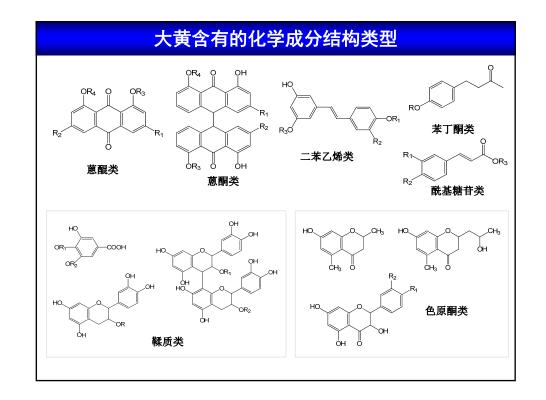
- 基原: 品种
- 药用部位
- 产地
- 栽培技术
- 产地加工方法
- 炮制

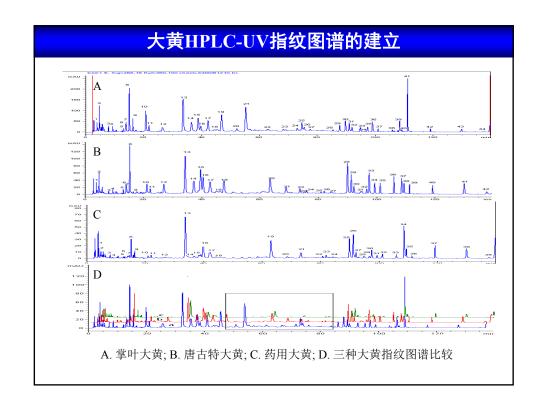
- > 供试品溶液的制备方法
- ▶ 对照品或参照物溶液的制备方法
- > 测定方法、条件的考察
- ▶ 方法学考察:稳定性、精密度、 重现性
- > 主要色谱峰的鉴定
- ▶ 对照指纹图谱的建立
- ▶ 样品的检测与评价

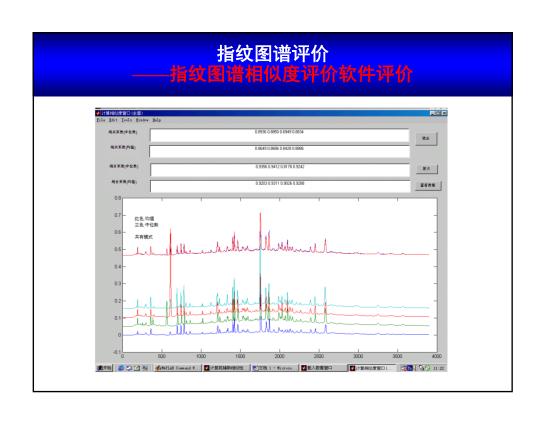
大黄指纹图谱研究与标准建立

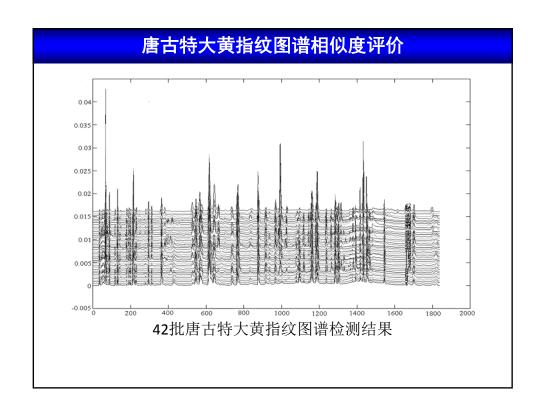
- 大黄为最著名的中药之一。具有泻下攻积,清热泻火,凉血解毒,逐瘀通经,利湿退黄之功效。用于实热积滞便秘,血热吐衄,目赤咽肿,痈肿疔疮,肠痈腹痛,瘀血经闭,产后瘀阻,跌打损伤,湿热痢疾,黄疸尿赤,淋证,水肿,外治烧烫伤。
- 《中国药典》收载的大黄为蓼科植物掌叶大黄 Rheum palmatum L.、唐古特大黄Rheum tanguticum Maxim.ex Balf.或药用大黄Rheum officinale Baill.的 干燥根和根茎。
- 主要成分: 蒽醌及其苷类、二苯乙烯苷类、苯丁酮 苷类、酰基糖苷类、鞣质类、色原酮类等。

Rheum tanguticum

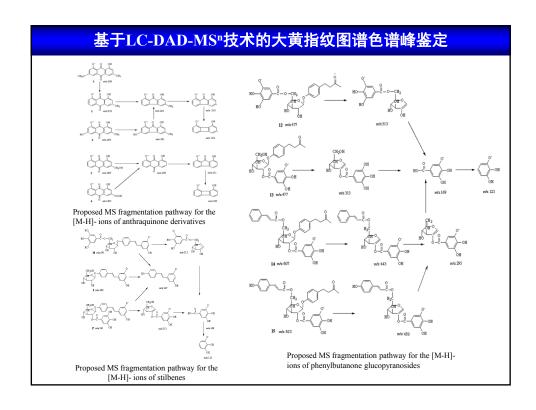


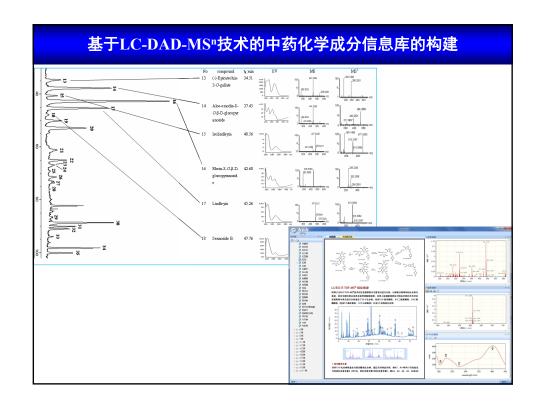






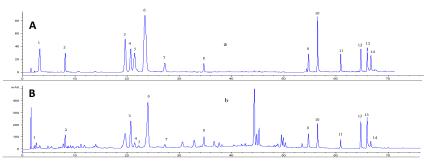
Rheum officinale





No	Similarity	No	Similarity	No	Similarity	No	Similari
1	0.936	12	0.688	23	0.513	34	0.530
2	0.969	13	0.816	24	0.545	35	0.533
3	0.911	14	0.857	25	0.636	36	0.533
4	0.842	15	0.884	26	0.781	37	0.876
5	0.868	16	0.544	27	0.718	38	0.808
6	0.876	17	0.958	28	0.755	39	0.940
7	0.938	18	0.953	29	0.887	40	0.867
8	0.782	19	0.867	30	0.887	41	0.894
9	0.797	20	0.946	31	0.851	42	0.843
10	0.877	21	0.841	32	0.898		
11	0.965	22	0.765	33	0.880		

基于LC-DAD-MSⁿ技术的大黄指纹图谱色谱峰鉴定 - 大黄药材TIC色谱图 A: 蔥醌类; B: 蔥酮类; C: 鞣质类, D: 二苯乙烯类和苯丁酮类; E: 酰基糖苷类、色原酮类和其他成分。 - 鉴定了271个化学成分 蔥醌类34个、蔥酮类83个、 鞣质类46个、二苯乙烯类17 个、苯丁酮类24个、酰基糖 苷类26个、色原酮类26个和 其他成分15个。

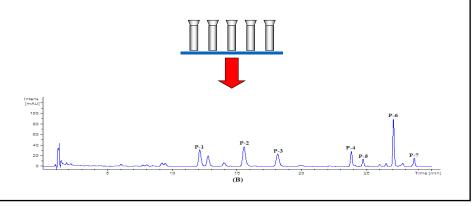

2.3.2 中药多成分含量测定

- □ 测定方法
- > HPLC
- > LC-MS
- > GC
- > GC-MS
- > HPCE
- > SFC
- □ NMR

- □ 测定指标的选择
- > 药效成分
- ▶ 活性成分
- ▶ 指标性成分
- □ 多成分含测对照品缺乏问题的解决途径
- ▶ 一标多测
- 以对照提取物为对照的多成分含量测定

以对照品为对照的中药多成分含量测定

■ 以对照品为对照的大黄药材中14个成分的含量测定



A. 14个混合对照品的HPLC色谱图; B. 大黄药材的HPLC色谱图

1.gallic acid; 2. (+)-catechin; 3. (-)-epicatechin-3-*O*-gallate; 4. isolindleyin; 5. 4-(4′-hydroxyphenyl)-2- butanone; 6. lindleyin; 7.sennoside B; 8.sennoside A; 9. aloeemodin; 10. 4-(4′-hydroxyphenyl)-2- butanone-4′-*O*-β-D -(2′′-*O*- galloyl-6′′-*O*-cinnamoyl) –glucopyranoside; 11. rhein; 12. emodin; 13. chrysophanol; 14. physcion

以对照提取物为对照的中药多成分含量测定

- □ 制备简单,成本低
- □ 定量化包装,使用方便
- □ 节省对照品
- □ 说明书附色谱图,色谱峰易于鉴别

以对照提取物为对照的功劳木多成分含量测定

- ◆ 功劳木为小檗科植物阔叶十大功劳Mahonia bealei (Fort.) Carr. 或细叶十大功劳Mahonia fortune (Lindl.) Fedde 的干燥茎。具有清热燥湿,泻火解 毒的功效。
- ◆ 开展了基于对照提取物为对照、一标多测及定量 核磁技术(qNMR)的功劳木药材、饮片的多成分 含量测定研究。
- ◆ 以对照提取物为对照的含测方法为2015版《中国 药典》收载,这是《中国药典》首次收载以对照 提取物为对照的中药材多成分含量测定方法。

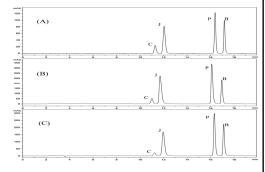
W. G. Wang, et al. Journal of Chromatography A, 2015, 1412, 100

功劳木对照提取物的制备

功劳木

- ▶ 10倍量70%回流提取3次, 每次1小时;
- ▶ 回收乙醇至密度为1.1g/ml

乙醇提取物


- ➤ 过D101大孔树脂;
- ▶ 2BV水洗脱,弃去;
- ▶ 2BV10%乙醇洗脱,弃去;▶ 2BV50%乙醇洗脱,收集

50%乙醇洗脱液

▶ 浓缩 ▶ 冷冻干燥

对照提取物

HPLC色谱图

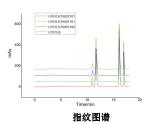
A. 混合对照品; B. 标准对照提取物; C.功劳木药材 C.非洲防己碱; J. 药根碱; P. 巴马汀; B. 小檗碱

对照提取物 批次	药材 产地	投料量	产量	产率	总生物碱 转移率	总生物碱含 量
022101	贵州	200g	4.69g	2.34%	51.4%	44.11%
031101	贵州	5kg	132g	2.64%	50.3%	40.82%
031102	贵州	5kg	137g	2.74%	50.1%	40.37%

功劳木对照提取物的质量标准

【来源】本品为小檗科植物阔叶十大功劳*Mahonia bealei*(Fort.)Carr.或细叶十大功劳*Mahonia fortune*(Lindl.)Fedde的干燥茎经加工制成的标准提取物。

【制法】


【性状】本品为棕黄色粉末,气味微酸,味极苦。

【溶解性】本品易溶于甲醇、乙醇、水,不溶于氯仿、乙酸乙酯。

【鉴别】

【检查】

【指纹图谱】

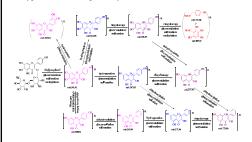
【含量测定】本品按干燥品计算,含非洲防己碱、药根碱、巴马汀、小檗碱的总量,不得少于35.0%。

【包装与贮藏】

【用途】供功劳木药材含量测定用。

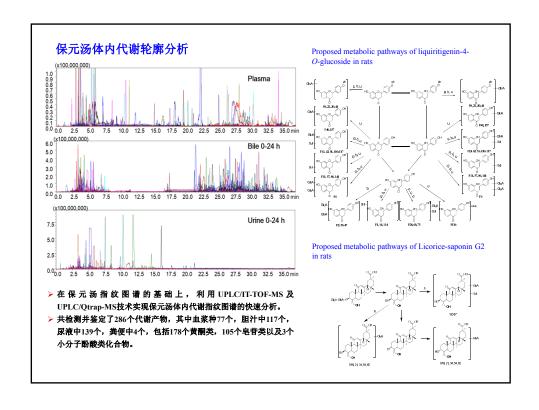
以对照提取物法为对照的功劳木药材含量测定结果

		非	洲防己矿	减		药根碱			巴马汀			小檗碱	
批次	产地	外标 法 (mg/ g)	对照 提取 物法	相对 偏差 (%)									
1	贵州-1	1.03	1.05	2.24	6.52	6.68	2.39	7.51	7.78	3.44	5.12	5.33	4.01
2	贵州-2	0.98	0.99	1.41	6.55	6.66	1.74	7.28	7.49	2.77	4.99	5.16	3.38
3	福建-1	0.85	0.86	1.44	6.20	6.34	2.12	5.59	5.77	3.02	3.31	3.44	4.00
4	四川	0.86	0.87	1.62	5.65	5.76	2.00	6.11	6.31	3.28	3.51	3.66	4.14
5	湖北	0.89	0.91	1.69	6.96	7.14	2.53	7.73	8.00	3.43	3.07	3.20	4.10
6	江苏	0.96	0.98	1.56	7.97	8.17	2.45	8.59	8.86	3.11	3.38	3.51	3.67
7	云南	0.69	0.69	0.64	6.58	6.74	2.46	6.01	6.21	3.26	7.81	8.13	3.98
8	广西-1	1.24	1.27	2.55	7.73	7.93	2.58	7.34	7.57	3.18	4.29	4.46	3.81
9	浙江	0.87	0.88	1.16	5.65	5.73	1.46	6.34	6.52	2.79	4.02	4.16	3.58
10	福建-2	0.93	0.95	1.69	6.19	6.32	2.04	7.10	7.33	3.19	4.28	4.44	3.85


批次	产地	非洲防己碱			药根碱			巴马汀			小檗碱		
		外标 法 (m g/g)	对照 提取 物法	相对 偏差 (%)	外标 法 (mg/ g)	对照 提取 物法	相对 偏差 (%)	外标 法 (mg/ g)	对照 提取 物法	相对 偏差 (%)	外标 法 (mg/ g)	对照 提取 物法	相然偏差
11	安徽	0.83	0.84	1.01	6.09	6.20	1.74	7.64	7.87	3.01	3.42	3.55	3.6
12	贵州-3	1.29	1.32	2.49	8.96	9.21	2.74	7.04	7.26	2.98	4.15	4.31	3.6
13	湖南	1.19	1.21	2.18	7.81	8.00	2.36	7.46	7.68	2.95	2.82	2.93	3.6
14	湖北	1.32	1.35	2.50	7.19	7.35	2.20	7.03	7.24	2.94	3.87	4.01	3.6
15	陕西	1.06	1.08	1.92	7.29	7.46	2.28	7.37	7.60	3.02	2.86	2.97	3.7
16	江西	1.16	1.18	2.27	7.15	7.32	2.31	7.02	7.23	3.06	3.61	3.75	3.7
17	河南	1.44	1.48	3.12	8.00	8.23	2.87	9.56	9.91	3.59	3.39	3.53	4.0
18	河北	0.85	0.86	1.41	7.52	7.72	2.64	7.64	7.90	3.34	2.51	2.62	4.0
19	广东	1.26	1.29	2.35	8.21	8.41	2.47	8.83	9.10	3.09	3.82	3.96	3.6
20	广西桂林	1.36	1.40	2.62	7.48	7.66	2.34	9.67	9.99	3.24	5.00	5.18	3.6
21	广西玉林	0.93	0.94	1.47	5.05	5.10	1.16	6.32	6.50	2.87	7.27	7.53	3.5
22	广西-2	0.55	0.54	1.19	4.40	4.42	0.49	6.78	6.97	2.82	11.00	11.38	3.3

3 中药复杂体系高效分析技术

基于UFLC/IT-TOF-MS"和UPLC/Qtrap-MS 技术的红花提取物体内代谢产物快速筛选与鉴定


- ➤ 红花为菊科 (Asteraceae) 红花属植物红花 Carthamus tinctorius L.的筒状花冠;
- > 红花总黄酮具有抗心肌缺血的作用;
- 利用诊断离子策略共检测并鉴定137个体内 代谢产物及19个原型成分:血浆中63个;尿 液中73个;胆汁中50个;粪便中17个;
- ➤ 采用UFLC/Qtrap-MS技术实现156个体内成分的定量和半定量。

Typical metabolic pathways

基于LC-MS整体策略的中药复方保元汤指纹图谱 及其体内代谢轮廓的建立及全面解析 基于LC-MS整体策略的保元汤指纹图谱的建立 LC/ESI-Q-Trap-MS EMS of Baoyuan decoction ▶ 利用UPLC/QTOF-Flavonoids MS、UPLC/Qtrap-**Saponins** MS技术及UNIFI软 件构建LC-MS整体 策略,实现保元汤 指纹图谱的快速、 Step-wise pMRM/IDA/EPI Step-wise MIM/IDA/EPI 全面鉴定。 Step-wide MIM/IDA/EPI ▶ 从保元的水煎液中 Scan range: 15 Scan Range 535.5-943.5 共鉴定236个化合物, 包括139个皂苷类、 83个黄酮类、6个原 花青素类、4个木脂 Scan Range: 945.5-1255.5 素类以及4个二萜类 成分。

谢谢大家!

屠鹏飞 100191,北京市学院路38号 北京大学药学院天然药物学系 电话(传真): 010-82802750 email: pengfeitu@bjmu.edu.cn