

User Manual Version 7.0

edo European Directorate for the

Quality of Medicines & HealthCare

The CombiStats User Manual

EDQM – Council of Europe

October 2021

Contents

1	\mathbf{Intr}	oduction to CombiStats	7
	1.1	The software	7
	1.2	About the name	7
	1.3	Running CombiStats	8
	1.4	The interface	8
	1.5	Creating a template	10
	1.6	Entering assay data	10
	1.7	The calculations	11
	1.8	Printing	11
	1.9	Combining assays	11
2	Crea	ating a template	13
	2.1	Introduction	13
	2.2	Size	13
	2.3	Orientation	14
	2.4	Model	15
	2.5	Design	17
	2.6	Doses	18
	2.7	Transformation	19
	2.8	Variance	21
	2.9	Analysis of variance	23
	2.10	Customising the template	24
3	Ente	ering assay data	25
	3.1	Introduction	25
	3.2	Using the library of templates	26
	3.3	Assay related information	26
	3.4	Sample related information	27
		3.4.1 Header	27
		3.4.2 Sample related information	27
		3.4.3 Assigned or assumed potency	28
		3.4.4 Predilutions	28
		3.4.5 Doses	29

		$3.4.6 \text{Replicates} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30
		3.4.7 Observations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	31
	3.5	Layout of the design	31
	3.6	Remarks	32
	3.7	Signatures	32
4	Inte	rpretation of the output	35
	4.1	Introduction	35
	4.2	Inspecting the mean responses	35
	4.3	Analysis of variance (ANOVA)	36
	4.4	Graphs	37
	4.5	Additional statistics	39
	4.6	Potency estimates	39
	4.7	Single dose assays	40
	4.8	Equivalence testing	40
5	Con	nbining assays	41
	5.1	Introduction	41
	5.2	Editing the combination sheet	41
	5.3	Available options	42
6	Imp	orting, exporting, protecting data	43
	6.1	Introduction	43
	6.2	Copy and paste	43
	6.3	Creating input files	44
	6.4	Creating output files	50
	6.5	Exporting matrices	50
	6.6	Protecting templates and data sheets	51
7	Adv	anced options	53
	7.1	Introduction	53
	7.2	Transformation doses	54
	7.3	Transformation responses	54
	7.4	Inverse link function	55
	7.5	First derivative	55
	7.6	Weight function	55
	7.7	Start value for non-linear parameters	56
	7.8	Effective dose	57
	7.9	Minimum and maximum number of iterations	58
	7.10	Expressions	58
8	Con	nputational details	61
	8.1	Computational details	61

4

CONTENTS

9	Pref	erence	S	65
	9.1	Introdu	uction	65
	9.2	Locatio	on of passwords	65
	9.3	Locatio	on of library of templates	65
	9.4	The off	icial CombiStats website	66
	9.5	Print fi	le name on each page	67
	9.6	Print fi	le size on each page	67
	9.7	Print h	ash code of the file on each page $\ldots \ldots \ldots \ldots$	67
	9.8	Title 2	1 CFR Part 11	68
	9.9	Use of	colours in designs	68
	9.10	Miscell	aneous other preferences	69
	9.11	Protect	tion of version 4.0 and earlier files	69
Δ	Eva	mples		71
11	A 1	Examp	les from the European Pharmacopoeia	72
	11.1	A 1 1	Example 5.1.1 (Including all samples)	72^{-12}
		A 1 2	Example 5.1.1 (Excluding sample U)	73
		A 1 3	Example 5.1.2	74
		A 1 4	Example 5.1.2.	76
		A.1.5	Example 5.1.4.	77
		A.1.6	Example 5.2.1.	79
		A.1.7	Example 5.2.2. \ldots	80
		A.1.8	Example 5.3.1. (Probits) \ldots	81
		A.1.9	Example 5.3.2. (Logits) \cdot	82
		A.1.10	Example 5.3.2. (Gompits)	83
		A.1.11	Example 5.3.2. (Angles) \ldots \ldots \ldots	84
		A.1.12	Example 5.3.3	85
		A.1.13	Example 5.3.3. (Alternative)	86
		A.1.14	Example 5.4.1.	87
		A.1.15	Example 6.4	88
	A.2	Examp	les from D.J. Finney	89
		A.2.1	Example 3.9.1. (Without transformation)	89
		A.2.2	Example 3.9.1. (With exact transformation)	90
		A.2.3	Example 3.9.1. (With rounded transformation)	91
		A.2.4	Example 4.2.1	92
		A.2.5	Example 4.15.1	94
		A.2.6	Example 5.2.1	95
		A.2.7	Example 5.4.2	96
		A.2.8	Example 7.3.1. (Including blanks)	97
		A.2.9	Example 7.3.1. (Excluding blanks)	98
		A.2.10	Example 7.10.2	99
		A.2.11	Example 9.5.1	100
		A.2.12	Example 9.5.1. (Alternative) $\ldots \ldots \ldots \ldots \ldots$	102
		A.2.13	Example 11.2.1	104

		A.2.14	Example 11.3.1
		A.2.15	Example 18.2.1
1	A.3	Miscell	aneous other examples
		A.3.1	Diphtheria vaccine, intradermal challenge 109
		A.3.2	Erythromycin, agar diffusion (assay 1)
		A.3.3	Erythromycin, agar diffusion (assay 2)
		A.3.4	Erythromycin, agar diffusion (assay 3)
		A.3.5	Erythromycin, combination of assays
		A.3.6	Erythropoetin rDNA, normocythaemic mice 114
		A.3.7	Factor IX, coagulation
		A.3.8	Factor VIII, chromogenic $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 116$
		A.3.9	Heparin sodium, clotting $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 117$
		A.3.10	Hepatitis A vaccine, immunogenicity (in vivo) 118
		A.3.11	Hepatitis B vaccine, antigen content by ELISA $\ .\ .\ .\ 119$
		A.3.12	Hepatitis A immunoglobulin, ELISA 120
		A.3.13	Rabies immunoglobulin, RFFIT $\ldots \ldots \ldots \ldots \ldots 121$
		A.3.14	Tetanus vaccine, lethal challenge \hdots
		A.3.15	Inactivated poliomyelitis vaccine, D-antigen content $~$. 123 $$
		A.3.16	Influenza vaccine, single radial immunodiffusion 124
		A.3.17	Inverted ED50 units
		A.3.18	Inverted ED50 volumes
		A.3.19	MMR vaccine / Measles, ED50 using ratios 127
		A.3.20	MMR vaccine / Mumps, ED50 using +/- per well \therefore 128
		A.3.21	Oral poliomyelitis vaccine, ELISA
		A.3.22	Acellular pertussis, limit test with quantitative data . 131
		A.3.23	Yellow fever vaccine, plaque forming units 132
		A.3.24	Tetanus immunoglobulins, toxoid binding inhibition . 133
		A.3.25	Inactivated rabies (veterinary), challenge assay 135
		A.3.26	MMR vaccine / Rubella, ED50 by pooling of ratios 136
		A.3.27	MMR vaccine / Measles, ED50 with fixed slope 138
		A.3.28	Swine erysipelas, limit test with quantal data 139
		A.3.29	Hepatitis B vaccine, weighted exponential regression . 140
		A.3.30	Robust regression with Huber's weights
		A.3.31	Automatic invocation of the Spearman/Kärber method 142
		A.3.32	Five-parameter logistic curve regression
		A.3.33	Five-parameter logistic curve regression
		A.3.34	Equivalence testing
		A.3.35	Single dose assay with quantal responses

B Tutorial

6

Chapter 1

Introduction to CombiStats

1.1 The software

CombiStats is a calculation program for the statistical analysis of data from biological dilution assays. It includes parallel line analysis, slope ratio analysis, probit analysis, ED50 determination, 4- and 5-parameter logistic curve fitting, limit testing of single dose assays and combination of assays. This chapter provides a brief introduction to the software. More detailed information can be found in chapters 2 to 8. A large set of examples is given in appendix A. It is recommended to study these examples because they show most of the features available in the program. A tutorial is provided in appendix B. Before reading this manual, it is strongly recommended to get acquainted with the software by performing the exercises in the tutorial.

1.2 About the name

During the beta testing phase of CombiStats version 1.0, the software had been given the temporary working title OMCL BioStat. It appeared that the name BioStat was already in use by at least two other existing programs, so it was decided to rename the software. Additionally, the prefix OMCL was considered restrictive, since it could not be excluded that the software would also be made available outside the network of European Official Medicines Control Laboratories. The name CombiStats contains the letters OM as a reminder that it was initiated by the OMCLs, and the letters BI as a reference to the fact that it is intended for biological assays. The first part 'Combi' indicates that the software combines several types of analysis in one consistent interface and also that it offers the possibility to combine the results of several assays. The second part 'Stats' is self explanatory.

The concept for the CombiStats logo (amesize) was to express somehow parallel lines or sigmoid curves in a legible representation of its name. The name is slanted to the right, so the two t's give an impression of two parallel

Figure 1.1: The menu bar and the toolbar

lines. The two s's are extended to the left and the right to give an impression of 2 sigmoid curves (admittedly, they don't have equal 'upper asymptotes'). The colour blue is the same shade of blue as the background of the European flag to express its relation with the European Pharmacopoeia.

1.3 Running CombiStats

Once the software is installed on your computer, you can run it from the Start menu of Windows. If you have created a shortcut on your desktop, you can click on the icon **Z** depicting the European stars with two parallel lines. An empty window will appear with on top the menus and the toolbar. You can either create a new template, open an existing template or open an existing data sheet. Although most operations can be performed from the keyboard, the software has primarily been designed to be used with a mouse.

1.4 The interface

The menu bar and the toolbar look as shown in figure 1.1. Most menu options can be accessed more quickly by using the icons on the toolbar. The meaning of each of the icons is as follows:

- Create a new template. You have to specify all definitions.
- Den the library of templates. Templates contain all definitions necessary for a particular type of assay.
- Open a data sheet. Data sheets contain all data of a particular assay.
- Save data sheet. You can save a completed data sheet (*.epa) or an empty template with definitions (*.epm).
- Print data sheet. Use File > Print all from the menu to print all open data sheets.

- Undo last action. Use this when you have made a mistake and want to revert to the previous situation.
 - Redo last action. Use this to revert the effect of the undo actions.
- Copy selection. Use this to copy a group of cells, so as to avoid retyping the same information.
- Copy all. Use this to copy the complete contents of a data sheet to the clipboard.
- Paste clipboard. The contents of the clipboard are pasted into the selected cells.
- Protect data sheet. You can specify 4 different levels of protection with passwords.
- Options wizard. Use the options wizard to modify the definitions of a template or data sheet.
- Calculate. Click on this button to perform the calculations.
- Show full page graph. Click on this button to view a full page representation of the graph.
- Combine assays. Click on this button to combine results from independent assays.
- U___ Data sheets are shown in cascade, i.e. one in front of another.
- Data sheets are shown in horizontal tiles.
- LLL Data sheets are shown in vertical tiles.
- Examples. Gives direct access to the folder with example data sheets.

- discussion of the Access the user manual.
- Click on this button to access the official CombiStats internet site.

1.5 Creating a template

For routine assays you will probably like to create an empty standard data sheet (template) in which all options are predefined, and in which you only have to enter the observed data. You can do this by clicking on the leftmost button 🗋 depicting an empty data sheet. The options wizard dialogue box appears in which you can distinguish eight groups of options. You can walk through the groups by clicking on the NEXT button. Click on OK to confirm your choices after having selected an option in each of the groups. Otherwise click on CANCEL. You can also click on PREVIOUS to go back a group or on the tab strips to go directly to a specific group. It is recommended to use the NEXT button rather than the tab strips, because the selection of some options may modify the options in next groups, but never in previous groups. Refer to chapter 2 for more detailed information on the selection of options. When you have clicked on the OK button, an empty data sheet will be created. You can still modify the options by clicking on the Options wizard button be depicting a magic wand in front of a data sheet. You can also enter the fields which you know to be always the same in routine, such as the assigned potency of the standard, the name of the substance, or the doses. When you have finished, you can save the template by clicking on the SAVE button 🖶 depicting a disk. Select the directory where you want to store it and select Template (*.epm) as the type of file. Choose an instructive name for your template and save it by clicking on the OK button. You may also add this template to a library of templates for easy access.

1.6 Entering assay data

If you want to enter assay data you can either open an existing template or use the options wizard to create an ad hoc data sheet. The first table contains assay related information, for example the date of assay, the name of the operator, the assay method. This information is automatically repeated on each page. The information in this table is not necessary for the calculations, but is intended to identify the assay and to provide additional information. The tables that follow contain sample related information, for example the batch number, the expiry date, the assumed or assigned potency and of course the observed data. In case you have enabled the option to show the design, the data are also presented in the layout of the design. Finally, you can add any remarks in the text box at the top of the first page. You can save the data by clicking on the SAVE button depicting a disk. Select the directory where you want to store it and select Assay (*.epa) as the type of file. Choose an instructive name for your assay and save it by clicking on the OK button. Refer to chapter 3 for more detailed information on entering the data.

1.7 The calculations

You can start the calculations by clicking on the button \blacksquare depicting a pocket calculator. The following information is provided: the analysis of variance (ANOVA), some additional statistics which may be useful for quality control, the estimated potencies and the 95 per cent confidence intervals, and a graphical presentation of the observed data and the calculated regression. Redundant tables will be removed, provided they are not followed by non-redundant tables. Avoid empty tables because they slow down the calculation process. Refer to chapter 4 for some guidelines on the interpretation of the output.

1.8 Printing

You can make a printout of the data sheets by clicking on the button B depicting a printer. As you may have noticed, the presentation on your screen is exactly as it would appear on paper (the software detects automatically the paper format of your current default printer. If no printer can be detected, an A4 format is assumed). On the top of each page, you will find the date and time of printing, which should avoid mixing up pages that were printed at different times.

1.9 Combining assays

You can combine the results of assays by opening all assays you want to combine and clicking on the button $\stackrel{\diamond}{\bullet}$ depicting a cauldron. The resulting combination can be saved as a file with the extension *.epc. More details can be found in chapter 5.

Chapter 2

Creating a template

2.1 Introduction

A template is a standard data sheet with the extension *.epm in which all options are predefined. Templates are useful if you regularly perform similar assays. Instead of each time creating a new data sheet and specifying all options, you can simply open a template and start entering the data. The creation of a new template is not difficult, but it is important that you know exactly which options are appropriate for the type of assay concerned. It is anticipated that templates are only prepared by qualified staff, or on the basis of directives from qualified staff. To create a template you start by clicking on the leftmost button depicting an empty page \Box . Alternatively you can select File New from the menu or press CTRL+N. The options wizard will appear in which eight groups of options can be distinguished. This chapter explains which options are available for each of the groups and what their properties are.

2.2 Size

The group 'Size' (see figure 2.1) enables you to specify how many tables you need and how many rows and columns each table should have. The number of tables is normally equal to the number of samples included in the assay (including the Standard). However, it is possible to specify more tables than needed. When the calculations are performed, empty tables are considered to be redundant and automatically removed. You should avoid empty tables followed by non-empty tables because they cannot be removed and will slow down the calculations. A data sheet must contain at least one table. The maximum number of tables is 99, but in practice this will only be limited by the memory and speed of your computer. In multiple assays, the inclusion or exclusion of test samples will generally affect the estimated potency of the other samples. This is because the software can make a more

M Options wizard			23			
Doses Transformation Variance ANDVA Size Orientation Model Design						
Size of tables						
Number of table	IS:	1				
Number of infor	mation lines:	1				
Number of pre-	dilutions:	0				
Number of dose	18:	6				
Number of replic	Number of replicates:					
<< <u>P</u> revious		<u>N</u> ext >>				
<u>O</u> K	Cancel	<u>H</u> elp				

Figure 2.1: The 'Size' group of the Options wizard

accurate estimate of the potency if more observations are included.

- The number of information lines is determined by the amount of sample related information you want to include in the tables. These lines are not necessary for the calculations, but are intended to provide additional information about the samples. For example, if you want to include the name, the batch number and the expiry date of each sample, you need 3 information lines. If you do not want to include sample related information, you can specify 0 information line.
- The number of pre-dilutions is almost self explanatory. You need a line for each step in the preparation of the stock solution. You can specify 0 if there is no pre-dilution. The reconstitution of a sample and the injection or inoculation volume are also counted as pre-dilutions.
- The number of doses is the number of doses included for each sample. If the samples have unequal numbers of doses, you will have to specify the maximum amount of doses needed and leave the superfluous cells empty when entering the data. It is not possible to specify different sizes for each table.
- The number of replicates indicates how many times each treatment is included in the assay. If unequal numbers of replicates are included for the different treatments, you will have to specify the maximum number of replicates needed and leave the superfluous cells empty when entering the data.

2.3 Orientation

The orientation of the tables depends on the most convenient presentation. For some assays, it may be more convenient to position the doses vertically

Standard								
Preparation S			Standard					
Ass. pot.	39 µg/dose			Preparation	S			
Pre-dil. 1	1 dose/0.5 ml			Ass. pot.	39 μg/dose			
Pre-dil. 2 1 ml/39 ml		∃ml		Pre-dil. 1	1 dose/0.5 ml			
Doses	(1)	(1) (2)		Pre-dil. 2	1 ml/39 ml			
S1	18.0	18.0		Doses	S1	S2	S3	S4
S2	22.8	24.5]	(1)	18.0	22.8	30.4	35.7
S3	30.4	30.4]	(2)	18.0	24.5	30.4	36.6
S4	35.7	36.6	1					

Figure 2.2: Same data with different orientations

💋 Options w	vizard		×				
Doses Size	Transformation	Variance Model	ANOVA Design				
- Mode	Parallel lines (In dose Slope ratio (dose) Sigmoid curves (In do Quantal responses (Ir ED 50 determinati Use fixed slope:) n dose) ion (In dose)	• · · · · · · ·				
Next >> QK Cancel Help							

Figure 2.3: The 'Model' group of the Options wizard

on the left side of the tables, and for other assays to place them horizontally on top of the tables. The choice is purely a matter of page layout and will usually be chosen so as to save paper. You can always change this option at a later stage if you change your mind. Figure 2.2 shows an example of the same data presented with the doses positioned vertically and horizontally, respectively.

2.4 Model

You can select five different models: Parallel lines, Slope ratio, Sigmoid curves, Quantal responses, and EDxx determination (see figure 2.3). For each model, it is possible to specify a fixed common parameter. For slope ratio models, this is the common intercept, and for other models, this is the common slope. If you want to analyse a single dose assay, you can select Parallel lines for quantitative responses and Quantal responses if the data are quantal.

• Parallel lines: This model assumes that response y depends on dose x according to the relationship $f(y) = c_i + b \cdot log_e(x) + \varepsilon$ where f is some type of transformation (see section 2.7), c_i is the intercept of preparation i, b is the common slope and ε is a statistical error

following a normal distribution with expectation 0. Since the exact dose of the test samples is not known, the intercepts are usually not the same for each sample. The horizontal distance between the parallel lines is the correction that has to be applied to the assumed potency to find an estimate of the true potency.

- Slope ratio: This model assumes that response y depends on dose x according to the relationship $f(y) = c + b_i(x) + \varepsilon$ where f is some type of transformation (see section 2.7), c is the common intercept, b_i is the slope of preparation i and ε is a statistical error following a normal distribution with expectation 0. Since the exact dose of the test samples is not known, the slopes are usually not the same for each sample. The ratio between the slopes of the lines is the correction that has to be applied to the assumed potency to find an estimate of the true potency.
- Sigmoid curves: This model is often called a 4- or 5-parameter model because the sigmoid curves are characterised by 4 or 5 parameters. The model assumes that response y depends on dose x according to the relationship f(y) = d + a · h(c_i + b · log_e(x))^g + ε where f is some type of transformation (see section 2.7), c_i is the intercept of sample i, b is the common slope factor, a is a factor of vertical scale, d is a term of vertical location, h is a function describing the general shape of the curve, g is the optional fifth parameter to model asymmetry, and ε is a statistical error following a normal distribution with expectation 0.
- Quantal responses: This model is similar to the model for sigmoid curves, with the exception that responses y do not follow a continuous scale, but are fractions of units that can either respond or not respond to a certain stimulus, e.g. dead or alive. For example, if a group of 10 mice have received a certain dose and you count the number of surviving animals, you may expect the fractions 0/10, 1/10, 2/10, ..., 9/10 and 10/10, but you cannot expect a fraction of 0.324. The responses are said to be quantal following a binomial error distribution. This model includes probit analysis and logit analysis (see section 2.7).
- EDxx determination: This is also a model depending upon quantal responses, but instead of measuring the horizontal distance between test samples and a standard, the dose that induces a response in xx per cent of the units (usually 50 per cent) is estimated. If you specify this option, you will also have to specify xx. This value is 50 by default, but it can have any value between 0 and 100 (exclusive). However, in the extreme parts of the curve, the outcome becomes highly dependant on model assumptions. Estimates above the ED90 or below the ED10

🚺 Options wizard 📃 💌						
Doses Tr Size	ansformation Orientation	Variance Model	ANOVA Design			
Design						
Comple	etely randomised		(°			
Rando	mised block		C			
(Latin)	square		c			
🖂 Sh	ow design					
<< Previous Next >>						
<u>0</u> K	<u>C</u> ancel		Help			

Figure 2.4: The 'Design' group of the Options wizard

are therefore seldom very meaningful, unless you have large amounts of data. The ED50 is usually the most robust option.

• In slope ratio assays, the intercept can be kept fixed, typically to force the lines through the origin. In other assays, the slope can be kept fixed. On the computer output, the fixed parameter is shown on the right-hand side of the model specifications together with a *p*-value for the hypothesis that the fixed slope (or intercept) is identical to the estimated slope (or intercept). A fixed slope can be useful in the calculation of plaque forming units (PFU) where the slope is theoretically exactly 1 (i.e. a 10-fold dilution is expected to give a factor 10 less plaques). Another situation in which a fixed slope can be useful is in ED50 calculations where not enough non-extreme responses are available to calculate a slope. In such cases, a slope based on historical data may be used.

In case of a single dose assay, you should specify Parallel lines if the data are quantitative and Quantal responses in other cases.

2.5 Design

You can choose between three different types of design (see figure 2.4). Data from cross-over designs cannot be analysed with CombiStats.

- Completely randomised: This design is appropriate if no experimental factor can be identified that could influence a specific group of treatments in the same way.
- Randomised blocks: If it is possible to identify an experimental factor that could influence the response of specific groups of units in the same way, the randomised block design may be appropriate. For example, a

group of different treatments in a Petri dish might, on average, give a lower response than an identical group of treatments in another Petri dish. Hence, it is important that the treatments be equally distributed over the Petri dishes (the blocks). Applying the same treatment in only one block should absolutely be avoided, as this would confound the effect of the treatment with the block effect, and thus lead to erroneous results. For example, if animals receiving the low dose of a sample are all kept in the same cage and animals receiving the high dose are kept in another cage, it is not possible to distinguish between the effect of the treatment and the effect of the position of the cage (should there be any).

- (Latin) square: If it is possible to identify two possible factors that could influence the response of specific groups of units in the same way, the (Latin) square design may be appropriate. For example, treatments that are positioned in the same row of a plate may give a higher average response than identical treatments in another row, and the same could be true for the columns. If rows and columns can be expected to affect the response, it is important to distribute the treatments equally over the rows and columns and to specify the (Latin) square option. The word Latin is put between parentheses because the software does not necessarily require a Latin square distribution of the treatments, but just some kind of rectangular distribution in which it is possible to distinguish between rows and columns or any other pair of experimental factors that are not confounded with the treatments or with each other.
- If the option 'Show design' is enabled, rectangular tables are shown in which you can specify the design (e.g. plate layout) and enter the responses as positioned in the design (e.g. from an automated plate reader). You can specify the number of rows and columns your design has and whether the rows should be labelled with letters or with numbers.

2.6 Doses

You can choose between explicit notation and symbolic notation (see figure 2.5).

• Explicit notation: In general, this option is recommended because it has the advantage that the tables are more instructive for later reference. It forces you to specify the doses explicitly in the tables. For more details see section 3.4.5.

M Options wizard							
Size Orientation Model Design Doses Transformation Variance ANOVA							
Doses							
Explicit notation							
Symbolic notation (Increasing)							
Symbolic notation (Decreasing)							
<u>O</u> K <u>C</u> ancel <u>H</u> elp							

Figure 2.5: The 'Doses' group of the Options wizard

- Symbolic notation: In some cases, it may be convenient to use symbolic notation. If this option is selected you do not have to indicate the doses explicitly in the tables but you can use symbolic notation instead. For example, you can specify S1, S2 and S3 for the low dose, middle dose, and high dose of the standard, respectively, or you can use descriptions like Low and High. It is even possible to specify nothing at all, but this is not recommended. The software calculates the doses on the basis of the pre-dilutions and the dilution step. Hence, it is necessary to indicate the dilution step and whether the doses are increasing or decreasing. If this option is selected and a dose is given explicitly, the explicit dose overrules the implicit dose. A dose is only recognised as implicit if it starts with a letter (A to Z or a to z, no special characters, no accents) or if it is empty. If the assay has unequal dilution steps, you have to use explicit notation.
 - Important: If symbolic notation is used for slope ratio assays, the number of non-zero doses has to be indicated. If blanks are included in the assay, they have to appear as the last dose, which should be explicitly indicated as the zero dose.

2.7 Transformation

The transformations that can be selected depend on the model. For parallel line and slope ratio assays, you can choose between four predefined transformations or you can specify any other transformation (see figure 2.6). For sigmoid curves, quantal responses and EDxx determination, five transformations are available (see figure 2.7).

• Parallel line and slope ratio assays: By default, no transformation is selected (y' = y). The other predefined options are the square root trans-

🎢 Options wizard	—
Size Drientation Doses Transformation	Model Design Variance ANOVA
Transformation	
No transformation	0
Square root	С
Logarithm	C
Square	C
Other	œ
y' = y	
<< Previous	<u>N</u> ext >>
<u>O</u> K <u>C</u> ance	el <u>H</u> elp

Figure 2.6: The 'Transformation' group for parallel lines and slope ratio models

formation $(y' = \sqrt{y})$, the logarithmic transformation $(y' = \log(y))$ and the square transformation $(y' = y^2)$. It is also possible to specify any other transformation by simply selecting the last option and typing the required transformation. You can use the standard arithmetic operators such as multiplication (*), division (/), addition (+), subtraction (-) and exponentiation (^). The normal priority rules apply, e.g. 3+4*y is interpreted as 3+(4*y). Use parentheses to overrule the order of priority, e.g. (3+4)*y. Available functions are, amongst others: log(), ln(), sqrt() and exp() which denote the common logarithm, the natural logarithm, the square root and the natural antilogarithm, respectively. See section 7.10 for a complete list of available functions. Use the keyword **pi** to indicate the constant π . The variable **y** has to be used to indicate the original observation that has to be transformed. In case the observations are bivariate, you have to use the variable z to indicate the second part of the observation. If the program encounters an invalid operation, e.g. division by 0 or logarithm of a negative number, an error message is displayed. Examples of valid transformations are:

y'=sqrt(y-10)
y'=log((y+2.75)*1000)
y'=(y+z)/2
y'=(y*z)/4*pi

• Quantal responses and EDxx determination: By default, the probit transformation is selected (also called the normit transformation after the normal distribution). The other options available are the logit transformation (named after the logistic distribution), the angular transformation (called after the angle distribution), the rectan-

💋 Options	wizard		- ×				
Size Doses	Orientation	Model Variance	Design ANOVA				
Tra	Transformation						
	Probit	œ					
	Logit	С					
	Angular	С					
	Rectangular	0					
	Gompertz	С					
	5-parameters (asj	/mmetric) 🥅					
<< Previous Next >>							
<u>0</u> K	<u>C</u> anc	el	Help				

Figure 2.7: The 'Transformation' group for quantal responses, EDxx determination and sigmoid curves

gular transformation (also called the linear transformation, after the uniform distribution) and the gompit transformation (called after the Gompertz distribution, also called the complementary log-log distribution). The choice should depend on experience or publications from research. Select the probit transformation if you have no idea what to choose. Tick the checkbox to include an asymmetry parameter in the model. CombiStats will automatically invoke the Spearman-Kärber method in cases where it is impossible to estimate the slope from the data. The output shows a message to inform the user of this fact. Note that the Spearman-Kärber method requires that the doses are equidistant. It is the responsibility of the user to make sure that this is indeed the case. If the doses are not equidistant, CombiStats will use the smallest distance d between adjacent doses giving unequal responses. The common slope of the rectangular curves is then fixed at $1/\log_e(d)$.

2.8 Variance

For parallel lines, slope ratio assays and sigmoid curves, the observed residuals are selected by default. For quantal responses and EDxx determination, a theoretical variance of 1 is selected by default. Normally you should not change these default settings (see figure 2.8). However, in some cases it may be desirable to use another option.

• If there is only one observation per treatment, it is not possible to calculate the residual error in the usual way. However, if there are reasons to assume that all model assumptions such as linearity and parallelism are fulfilled, it is possible to use the deviations from model as an alternative residual error. Since this option excludes the possibility to check

V Options wizard	🚺 Options wizard 📃 🔀
Size Orientation Model Design Doses Transformation Variance ANDVA	Size Orientation Model Design Doses Transformation Variance ANOVA
Variance	Variance
Observed residuals (•	Observed residuals C
Deviations from model C	Deviations from model C
Deviations from linearity C	Deviations from linearity C
Theoretical variance	Theoretical variance (? s^2 = 1
Next >> QK Cancel	< Next >> QK Cancel Help

(a) For quantitative responses, (b) For quantal responses, a the observed residuals are se- theoretical variance of 1 is selected by default. lected by default.

Figure 2.8: The 'Variance' group of the Options wizard

for features like non-parallelism and non-linearity, it can only be used for routine assays that are very well controlled. This option can also be used if there are reasons to assume that the observed residual error systematically underestimates the true residual error and there is no possibility to remedy this with better randomisation of the treatments.

- In the same situations, another alternative could be to use the deviations from linearity. With this option, it is still possible to check for non-parallelism, or intersection and blanks. This option should also be selected if a heterogeneity factor is desired for quantal responses (see section 4.2.4 of chapter 5.3 of the European Pharmacopoeia).
- In some routine situations, there may be insufficient data to compute a meaningful variance from the observed residuals, but there may be sufficient historical data to assume a theoretical variance. The theoretical variance has the advantage that all validity tests like parallelism and linearity can still be carried out, and also that the observed residual error can be compared with the theoretical variance. A significant F-ratio for the observed residuals indicates a problem with the assay consistency. This should also be apparent from control charts. The number of degrees of freedom of the theoretical variance is set to ∞ . For quantal responses and EDxx determinations, a theoretical variance of 1 is used. Do not change this value unless you know what you are doing.

Options 🕅	vizard		
Size Doses	Orientation	Model Variance	Design ANOVA
Ana	ysis of variance (ANO	VA)	
	No ANOVA	С	
	Reduced	0	
	Normal	(•	
	Extended	C	
	Complete	С	
	Equivalence tes	ting 🕅	
<<]	Previous	Next	>>
<u>0</u> K	Cance	el	Help

Figure 2.9: The 'ANOVA' group of the Options wizard

2.9 Analysis of variance

ANOVA is an abbreviation of 'analysis of variance'. The option by default is the normal ANOVA (see figure 2.9).

- No ANOVA: If there is no need to check the validity of the assay, you may specify this option. The analysis of variance is then omitted. For single dose assays, this option is usually selected to avoid confusion with the Wilcoxon-Mann-Whitney test.
- Reduced ANOVA: With this option specified, the total sum of squares is subdivided in only three sources of variation: The variation that is explained from the model (which should be highly significant), the variation due to deviations from the model (which should not be significant) and the residual error.
- Normal ANOVA: This option allows you to check the usual statistics such as regression, non-parallelism and non-linearity (regression, intersection and blanks for slope ratio assays). The deviations from linearity are further partitioned for each sample individually.
- Extended ANOVA: In addition to the normal ANOVA, this option allows you to check for quadratic curvature and lack of quadratic fit. In some cases, a slight quadratic curvature does not necessarily mean that the assay is invalid. Provided that the lack of quadratic fit is not significant, a quadratic curvature may indicate that a transformation of the data is appropriate. In three-dose assays, the lack of quadratic fit is also known as the difference of quadratics.
- Complete ANOVA: In addition to the extended ANOVA, this option also displays the statistics of the reduced ANOVA.

• Equivalence testing: Tick the checkbox to include a table with statistics for equivalence testing.

2.10 Customising the template

Once you have defined all the options, you can still modify them by clicking on the Options wizard button 🗟 depicting a magic wand in front of a data sheet or from the Tools menu on the menu bar. When all options are set, you may wish to further customise the template. For example, the first column of the assay related information contains five entries by default: Substance, Method, Assay number, Technician and Date of assay. These are only suggestions and can be modified. You can reduce the table by deleting the last entry, or you can extend the table by moving down the cursor while the focus is on the last row. For many routine assays, you will always use the same dilution series and assumed potencies, so it is convenient if this information is already entered into the template. See chapter 3 for more detailed information on entering assay data. You can save a template by clicking on the button 🖶 depicting a disk and save the data sheet as a model with the extension *.epm. CombiStats will ask you if you want to add this template to the library. This library offers quick access to all available templates you have created. See chapter 3 for more details on using the library.

Chapter 3

Entering assay data

3.1 Introduction

If you want to enter data from an assay, you can either create an ad hoc data sheet (see chapter 2) or use an existing template. To open an existing template, click on the button depicting a folder \vec{e} , select the extension *.epm and browse to the location where the template it stored. If the template was added to the library, you can access the template more quickly by clicking on the button \vec{E} depicting an empty template. The software constructs data sheets according to a standard format. A data sheet can extend over several pages. Each page starts with information on the date and time of printing, which should avoid mixing up pages that are printed at different times. The assay related information is also repeated on each page, which should help identify the assay if you find a lost page. The subsequent sections are:

- Any remarks.
- The tables with sample related information, containing dilutions and observations.
- In case the option 'show design' is enabled, the design and the observations as positioned in the design.
- All necessary information on the model used.
- Additional statistics which are useful for control charts, such as the slope of the regression.
- The analysis of variance (ANOVA).
- In case the option 'equivalence testing' is enabled, a table with 90 per cent equivalence intervals.
- The estimated potencies and their 95 per cent confidence intervals.

Library of te	emplates		×
Search for:			
Antibiotics Diffu Antibiotics Turk Diphtheria vac: Factor VIII Chra Heparin sodium Hepatitis B vac Human Influen: Human Rabies Measles Mump	ision idimetric cine Challenge mogenic cine za Vaccine SRID Immunoglobulin s Rubella CCID50		A III
Remove	Add ?	<u>C</u> ancel	<u>0</u> K

Figure 3.1: The library of templates

- Graphical representations of the observed data and the calculated regression.
- Names of responsible persons.

This chapter describes in detail how to complete a data sheet.

3.2 Using the library of templates

The library of templates is an optional feature, which enables you to access the available templates more quickly. Instead of searching manually for the *.epm, files you can open the library by clicking on the button \mathbb{E} depicting a template. The first time you use CombiStats, the library is empty. But once you have created a set of templates, it might look like shown in figure 3.1.

A template can be opened by double clicking on it, or by selecting it and clicking on OK. If a template does not appear in the library, but you are sure there is an *.epm file with the correct template, you can add it to the library by clicking on Add and searching for that file. You can delete a template from the library by selecting it and clicking Remove. Deleting a template from the library does not automatically delete the file from the disk. The library is in fact a collection of links to files which can be located in different directories. If such a file is moved or deleted, the link is lost. To restore a lost link, you have to remove the template from the library and add it in again as described above.

3.3 Assay related information

It is important to distinguish between assay related information and sample related information. For example, the date of assay is not specific for one sample, but for the whole assay. The assumed potency of a sample or a batch number is not assay related, but sample related. Assay related information is never necessary for the calculations. The 5 standard entries suggested by CombiStats are typical examples of assay related information. You can

Figure 3.2: The layout of sample tables

enter all assay related information that you consider to be relevant into the first table. Move down with the cursor keys to add more rows. Empty rows that are not followed by non-empty rows are automatically removed. This table is repeated on each page, which should help identify an assay, should you find a lost page. Use the INSERT or F2 key to modify parts of existing entries. You should never put sample related information in this table. Sample related information should be entered in the information lines of the specific sample to which it applies.

3.4 Sample related information

The tables consisting of sample related information can be subdivided into several parts (see figure 3.2). Each of the parts will be discussed in a separate paragraph.

3.4.1 Header

The header appears at the top of each table. It either contains the word "Standard" or the word "Sample x" where x runs from 1 to the number of samples included. The first table is the standard by default, but it is possible to select another standard by double clicking on the header of the table that you want to be the standard. In EDxx determinations, it is not always necessary to include a standard. You can toggle off the word "Standard" by double clicking on it.

3.4.2 Sample related information

Sample related information is optional and never necessary for the calculations. The information lines appear after the header and before the assigned or assumed potency. The number of information lines can be modified with the Options wizard. Examples of additional information are: Trademark, Manufacturer, Batch number, Expiry date.

3.4.3 Assigned or assumed potency

The abbreviation "Ass. Pot." means "assigned potency" in the case of the standard, and "assumed potency" in the case of the other preparations. An assumed potency is simply a temporarily assigned potency. The CombiStats software allows you to specify the potency in a variety of different formats. The syntax is NUMBER1 [log [BASE]] UNIT1 / [NUMBER2] UNIT2. The information between brackets is optional. NUMBER1 can be replaced by a question mark (?) except for the standard for which always a real number is required. If the keyword log is used, the potency is assumed to be specified in logarithms to the base BASE. If BASE is omitted, it is assumed to be to the base 10. UNIT1 has to be the same for all samples, including the standard. If NUMBER2 is omitted it is assumed to be 1. Examples of valid potencies are:

```
5600 IU / vial
15 IU / dose
15 IU / 0.5 ml
20 µg protein / ml
3.5 log CCID50 / ml
3.5 log10 CCID50 / ml
? AU / ampoule
```

In the above examples, spaces are used in the notation for readability, but they are not necessary. A full stop has to be used as the decimal separator even if your regional settings specify a comma. This is to guarantee a common format for all users of the software and to facilitate the exchange of data files between different users. If you type a comma, it is automatically converted to a decimal point. When you copy-paste from and to other software, numbers are automatically converted to the regional settings.

3.4.4 Predilutions

The number of lines for pre-dilutions can be modified with the Options wizard. If there are no pre-dilution steps, you can specify 0 line. The pre-dilutions appear after the assigned or assumed potency. The syntax is NUMBER1 UNIT1 / [NUMBER2] UNIT2. The information between brackets is optional and is assumed to be 1 if it is omitted. Furthermore, UNIT1 must be equal to UNIT2 of the preceding step. For example, an assigned potency of 5600IU/vial can be followed by a dilution step of 0.5vial/25ml, but it cannot be followed by a dilution step of 10mg/25ml. Reconstitution of a sample and the volume administered per experimental unit are also counted as pre-dilutions as well as the conversion to other units. The example in figure 3.3, therefore, has 3 pre-dilution steps, even though none of them are real pre-dilutions. Use CTRL+m to type the Greek symbol μ . It is

Sample 1								
Ass. pot.	? log TCID50 / vial							
Reconstitution	1 vial / 0.5 ml							
Conversion	0.5 ml / 500 μl							
Inoculation	100 μl / well							
Doses	(1)							
-2.0 log	8/8							
-2.6 log	8/8							
-3.2 log	7/8							
-3.8 log	6/8							
-4.4 log	2/8							
-5.0 log	1/8							
-5.6 log	1/8							
-6.2 log	0/8							

Figure 3.3: The reconstitution, conversion and inoculation are counted as pre-dilutions

highly recommended to express the last step in terms of the actual dose administered to the experimental units, e.g. 0.5ml/animal or 100µl/well.

3.4.5 Doses

The doses appear either on top or to the left of the observations, depending on the option selected for the orientation of doses. You can modify this with the Options wizard. If you have specified symbolic notation in the options, you can use symbolic notation for the doses (see paragraph 2.6). The doses are then calculated by the software on the basis of the assigned or assumed potency, the pre-dilutions and the dilution steps, and their rank of appearance in the table. Otherwise, you must specify the doses explicitly. The word "Dose" is used for a variety of different concepts. It can mean "Content", "Volume", "Dilution" or even literally a "Dose". Each of these concepts has its own notational format.

- A content is a number followed by a unit. The unit has to be equal to UNIT1 of the assigned or assumed potency. *The pre-dilutions are ignored in this case*. This format can also be regarded as literally meaning a dose, if you think of it as the number of units per volume administered. This notation is in general not recommended, because it is likely to be used incorrectly if standard and test samples are not prepared in exactly the same way. However, it can be useful in situations where samples are compared to a standard that is assumed to be identical.
- A volume is also a number followed by a unit, but in this case the unit has to be equal to UNIT2 of the last pre-dilution step. Usually, this is a measure of volume, e.g. ml or µl. This volume is considered to be expressed in terms of the stock solution. For example, consider the case of a preparation with assumed potency of 100 IU/ml and a predilution of 1ml/10ml. A dose of 0.5 ml will in this case be interpreted as 5 IU per experimental unit.

Sample 1						Sampl	e1		
Sample	T				Sample	Т			
Ass. pot.	20 µg p	orotein /	ml		Ass. pot.	20 μg protein / ml			
Doses	(1)	(2)	(3)		Pre-dil. 1	1 ml / 1	1000 ml		
1/1000	1.140	1.386	36 1.051		Doses	(1)	(2)	(3)	
1/2000	0.501 0.6	0.665 0.576			1/1	1.140	1.386	1.051	
1/4000	0.327	0.355	0.345		1/2	0.501	0.665	0.576	
1/8000	0.167	0.157	0.178		1/4	0.327	0.355	0.345	
1/16000	0.097	0.097	0.094		1/8	0.167	0.157	0.178	
					1/16	0.097	0.097	0.094	

Figure 3.4: The working dilutions can be simplified by specifying a predilution

• A dilution can be given in two formats: as a ratio NUMBER1 / NUM-BER2 or as a logarithm NUMBER1 log [NUMBER2]. The information between brackets is optional and is assumed to be 10 if omitted. Dilutions are assumed to be expressed in terms of the stock solution. Hence, the tables in figure 3.4 are equivalent. In this example, the dilution of 1/1000 in the left table is interpreted as 0.02 µg per experimental unit and the dilution of 1/1 in the right table is also interpreted as 0.02 µg per experimental unit.

Valid series of doses are

Symbolic notation:	$\mathbf{S4}$	S3	S2	S1
Content:	$0.1 \ {\rm IU}$	$0.01 \ \text{IU}$	0.001 IU	0.0001 IU
Volumes:	100µl	10µl	1µl	0.1µl
Dilutions (ratios):	1/10	1/100	1/1000	1/10000
Dilutions (logs):	-l log	$-2 \log$	$-3 \log$	$-4 \log$

It is important to be aware that these series of doses do not necessarily have to be equivalent. The symbolic notation in this example is only equivalent to the explicit dilutions if a decreasing dilution step of 10 has been specified. The explicit contents are only equivalent to the explicit dilutions if the stock solution contains 1 IU/unit. If this confuses you, it is recommended to examine the examples in appendix A and to compare the different notations.

3.4.6 Replicates

The replicates are indicated between parentheses. In case of randomised blocks, they indicate the blocks unless the design is shown. The blocks are numbered across the samples, i.e. (1) for the standard indicates the same block, row or column as (1) for the other samples. The numbers do not refer to blocks if 'show design' is enabled because, in that case, the numbers in the design take on that role.

Design	(A)	(B)	(C)	(D)	(E)	(F)
(1)	1 1	2 1	2 2	1 3	1 2	2 3
(2)	2 1	2 3	1 1	1 2	2 2	1 3
(3)	2 2	1 3	1 2	1 1	2 3	2 1
(4)	1 3	1 2	2 3	2 1	1 1	2 2
(5)	1 2	2 2	1 3	2 3	2 1	1 1
(6)	2 3	1 1	2 1	2 2	1 3	1 2

Figure 3.5: An example of a Latin Square design

3.4.7 Observations

The syntax of the observations is NUMBER1 [/ NUMBER2]. In addition, you can specify + instead of 1/1, and - instead of 0/1. The information between brackets is optional and is in general only used to specify the size of a group for quantal observations, or bivariate data for quantitative observations. For example, some assays may require the measurement of the horizontal and the vertical diameter of the inhibition zones. You can use a transformation to compute the area of the zones, where y refers to NUMBER1 and z refers to NUMBER2. If you refer to z, but NUMBER2 was omitted, it is assumed to be 1. If you omit z for quantal observations, it is also assumed to be 1, which allows you to use 0 or 1 as short notations for 0/1 and 1/1.

Observations can easily be excluded from the analysis by double clicking on them. They are still visible, but barred. Double click once more to include them again. Double click on the dose, or on the replicate number to exclude a whole row or column. Double click on the word 'Dose' to exclude all observations of one sample.

3.5 Layout of the design

The design is only visible in case this option is selected in the options wizard. The first table contains the positions of treatments, e.g. doses on a plate or animals in cages. The second table contains the observations as positioned on the template. When entering the data, you have to enter the design of the template first. The template is described with 2 or 3 numbers separated by a vertical line (the pipe symbol |). Instead of the pipe symbol, you can type the forward or backward slash (/ or \) which will automatically be transformed to the pipe symbol. The first number refers to the preparation, the second number to the dose and the optional third number to the replicate. If the third number is omitted, it is assumed to be equal to the number between brackets to the left or top of the table. For example, consider the template in figure 3.5. The '1|1' in row (1) and column (A) indicates that, on this position of the template, the first replicate of the first dose of the first sample is applied. The '2|3' in row (5) and column (D) indicates that the fifth replicate of the third dose of the second sample is applied.

The design can be entered more conveniently by selecting a cell or a group

Design	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
(A)	Pos	1 1 1	1 2 1	1 3 1	1 4 1	1 5 1	5 5 2	5 4 2	5 3 2	5 2 2	5 1 2	Neg
(B)	Pos	2 1 1	2 2 1	2 3 1	2 4 1	2 5 1	6 5 2	6 4 2	6 3 2	6 2 2	6 1 2	Neg
(C)	Pos	3 1 1	3 2 1	3 3 1	3 4 1	3 5 1	7 5 2	7 4 2	7 3 2	7 2 2	7 1 2	Neg
(D)	Pos	4 1 1	4 2 1	4 3 1	4 4 1	4 5 1	8 5 2	8 4 2	8 3 2	8 2 2	8 1 2	Neg
(E)	Pos	5 1 1	5 2 1	5 3 1	5 4 1	5 5 1	1 5 2	1 4 2	1 3 2	1 2 2	1 1 2	Neg
(F)	Pos	6 1 1	6 2 1	6 3 1	6 4 1	6 5 1	2 5 2	2 4 2	2 3 2	2 2 2	2 1 2	Neg
(G)	Pos	7 1 1	7 2 1	7 3 1	7 4 1	7 5 1	3 5 2	3 4 2	3 3 2	3 2 2	3 1 2	Neg
(H)	Pos	8 1 1	8 2 1	8 3 1	8 4 1	8 5 1	4 5 2	4 4 2	4 3 2	4 2 2	4 1 2	Neg

Figure 3.6: An example of a plate design with colour identification

of cells in a preparation table and then double-clicking on the position in the design where the observation(s) is (are) located. If you select a group of cells, the selection gets a blue background colour, except the active cell which stays white. A reference to the active cell is inserted on the place where you double-clicked. References to the blue cells are inserted to the left and bottom, possibly in reverse order if the active cell is not the top-left cell of the selection.

It is possible to use labels such as 'Neg' or 'Pos' in the design. Labels must not start with a number. Cells which are labelled this way, may have an observed value on the plate, but do not correspond with one of the tabled values included in the calculations. By default, the referenced cells are shaded in a colour (up to a maximum of 12 colours) as a visual aid in assessing the plate layout. The colour indicates the preparation. Labelled cells are shaded in grey. An example of a coloured plate design using references and labels is shown in figure 3.6. Use of colours can be enabled or disabled independently for screen and printer via the menu Options > Advanced > Preferences.

Observations can be entered directly into the tables, or they can be entered into the template. You cannot enter observations if the corresponding template is missing. If you enter the data into the tables, the observations will automatically be copied to their corresponding place on the template, and vice versa.

3.6 Remarks

You can enter any remarks into the box at the top of the first page. Remarks cannot contain double quotes ("). Double quotes are automatically replaced by single quotes (').

3.7 Signatures

At the end of each data sheet, three entries are provided for the names or initials of the persons who are responsible for the assay-results. Typed names in these fields are optional only and should not be regarded as replacement

3.7. SIGNATURES

of signatures. Depending on the procedures applicable in your organisation, handwritten signatures should nonetheless be applied to the paper printouts or certified digital signatures to digital renderings of the output. See section 9.8 for more details on digital signatures.

Chapter 4

Interpretation of the output

4.1 Introduction

This chapter attempts to give some guidelines for the interpretation of the output. Reference should also be made to chapter 5.3 of the European Pharmacopoeia. When the calculations are performed by clicking on \blacksquare , the first step is to interpret the analysis of variance. The graphs should also be inspected. If the assay passes the validity criteria, the estimated potency can be taken into consideration.

4.2 Inspecting the mean responses

It is possible to inspect the mean responses by selecting $Options \triangleright Mean$ responses from the menu or CTRL+R on the keyboard. This option adds a row or column to the tables with the arithmetic mean response for each dose, not taking into account a possible transformation. Barred observations are not included in the average. In the case of bivariate or binomial data, the part before the slash and the part behind the slash are averaged independently. The additional row can be removed with the same menu or by repeating CTRL+R on the keyboard.

The additional row or column is only intended for quick on-screen inspection and will disappear when further actions are performed. The mean is shown in the same format (i.e. with the same number of decimals) as the first observation in the table, which may result in a slight rounding. If you want the average to show more decimals, you have to add redundant zero's to the first observation in the table so as to represent the format in which the average will appear.
4.3 Analysis of variance (ANOVA)

The first step is to check the validity criteria in the analysis of variance, which depend on the statistical model and the option selected for the ANOVA. The probabilities (p-values) are flagged with stars to indicate the level of significance. They have the following meaning:

- (*) probability less than 0.05 (i.e. significant)
- (**) probability less than 0.01 (i.e. highly significant)
- (***) probability less than 0.001 (i.e. even more significant)

A *p*-value is not flagged if it is greater than or equal to 0.05. The *p*-value is printed with 3 decimals, but the internal representation has a higher precision. Hence, a value of 0.0499 is rounded to 0.050 and flagged, whereas a value of 0.0501 is also rounded to 0.050 but not flagged. The stars are only shown for the levels of significance that are most commonly used. However, validity of an assay depends on the requirements specified for the type of assay and may involve other levels of significance.

The usual validity criteria for parallel line assays and assays with quantal responses are:

- The *p*-value for regression is significant (at least one star). If this criterion is not fulfilled, it is impossible to compute confidence limits. In most assays you will find two or three stars. In the case of only one star, the criterion is fulfilled but the confidence limits are usually too wide to be acceptable, depending on the type of assay.
- The *p*-value for non-parallelism is not significant (no stars).
- The *p*-value for non-linearity is not significant (no stars).

In the case of significant non-linearity, it may be instructive to examine the quadratic curvature (only available if the extended ANOVA has been selected). If the quadratic curvature is significant and the lack of quadratic fit is not significant, this could indicate that a transformation of the data is appropriate. The choice of transformation should never depend on only one assay, but should depend on a series of independent assays in which the same type of curvature has been observed.

The usual validity criteria for slope ratio assays are:

• The *p*-value for regression is significant (at least one star). If this criterion is not fulfilled, it is impossible to compute confidence limits. In most assays you will find two or three stars. In the case of only one star, the criterion is fulfilled but the confidence limits are usually too wide to be acceptable, depending on the type of assay.

4.4. GRAPHS

- The *p*-value for blanks is not significant (no stars). This criterion is only applicable if blanks or zero doses have been included. In many assays, the dose response relationship is not linear down to zero dose, and it may be necessary to exclude the blanks from the calculations. Blanks should not be excluded only because the *p*-value is significant in a single assay. The decision should depend on a series of independent assays in which a similar deviation of the blanks has been observed.
- The *p*-value for intersection is not significant (no stars).
- The *p*-value for non-linearity is not significant (no stars).

In routine assays, the residual error should also be inspected and compared with historical data. It is recommended to keep control charts of the residual error. An exceptionally high residual error may indicate a problem with the assay procedure. In such a case, the assay should be rejected even if the criteria in the analysis of variance are fulfilled. An exceptionally low residual error may once in a while occur and cause the *p*-values to be significant. In such a case, it may be justified to replace the observed residual error by an average residual error based on historical data (select Theoretical variance).

4.4 Graphs

Unusual features are often more obvious in a graphical representation than from statistical parameters. Therefore, you should always inspect the graphs. They show for each sample the observed data (indicated with dots) and the calculated regression line. This has been demonstrated to be a very efficient way to detect experimental outliers and keying errors. Consider, for example, the following series of observations: 0.354; 0.369; 0341; 0.348 (note the missing point in the third observation). This keying error would immediately be obvious in a plot, but would be less obvious in a table.

Remark: The figures do not have scaled axes, since they are not necessary for the purpose of detecting unusual features and were difficult to implement on such a small scale. If more detailed plots are required, with scaled axis, a page sized plot can be generated by clicking on the button depicting a graph \swarrow .

The full size plot can be viewed (and printed) in colour (\mathbb{W}) or in black and white (\mathbb{W}). The samples in the plot can be identified by their colour and/or the shape of the symbols for the observations. There are 13 colours and 12 symbols which are recycled when the series is exhausted, thus making up for a large amount of combinations: $\diamond \times \triangle \diamond \nabla \Box + \ast \bullet \bullet \bullet \diamond$

The orientation of the plot can be changed from landscape (\square) to portrait (\square) and back again. The fontsize in the figure can be increased (\mathbf{A}^{\bullet}) or decreased (\mathbf{A}^{\bullet}) . The Options menu provides several other ways to customize

Figure 4.1: An example of 3 different scalings shown simultaneously

the plot. The legend can be excluded, the scale of the y-axis can be hidden, and there are 3 types of scaling for the x-axis:

- Scaling by notation: The notation of the dose labels in the sample tables are shown above the x-axis.
- Scaling by dose: The dose levels (in potency units) are shown in small print below the x-axis (maximum 6 significant digits).
- Scaling by x: The transformed doses are shown in normal print below the x-axis.

By default the scaling by notation and by x are shown, but any combination of these 3 types of scaling can be selected in the options menu. Figure 4.1 is an example where all 3 types are shown simultaneously. The values on the axis are based on the standard. The test preparations necessarily have to be plotted on a meta-axis based on the (implicitly) assumed potency, which is only an approximation. It should also be noted that the scaling below the axis only has a meaning if you have fully specified all steps to prepare the doses.

It is possible to generate a plot of curves connecting the average response per dose group. First click on \swarrow to generate a page sized plot of the graph, then click on \bigstar to generate the plot of averages.

CombiStats can generate a residual plot as a visual aid for assessing model fit. To generate a residual plot, first click on \checkmark to generate a page sized plot of the graph, then click on \bowtie to generate the residual plot. By default, the standardised residuals are plotted against the expected (fitted) response. The standardised residuals are corrected for leverage as obtained from the hat-matrix and the weighting function, so that the residuals should be equally distributed about 0 over the whole range of responses. If the scatter about 0 is not homogeneous over the whole range of responses, you may have to use a different weight function. A good example is 'PlateDesign.epa' where the residual plot can be seen to improve when a weighted regression is done with weights $w=1/m^2$ instead of an unweighted regression (w=1). Note that the residuals are not studentised. You can choose from different quantities on both axes via the menu Options Residual Plot. The raw residuals are the difference between the observed response and the fitted response without any correction for leverage.

4.5 Additional statistics

In routine assays, it is recommended to keep a record of the additional statistics, just as for the residual error as explained in section 4.2. For parallel lines and quantal responses, the common slope should be recorded. For slope ratio assays, the common intercept should be recorded. The 90 per cent confidence limits of the common slope or common intercept may also be recorded.

The correlation coefficient |r| is a measure of quality of the assay. Its square is the proportion of the total variance that is explained by the model. The closer this value is to 1, the better the model explains the observations. For a single sample to which a straight line is fitted, this value coincides with Pearson's product moment correlation coefficient. The unweighted correlation coefficient is only calculated for linear regressions with homogeneous error variance, because it has no meaningful interpretation in other cases. The weighted correlation coefficient is always calculated. If the weighted and unweighted correlation coefficients are identical, it is printed only once. For sigmoid response models with homogeneous error variance both are calculated. The weighted correlation is theoretically to be preferred, but unfortunately many protocols prescribe the unweighted correlation coefficient as validity criterion.

For sigmoid models, the estimated lower and upper asymptote are printed. For 4-parameter models, the lower asymptote is always printed before the upper asymptote. For 5-parameter models, the order depends on the sign of the multiplication factor a. For positive values of a, the lower asymptote is shown first, whereas, for negative values of a, the upper asymptote is shown first.

It is not possible to copy and paste these statistics directly to other software, but you can do it indirectly by copying and pasting the complete data sheet ($\mathsf{Edit} \triangleright \mathsf{Copy} \mathsf{All}$) or by simply typing them over.

4.6 Potency estimates

If an assay has passed the validity criteria, the estimated potency can be considered. The potency is expressed in the same units as the assumed potency. The lower and upper limits are the 95 per cent confidence limits. Some assays prescribe a maximal permitted width of the confidence interval, e.g. not wider than 80 per cent to 125 per cent of the estimated potency, and a maximal permitted deviation of the estimated potency from the assumed potency. For that reason, the potencies and confidence limits are also expressed as a percentage of the assumed potency (Rel. To Ass.) and the estimated potency (Rel. To Est.). Question marks are returned if the assumed potency was indicated with question marks. Remark: The relative potencies are expressed by default on log-scale if the potencies are also expressed on a log-scale. However, the Options menu allows you to force percentages. If a standard is included in EDxx assays, the potency is expressed both as EDxx and relative to the standard.

4.7 Single dose assays

In the case of a single dose assay, CombiStats calculates the limit that you are testing and the probability that the test sample is equal to this limit. If the limit test is significant at the chosen significance level, it can be concluded that the test sample differs significantly from the limit tested. Whether the potency is higher or lower than the limit tested depends on the nature of the dose/response relationship. In order to draw the correct conclusion, you should therefore know this relationship. The probability is calculated with the Wilcoxon-Mann-Whitney test (pairwise, one-sided). The one-sided *p*-value is printed as the right-sided *p*-value when the statistic is greater than its mean. Otherwise it is printed as the left-sided *p*-value. The test is exact in principle, but for larger problems the calculations can take a very long time. An approximate *p*-value, based on a normal approximation with correction for ties, is shown in the status bar during the calculations. Press the BREAK key (or SHIFT + ESC) to stop the exact calculations, and use the approximation instead.

4.8 Equivalence testing

Some protocols may call for equivalence testing of slopes instead of the more traditional F-test for non-parallelism or intersection. If the checkbox for equivalence testing is selected in the options, an extra table with equivalence statistics is shown. The table shows the slopes (or intercepts in case of slope-ratio models) of the individual preparations together with 90 per cent confidence intervals. If a standard is included, the difference and ratio of the individual slopes with that of the standard is also shown, again with 90 per cent confidence intervals. For slope ratio assays, only the difference between intercepts is shown because ratios of intercepts have no meaningful interpretation. The assay protocol should specify 'goal-posts' within which the 90 per cent confidence intervals have to be entirely contained.

Chapter 5

Combining assays

5.1 Introduction

CombiStats offers the possibility to combine potency estimates from different assays. In order to combine a set of assays, you should open all the assays you want to be included and then click on the button depicting a cauldron or melting pot \clubsuit . The sheet will be constructed automatically. The table with assay related information contains all information that is common to all assays. The table with the confidence intervals will contain in addition the entries that are not common to all assays, but which have only the first column in common. For example: The first column may contain an entry 'Assay number' in each assay, but the second column may differ from assay to assay, e.g. the numbers 1 to 6 if you have performed 6 assays. CombiStats calculates three types of combinations. Which combination you should use depends on whether the potency estimates are homogeneous. There are no strict rules as to which of the three should be used, but the following rule of thumb can be of use.

- If the *p*-value for homogeneity is more than 0.10, potency estimates are sufficiently homogeneous to use the weighted combination.
- If the *p*-value is less than 0.10, potency estimates tend to be heterogeneous and it would be better to use the semi-weighted combination.
- The unweighted combination should only be used if there are enough assays, say, at least 6.

5.2 Editing the combination sheet

The possibilities for editing the combination sheet are limited. It is not possible to enter data directly into the sheet. Basically, there are only four possibilities to edit the contents:

- Use a filter from the dropdown boxes at the top of each column. You can visualise the dropdown boxes by moving the cursor over the right part of the cells of the first assay. Only assays that correspond with the selected filter will be included in the table. If you specify No filter, all potency estimates from all samples in all assays are included.
- Excluding a particular assay by double clicking on it. The numbers are then barred, and the figure shows an empty dot for the excluded intervals.
- Changing the order of the assays by double clicking on the top row of the column that you wish to be sorted. Numbers are sorted in increasing order and text is sorted in alphabetical order. By default, the first column is sorted. Dates are also sorted in alphabetical order, which does not necessarily correspond with the chronological order. Use the format yyyy/mm/dd if you want dates to be sorted in chronological order.
- Hide an entire column. The dropdown boxes (see above) also include a possibility to Hide a column. Alternatively you can press CTRL+H while the column you want to hide is selected, or use the menu bar (Edit ▷ Hide column). Use CTRL+U or Edit ▷ Unhide from the menu bar to unhide all hidden columns.

5.3 Available options

Potencies are combined on a log-scale by default. This corresponds with a geometric combination if the potencies are not expressed on a log-scale and with an arithmetic combination if the potencies are already expressed on a log-scale. However, the options menu allows you to force an arithmetic combination if potencies are not expressed on a log-scale. It is not possible to force a geometric combination of potencies that are expressed on a log-scale.

The relative potencies are expressed on log-scale by default if the potencies are also expressed on a log-scale. However, the options menu allows you to force percentages.

By default, the figures are presented with the option Zoom in selected. This means that the confidence intervals extend over the whole area of the figure. If you remove this option, the bottom of the figures will correspond with zero potency.

42

Chapter 6

Importing, exporting, protecting data

6.1 Introduction

The software is not intended to replace a database. It is anticipated that you have a database and that you may want to import or export data between CombiStats and this database or to other software for further manipulations. Because of the large diversity of existing databases and programs, it is practically impossible for CombiStats to recognise all these formats. If you want to import or export data, it is your responsibility to create a conversion program that serves as an interface between the programs. This chapter describes in detail the format of input and output files of CombiStats.

6.2 Copy and paste

This is the easiest and most straightforward way to import and export data between programs. For example, you can select a group of cells in a spread-sheet and copy it to the clipboard of Windows (Edit \triangleright Copy, or CTRL+C), after which you can select a group of cells in CombiStats and paste the data from the clipboard to the data sheet (Edit \triangleright Paste, or CTRL+V). Use the same method to copy data from CombiStats to, for example, a spreadsheet. It is possible to copy the complete contents of a data sheet to the clipboard (Edit \triangleright Copy All), but you can paste only one group of cells at a time into the tables. An exception are the sample tables: If the clipboard contains more data than can fit into the selected table, the remaining contents are pasted to the adjacent sample tables. This allows you to paste assay data to all tables in one single action.

6.3 Creating input files

This section describes in detail the format of CombiStats input files. This is the same format in which the software stores data that have been entered by hand. If you are in charge of creating a conversion program that generates input files for CombiStats, it is recommended to print an existing input file (extension *.epa) using a text editor. This will facilitate understanding the format. The files are in ASCII format. Each entry starts on a new line. The three existing data types are strings, numerical values and boolean values. Strings are enclosed in double quotes. Numerical values use a full stop as decimal separator. Boolean values are entered as #TRUE# and #FALSE#.

Line	Туре	Description for files with the extension *.epa and *.epm			
1	String	"CombiStats v7.0"			
2	Boolean	#FALSE# =Orientation of doses horizontal, #TRUE# =Orientation of doses vertical.			
3	Num.	The number of information lines in the tables.			
4	Num.	The number of pre-dilution steps including the assigned potency.			
5	Num.	The number of rows for the observations (i.e. the number of replicates in case of horizontal doses or the number of doses in case of vertical doses).			
6	Num.	The number of columns for the observations (i.e. the number of doses in case of vertical doses or the number of replicates in case of horizontal doses).			
7	Num.	The number of preparations.			
8	Num.	1=Parallel lines, 2=Slope ratio, 3=Quantal responses, 4=EDxx determination, 5=Sigmoid curves.			
9	Boolean	#FALSE# =Estimate common parameter from data, #TRUE# =Use a fixed common parameter.			
10	String	Value of the fixed common parameter. Empty string if not applicable.			
11	Num.	1=Completely randomised, 2=Randomised blocks, 3=(Latin) square.			

Line	Type	Description for files with the extension
		*.epa and *.epm
12	Num.	1=No transformation, 2=Square root,
		3 = Logarithmic, $4 = $ Square, $5 = $ Other,
		6=Probit, 7=Logit, 8=Angular,
		9=Rectangular, 10=Gompertz. Add 16 to
		the values 6 to 10 in case a 5-parameter
		model is used.
13	Num.	1=Observed residuals, 2=Theoretical
		residuals, 3=Residuals from deviations from
		model, 4=Residuals from deviations from
		linearity.
14	Num.	1=No ANOVA, 2=Reduced ANOVA,
		3=Normal ANOVA, 4=Extended ANOVA,
		5=Complete ANOVA. Add 8 to the value if
		the option for equivalence testing is selected.
15	Boolean	#TRUE# =Explicit doses, #FALSE# =Implicit
		doses.
16	Num.	1=Increasing doses, -1=Decreasing doses,
		Anything if not applicable.
17	String	Encrypted string for password protection.
		Empty string in case default protection as
		specified in the preferences has to be used.
18	String	Value between 0 and 100 (between double
		quotes) to indicate xx in case of EDxx
		determination. Empty string if not
		applicable.
19	String	Transformation, e.g. y or log(y) or
		((y*z)-(3*3))*pi/4.
20	String	Number of non-zero doses in case of a slope
		ratio model. Dilution step in other models.
		Empty string if not applicable.
21	String	Theoretical residual (between double
		quotes). Empty string if not applicable.
22	String	Remarks. May contain embedded returns,
		but no embedded double quotes. Empty
		string if not applicable.
23	Num.	Number of rows for the table with assay
		related information (at least 1).

46 CHAPTER 6. IMPORTING, EXPORTING, PROTECTING DATA

Line	Туре	Description for files with the extension		
		*.epa and *.epm		
24 and	Strings	The information to be displayed in the table		
following		for assay related information. One line for		
(say K		each cell, starting from left to right and from		
lines)		top to bottom. The number of lines K must		
		exactly match twice the number stated on		
		line 21 (hence, at least 2).		
K + 24	Boolean	#FALSE#=Hide design.		
		#TRUE#=Show design.		
K + 25	Boolean	#FALSE# =Letters horizontal (columns).		
		#TRUE# =Letters vertical (rows).		
K + 26	Num.	Number of rows of the design.		
K + 27	Num.	Number of columns of the design.		
L lines	Strings	In case the design is displayed, the layout of the template, starting from left to right and from top to bottom. The cells with (1), (2), etc., and (A), (B), etc., are not output to the file. Hence, the number of lines L necessary for the template equals Rows × Columns. If the design is not displayed, this section is not output to the file.		
<i>M</i> lines	Strings and Booleans	The information to be displayed in the tables for sample related information. One line for each cell, starting from left to right and from the top down to the last pre-dilution. The cell with the word Doses and the cells with (1), (2), etc., are not output to the file. Then follows the first dose (as a string), the first replicate of that dose (also as a string) and whether that observation is excluded (#FALSE# =included, #TRUE# =excluded). Then follows the second replicate and whether or not it is excluded, and so on until the last replicate of the first dose. Then follows the second dose (as a string), and so on until the last dose. Hence, the number of lines necessary for one table equals $1 + 2 \times$ Information lines $+ 2 + 2 \times$ Predilutions $+$ Doses $+ 2 \times$ Replicates \times Doses. Continue until all tables are filled.		

6.3. CREATING INPUT FILES

Line	Type	Description for files with the extension		
		*.epa and *.epm		
L lines	Strings	In case the design is displayed, the		
		observations as positioned on the design,		
		starting from left to right and from top to		
		bottom. These values should be consistent		
		with the corresponding values in the		
		preparation tables, but will overrule them in		
		case they are not consistent.		
3 lines	Strings	The names or initials of persons responsible.		
		Empty strings if not applicable.		
1 line [*]	String	The power transformation λ of the doses.		
1 line*	String	The a priori transformation of the		
		observations.		
1 line [*]	String	The inverse link function h .		
1 line*	String	The first derivative h' of the inverse link		
		function h .		
1 line*	String	The weight function w .		
1 line [*]	String	The starting value of the non-linear term for		
		addition. Empty string if not specified.		
1 line [*]	Boolean	#TRUE# if the non-linear addition is fixed.		
		#FALSE# otherwise.		
1 line [*]	String	The starting value of the non-linear factor for		
		multiplication. Empty string if not specified.		
1 line*	Boolean	#TRUE# if the non-linear multiplication is		
		fixed. #FALSE# otherwise.		
1 line*	String	The response level for which an effective dose		
		is needed. Empty string if not specified.		
1 line [*]	Boolean	#TRUE# if the EDxx has to be expressed with		
		inverted units. #FALSE# otherwise.		
1 line*	String	The minimum number of iterations		
		requested. Empty string if not specified.		
1 line*	String	The maximum number of iterations		
		requested. Empty string if not specified.		
last line	Boolean	#TRUE# if advanced options where used (see		
		remark below). #FALSE# otherwise.		

Line	Туре	Description for files with the extension *.epc
1 line	String	"CombiStats v3.0 comb"

48 CHAPTER 6. IMPORTING, EXPORTING, PROTECTING DATA

Line	Type	Description for files with the extension		
		*.epc		
1 line	Num.	Number of rows for the table with general		
		information, not counting the row with the		
		assumed potency (last row of the table).		
	Strings	The information to be displayed in the table		
		for assay related information excluding the		
		row with the assumed potency (last row).		
		One line for each cell, starting from left to		
		right and from top to bottom. The number		
		of lines must exactly match twice the		
		number stated on line 2 (can be zero).		
1 line	Num.	The assumed potency (not on log-scale). Use		
		0 if no assumed potency is specified.		
1 line	Num.	The log-base on which the assumed potency		
		is expressed. Use 0 if no log-scale is used.		
1 line	String	The unit before the slash of the assumed		
		potency. Empty string if not specified.		
1 line	String	The unit after the slash of the assumed		
		potency. Empty string if not specified.		
1 line	Num.	Number of intervals in the table (including		
		the filtered and barred intervals).		
1 line	Num.	Number of columns in the table increased by		
		6. The 6 extra columns are never shown in		
		the table, but are only used to store specific		
		information on the format of the table. The		
		minimum number is $6 + 6 = 12$.		
lines	Strings	The header of columns before the column		
		with the header Sample. These are the		
		columns for which the header name was		
		chosen by the user. The number of lines is		
		equal to the number specified above minus		
		12 (so can be 0).		

Line	Type	Description for files with the extension
		*.epc
12 lines	Strings	_SAMPLE_ (the underscores are necessary to indicate that these columns are system columns) _INFO_ _LOWER LIMIT_ _ESTIMATE_ _UPPER LIMIT_ _DF_ _ASSUMED_ (this is the first of 6 invisible columns with formatting information) _LOGBASE_ _UNIT1_ _UNIT2_ STRIKETHROUGH
		FILTER
lines	Strings	The content of the cells of the first assay. Only the cells in non-system columns. The number of lines is equal to the number
1 lino	String	The sample number
1 line	String	The sample information Empty string if not
1 mile	Dumg	used.
1 line	Num.	The lower limit of the potency estimate, not on log-scale.
1 line	Num.	The potency estimate, not on log-scale.
1 line	Num.	The upper limit of the potency estimate, not on log-scale.
1 line	Num.	The number of degrees of freedom.
1 line	Num.	The assumed potency. 0 if not specified.
1 line	Num.	The log-base on which the assumed potency is expressed. 0 of not on log-scale.
1 line	String	The unit before the slash of the estimated potency.
1 line	String	The unit after the slash of the estimated potency.
1 line	Boolean	#TRUE# if the interval is struck through. #FALSE# otherwise.
1 line	Boolean	<pre>#TRUE# if the interval is visible. #FALSE# if it is filtered out. (repeat the above for each of the intervals).</pre>

Line	Туре	Description for files with the extension
		*.epc
1 line	Boolean	#TRUE# =Geometric combination.
		#FALSE# =Arithmetic combination.
1 line	String	The remarks. May contain embedded
		returns, but no embedded double quotes.
		Empty string if not applicable.
1 line	Boolean	#TRUE# =Force percentage. #FALSE# =Do not
		force percentages (default).
1 line	Boolean	#TRUE# =Zoom in on figures (default).
		#FALSE# =Do not Zoom in on figures.
Last 3	Strings	The names or initials of persons responsible.
lines		Empty strings if not applicable.

6.4 Creating output files

You can create an output file by saving a data sheet or combination sheet with the extension *.txt. All information contained in the sheet is then output to the file, including results from calculations (which is not the case for input files). This file is identical to the information that would be contained in the clipboard if $\mathsf{Edit} \triangleright \mathsf{Copy}$ All is used. Each section is separated by an empty line. Columns are separated by tabs, and rows are separated by returns. If the remarks contain embedded returns, one line will be used for each embedded return.

6.5 Exporting matrices

It is possible to export the estimated parameters and covariance matrices calculated for each of the various models. It is also possible to export the input dataset together with its linear structure matrix and vectors of observed and predicted observations. You can do this from the menu (Options > Advanced > Export matrices) or with CTRL+E. The matrices are copied to the clipboard and can be pasted in a suitable external program (e.g. Excel). The exported matrices allow you to obtain extra information on parameter estimates that would otherwise not be available from the standard interface of CombiStats. This enables you, for example, to perform custom hypothesis tests or to obtain individual slopes of the preparations.

The dataset contains, in addition to the linear structure matrix of the fitted model, a column with the linearised weights, observations and predictors, the non-linearised weights, observations and predictors (after the a priori transformation), the diagonal elements of the hat-matrix, the raw residuals and the standardised residuals. The estimated parameters and covariance matrices for 7 different models (each relaxing some of the model assumptions) are also output. Non estimable parameters are not shown. The 7 models are:

- 1. The fitted model with fixed common parameter, if applicable.
- 2. The fitted model with common parameter estimated from the data.
- 3. Linear lines, each with their own intercept.
- 4. Quadratic curve.
- 5. Only intercepts and no slope.
- 6. Allowing an extra parameter for blanks.
- 7. The full parametrised model.

6.6 Protecting templates and data sheets

It is possible to protect templates and data sheets from accidental editing. This can be done by clicking on the button depicting a padlock, from the menu (Edit \triangleright Protect sheet) or with CTRL+T. There are 4 levels of protection possible:

- 1. Unprotected: This is the default level allowing full access for editing the data sheet;
- 2. Protect options: This blocks access to the options wizard and the advanced options so that table sizes and model specifications cannot be modified unless the protection level is first brought back to level 1;
- 3. Protect options and non-empty cells: This is the same as level 2 plus protection of pre-filled cells from editing, so that only empty cells can be edited. The protection status of individual cells is determined at the moment level 3 protection is installed. This status is permanently retained unless the protection level is brought back to level 1 or 2.
- 4. Fully protected (read only): The data sheet cannot be modified unless the protection level is brought back to level 1, 2 or 3.

Levels 2 and 3 are particularly useful for protecting templates. After all data are entered, the level can be increased to 4 to protect the final sheet from further editing. The level of protection can be increased with or without a password. Select the new level and optionally specify a password. You can leave it blank for simple protection without password. If you specify a password, you will be asked to retype it to avoid typing errors. The level of protection can be decreased by selecting the new level and typing the correct

52 CHAPTER 6. IMPORTING, EXPORTING, PROTECTING DATA

Tampstate Version 6.1. Sunday, 1 March 2020, 12:00:00 [-	FUI:UUJ. Page I of I		
Protect sheet			
Protection level			
C Level 1: Unprotected			
C Level 2: Protect options			
← Level 3: Protect options and non-empty cells			
C Level 4: Fully protected (read only)			
Password:			
<u>C</u> ancel <u>D</u> K			

जाउँ राजे (1:00). Page 1 of 1 क्रिकेट (1:00) क्रिकेट (1:00) (1:00). Page 1 of 1

Figure 6.1: The four levels of protection

password for that level. If no password was used to increase the level, the protection can be removed without a password.

Passwords can be stacked. For example, if you first increase the level from 1 to 3 with password "Hello" and then from 3 to 4 with password "Goodbye", the level can only be decreased to level 1 by first going back to level 3 with "Goodbye" and then back to level 1 with "Hello". The Combi-Stats logo in the upper-left corner of each page changes colour to indicate the level of protection: 1=black, 2=blue, 3=green, 4=red.

Because files created with older versions of CombiStats do not contain any information about protection levels, you can specify how CombiStats should behave in case an old file is opened. By default, such a file is opened at level 1. In the preferences, you can specify that such files should be opened at level 4, with or without password protection. If you place the file with preferences in a read-only location, the user cannot change the default password that is needed to remove the protection from these data sheets.

IMPORTANT REMARK: Password protection of data sheets is intended as a light-weight protection against accidental editing. It is not designed as a bullet-proof protection against intentional tampering with the file. In fact, it is quite easy to edit a file using a text editor unless there is some external protection by a document management system. The only protection offered by CombiStats is that you cannot accidentally modify protected files during normal use of the program.

Chapter 7

Advanced options

7.1 Introduction

The advanced options form allows the more advanced user to gain maximum control over CombiStats' core engine which fits the generalized linear models. The average user is not expected to use this form, but only the options wizard (see chapter 2). Only users with a clear understanding of the theory behind generalized linear models and with a clear view of what they want to achieve should be using the advanced options. Using the advanced options slightly changes the output on the data sheet because a full equation of the model appears, as well as the weight function. If you use advanced options, you must assume full responsibility for the validity of the output.

With the advanced options, you can analyse a very broad class of dilution assays. A few examples are the possibility to use any power transformation of the x-axis, any mathematical function of the regression curve and any weighting function. However, there is no check of the data that CombiStats normally performs when the normal options wizard is used. For example, in probit analysis, CombiStats requires that observations are ratios of integers and that the integer before the slash is not greater or smaller than the integer after the slash. This check is not performed if the advanced options are used.

To illustrate the possibilities of the advanced options, it is perhaps instructive to examine the example shown in figure 7.1. These settings are equivalent with the standard probit analysis in the options wizard.

The power transformation of the doses is set to 0, meaning a $\log_{e^{-1}}$ transformation. The a priori transformation of the responses is r/n expressing the ratio of positive responses in a group. The inverse link function is phi(x), expressing the standard normal distribution curve. Its first derivative phider(x) expresses the standard normal density function. The weight function n/(m*(1-m)) expresses that the weights are proportional to the group size n and inversely proportional to the variance of the expected response m. The starting value for addition and multiplication are fixed at 0

Model	
Transformation doses: x=dose^	
Transformation responses: y'= r/n	
Inverse link function: h(x) = phi(x)	
First derivative: h'(x) = phider(x)	
Weight function: w = n/(m*(1-m))	
Start value for addition: d = 0	Fixed 🔽
Start value for multiplication: a = 1	Fixed 🔽
Effective Dose: m = Inv.	Perc. 🔽
Slope(factor) or intercept: b =	Fixed 🥅
Include asymmetry factor (5-parameter model):	

Figure 7.1: The advanced options

and 1, because the asymptotes are not supposed to be estimated from the data. Each of the various fields will be discussed in detail in the following sections.

7.2 Transformation doses

Let us write $x = \text{dose}^{\lambda}$ to denote the power transformation of the doses. In classical slope ratio assays, the doses are not transformed $(\lambda = 1)$ and it can be shown that the \log_e -transformation as used in parallel line models is equivalent to $\lim_{\lambda \downarrow 0} \text{dose}^{\lambda}$. We therefore use $\lambda = 0$ to denote the \log_e -transformation. Apart from these two classical transformations, it is possible to specify any other positive value, for example $\lambda = 0.5$ for the square root transformation. Very large values should not be used to avoid computer overflow, as well as values close to 0. Typical values are $\lambda \in \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2}, 2, 3\right\}$.

7.3 Transformation responses

This is the a priori transformation to be applied to the observations in order to construct the observation vector \mathbf{y}' . It is applied unconditionally before the fitting of the model starts. The following variables can be used in the expression:

- y or r to refer to the part of the observation before the slash. If there is no slash, the observation is taken as is.
- z or n to refer to the part of the observation after the slash. If there is no slash, it is assumed to be 1.

y and z are typical for quantitative data, and r and n are typical for quantal data, although a bizarre notation like $\exp(z)/\sin(r)$ would not upset CombiStats (as long as you think it has a meaning). For a list of available functions, see section 7.10.

7.4 Inverse link function

The link function is in the literature usually denoted as g. It is the monotonic differentiable function that relates the expected responses μ to the linear predictors η . For example, g is the probit function in probit analysis. Rather than the link function, CombiStats uses the inverse link function h, which can be thought of as a normalised regression curve. For example, his the standard normal distribution function in probit analysis, and h is the identity function in parallel line or slope ratio analysis. For a list of available functions, see section 7.10. When you specify a link function, do it in such a way that 0 is located in a central part of the function because this is used as a starting point for the iterations. The following variables can be used in the expression:

- i to refer to the number of the current iteration. The first iteration has number 0.
- **x** to refer to the linear predictor η in the current iteration.

7.5 First derivative

This is the first derivative $dh/d\eta$ of the inverse link function. CombiStats does not check if you specify the first derivative correctly. If you make a mistake in specifying the function, the output will be flawed. For a list of available functions, see section 7.10. The following variables can be used in the expression:

- i to refer to the number of the current iteration. The first iteration has number 0.
- **x** to refer to the linear predictor η in the current iteration.

7.6 Weight function

This is a function that specifies the weights to be given to the observations. For a list of available functions, see section 7.10. For unbiased estimates, the weight function is taken to be inversely proportional to the theoretical variance. Some examples of frequently used weight functions are:

- 1 for homoscedastic data (unweighted regression).
- n/(m*(1-m)) for quantal data with binomial responses, such as encountered in probit analysis.
- 1/m for data where the responses follow a Poisson distribution.

• 1/(m*m) for data with constant coefficient of variation.

The analysis of variance will only display F-ratios with their corresponding p-values if, and only if, the weighting function is exactly 1 and no theoretical variance is used. In all other cases, the χ^2 -values and their corresponding p-values are displayed, the reason being that the residual error has no obvious interpretation in weighted regression. It is important to be aware that p-values are based on the Normal error distribution. Non-normal distributions may fail to have properties similar to those of a Normal theory residual, if no adjustment is made to normalise the distribution, for example by using Anscombe residuals or deviance residuals. The following variables can be used in the expression:

- a to refer to the non-linear multiplier a in the current iteration.
- d to refer to the non-linear addition d in the current iteration.
- e to refer to the difference $e = y' \mu$ between the observed (possibly transformed) response y' and the expected response μ in the current iteration.
- **h** to refer to Huber's weight at the current iteration with winsorisation factor 1.5. This value is 1 if $|e| < 1.701 \times s$ and is $1.701 \times s/|e|$ otherwise.
- i to refer to the number of the current iteration. The first iteration has number 0.
- **m** to refer to the expected response μ in the current iteration.
- **n** to refer to the part of the observation after the slash (usually the group size, or frequency of an observation).
- s to refer to the residual error at the current iteration. This residual is not the same as that used in the ANOVA because it takes on the full number of degrees of freedom (number of observations minus number of parameters estimated) instead of the within-treatments residual.
- **x** to refer to the linear predictor η in the current iteration.
- y to refer to the observed (possibly transformed) response y'.

7.7 Start value for non-linear parameters

For most models, these values do not really play a role and hence are fixed at 0 and 1, respectively. However, for some models, you cannot fully specify the inverse link function without the use of additional non-linear parameters. Examples of such parameters are the upper and lower asymptote in

56

4-parameter sigmoid models, or the rate of natural mortality in probit analysis. The non-linear parameter for addition can be thought of as the lower asymptote and the non-linear parameter for multiplication can be thought of as the difference between the upper and lower asymptote. The use of the terms non-linear addition and non-linear multiplication are more general than the term asymptote because not all regression models calling for non-linear parameters have asymptotes. When non-linear parameters are used, they are multiplied and added to the inverse link function. If they are not kept fixed, an improved estimate of these parameters is made after each iteration. If they are not specified, CombiStats will initialize the addition at the minimum observed response, and the multiplication at the difference between the maximum and minimum response.

7.8 Effective dose

The effective dose is generally abbreviated to ED followed by a percentage, usually the ED50. It will give you the amount of doses in your test sample capable of inducing the response you specify. For example, if a dose of 2IU is estimated to induce a positive response in 50 per cent of the experimental units and your test sample contains 1000IU/vial, the ED50/vial is 500. It means that the vial is estimated to contain 500 doses to induce a response in 50 per cent of the experimental units. In the case of a 4-parameter logistic curve model, the ED50 will give you the point of inflexion of the sigmoid curve, translated to the number of doses contained in the test sample to induce the response at the point of inflexion.

By default, the percentage option is checked. 0 per cent will then correspond to the dose inducing a response of d, where d is the non-linear parameter for addition (usually the lower asymptote) and 100 per cent will correspond to the dose inducing a response of d+a, where a is the non-linear parameter for multiplication, d+a usually being the upper asymptote.

If the percentage option is unchecked, the effective dose is taken as such. For example, it might be a very specific absorbance level you are interested in, or a very specific diameter of an inhibition zone. In this case, the software returns the dose that induces a specific response after the a priori transformation. For example, if you used a logarithmic transformation of the response level, you should also specify the log-transformed level of response. You cannot use notation like log(1.5), but you have to calculate that level of response yourself, in this case 0.1761.

If the inverse option is checked, the result will be expressed with the units inverted. In the above example, you would get 2 IU/ED50 instead of 500 ED50/vial.

7.9 Minimum and maximum number of iterations

In some cases, it may be desirable to put a maximum on the number of iterations. By default, no value is specified, which makes CombiStats carry out a practically unlimited amount of $2^{31} - 1 = 2147483647$ iterations. It is always possible to interrupt the iterations by pressing the BREAK key (or SHIFT + ESC), but if you want CombiStats to stop iterating at a well defined maximum, you can specify a number.

It can also occur that you want to force CombiStats to carry out a fixed minimum number of iterations, even if convergence has been reached at earlier iterations. An example would be a weighting function depending on the number of iterations like w=(i<100)+(i>=100)*(abs(e)<0.2), which performs 100 unweighted iterations, but rejects values with a residual error of more than 0.2 after 100 iterations.

7.10 Expressions

Expressions can contain the standard arithmetic operators such as multiplication (*), division (/), addition (+), subtraction (-) and exponentiation $(^)$. In addition, you can use comparison operators, which evaluate to either 0, if the comparison is false, or to 1 if the comparison is true. The following comparison operators are available:

- > (greater than).
- < (less than).
- >= (greater than or equal to).
- <= (less than or equal to).
- = (equal to).
- <> (not equal to).

The normal priority rules apply to the arithmetic operators. The comparison operators have lower priority than any of the arithmetic operators and are evaluated from left to right in case of equal priority. For example: The expression 2+3<4*5<>0 is interpreted as ((2+3)<(4*5))<>0 and evaluates to 1. Use parentheses to overrule the priority rules. The constant π is available as the keyword pi. For example, $pi*y^2$.

The following functions are available. They are always followed by one argument between parentheses, which itself may again be a valid expression, e.g. sqrt(abs(x)).

abs The absolute value
$$x = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$
.

acs The arc cosine.

ang The angular distribution
$$F(x) = \begin{cases} 0 & \text{if } x < -\frac{\pi}{2} \\ \frac{1}{2} + \frac{1}{2}\sin x & \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 1 & \text{if } x > \frac{\pi}{2} \end{cases}$$

angder The first derivative of the angular distribution $F'(x) = \begin{cases} 0 & \text{if } x < -\frac{\pi}{2} \\ \frac{1}{2}\cos x & \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0 & \text{if } x > \frac{\pi}{2} \end{cases}$

anginv	The	inverse	of	the	angular	distribution.

asn The arc sine.

atn The arc tangent.

cos The cosine.

exp The natural antilogarithm.

gmp The gompertz distribution $F(x) = 1 - e^{-e^x}$.

gmpder The first derivative of the gompertz distribution $F'(x) = e^{x-e^x}$.

gmpinv The inverse of the gompertz distribution, also known as the gompit .

lgt The logistic distribution $F(x) = \frac{1}{1+e^{-x}}$.

lgtder The first derivative of the logistic distribution $F'(x) = \frac{e^{-x}}{(1+e^{-x})^2}$.

lgtinv The inverse of the logistic distribution, also known as the logit .

In The natural logarithm¹ \log_e .

log The logarithm to base 10.

phi The standard normal distribution $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$.

phider The first derivative of the standard normal distribution $F'(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

¹The notation of logarithms is a notorious source of confusion. Mathematicians use "log" to denote the natural logarithm whereas in many other scientific disciplines the natural logarithm is written as "ln". To avoid confusion in this manual, we have adopted the convention that the natural logarithm is written as "log_e". The logarithm to base 10 is written as "log" or "log₁₀". The notation "ln" is not used in this manual, but a function "ln" can be used in CombiStats expressions.

phiinv The inverse of the standard normal distribution, also known as the normit or probit .

$$\operatorname{rec} \qquad \text{The rectangular distribution } F(x) = \begin{cases} 0 & \text{if } x < -\frac{1}{2} \\ \frac{1}{2} + x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 1 & \text{if } x > \frac{1}{2} \end{cases}$$

recder

The first derivative of the rectangular distribution $\begin{cases}
0 & \text{if } x < -\frac{1}{2} \\
1 & \text{if } x < -\frac{1}{2}
\end{cases}$

$$F'(x) = \begin{cases} 1 & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 0 & \text{if } x > \frac{1}{2} \end{cases} .$$

recinv The inverse of the rectangular distribution.

- sin The sine.
- sqrt The square root.

tan The tangent.

To avoid computer overflow, the following bounds are used for distribution functions F and their first derivatives F':

- $F(x) \ge 10^{-14}$.
- $F(x) \le 1 10^{-14}$.
- $F'(x) \ge 10^{-14}$.

Chapter 8

Computational details

8.1 Computational details

This chapter describes in detail the computational procedures that Combi-Stats uses to perform the calculations. Let p denote the number of preparations (=number of tables), q the number of doses per preparation and rthe number of replicates per preparation. CombiStats collects the data from the tables in a design matrix \mathbf{X} and an observation vector \mathbf{y}' . The number of rows of **X** and \mathbf{y}' is equal to pqr. The number of columns of **X** is equal to p + 1 + r + pq. If an observation is missing (i.e. cell is empty) or if it is excluded (i.e. barred), the corresponding row of \mathbf{X} is filled with 0's as well as the corresponding row of \mathbf{y}' . For each observation, the first p columns contain only 0's except the column that relates to the corresponding sample, which is set to 1 if $\lambda = 0$, or to dose^{λ} if $\lambda > 0$. Column p + 1 contains $\log_e(\text{dose})$ if $\lambda = 0$, or 1 if $\lambda > 0$. The next r columns contain only 0's except the column that relates to a specific block effect (of the replications), which is set to 1. The last pq columns contain only 0's except the column that relates to a specific block effect (row or column in Latin squares). It should be noted that all observations are considered to belong to the same block (the first), in case of a completely randomised design, and that a similar statement holds true for randomised block designs. Hence, the last r + pqcolumns are only fully used in case of a (Latin) square design. The vector \mathbf{y}' is filled with the observations after applying the selected transformation (i.e. $\mathbf{y}' = f(\mathbf{y}, \mathbf{z})$, where f denotes the transformation, y the value before the slash, and \mathbf{z} the optional part after the slash). A vector of linear predictors η , with the same size as \mathbf{y}' , is initialised with only 0's.

The iterations start here. A vector μ of non-linear predictors is calculated as $\mu = d + ah(\eta)$, a vector ζ is calculated as $ah'(\eta)$ where h denotes the inverse link function, h' its first derivative and d and a the non-linear parameters for addition and multiplication respectively. A vector \mathbf{Y} of linearized responses is calculated as $\mathbf{Y} = \eta + (\mathbf{y}' - \mu)\zeta^{-1}$. A diagonal matrix \mathbf{W}^* of weights is constructed on the basis of the specified weight function w. A diagonal matrix \mathbf{W} is calculated with $\mathbf{W}^* \zeta^2$ on the diagonal. Negative weights are set to 0 in both matrices.

When \mathbf{X} , \mathbf{W} , and \mathbf{Y} are constructed, CombiStats continues with the following steps:

- Calculation of the cross product **X^tWX**, where **X^t** denotes the transposed matrix **X**.
- Calculation of the covariance matrix $(\mathbf{X}^{t}\mathbf{W}\mathbf{X})^{-}$, where denotes the generalized inverse matrix that contains 0's in rows, which are linearly dependent of the preceding set of rows, and similarly for the columns.
- Calculation of the vector of parameter estimates $\mathbf{b} = (\mathbf{X}^{t}\mathbf{W}\mathbf{X})^{-}(\mathbf{X}^{t}\mathbf{W}\mathbf{Y}).$
- Calculation of a new vector of linear predictors $\eta = \mathbf{X}\mathbf{b}$. If a and/or d are not fixed, new values are calculated by performing a suitable regression using weight \mathbf{W}^* .

The iterations are repeated until $\max_i \frac{|\eta_i - \eta_i^*|}{|\eta_i| + 10^{-6}} < 10^{-8}$, where η_i^* denotes η_i of the preceding cycle.

For each test sample T, the potency m relative to the standard S is calculated as $\mathbf{b}_T \mathbf{b}_S^{-1}$ if $\lambda > 0$ and as $(\mathbf{b}_T - \mathbf{b}_S)\mathbf{b}_{p+1}^{-1}$ if $\lambda = 0$, where \mathbf{b}_S and \mathbf{b}_T denote the parameter estimates that relate to the standard and the test preparation respectively, and \mathbf{b}_{p+1} denotes the parameter estimate that relates to the common parameter.

In the case of EDxx determinations, m is calculated as $(h^{-1}(\mathbf{xx}) - \mathbf{b}_{p+1}) \mathbf{b}_T^{-1}$ if $\lambda > 0$ and as $(h^{-1}(\mathbf{xx}) - \mathbf{b}_T) \mathbf{b}_{p+1}^{-1}$ if $\lambda = 0$. The relative confidence limits m_L and m_U are calculated using Fieller's theorem:

$$m_L, m_U = \left[m - \frac{gv_{12}}{v_{22}} \pm \frac{ts}{b}\sqrt{v_{11} - 2mv_{12} + m^2v_{22} - g\left(v_{11} - \frac{v_{12}^2}{v_{22}}\right)}\right] \div (1-g)$$

where b is the denominator used in the calculation of m, s is the square root of the selected variance, t is Student's two-sided value (p=0.95) for the number of degrees of freedom of the selected variance $(\infty \text{ if theoretical}), v_{11}, v_{22}$ and v_{12} are the variance multipliers of the numerator in the calculation of m, the denominator and their covariance multiplier, and $g = t^2 s^2 v_{22} b^{-2}$. The estimated potency is now found as $\sqrt[3]{m}$ if $\lambda > 0$ and as e^m if $\lambda = 0$. Similar so for the confidence limits.

For the analysis of variance, the design matrix \mathbf{X} , the final diagonal matrix \mathbf{W} and the linearized responses \mathbf{Y} are now treated as a classical weighted general linear model on which the linear hypotheses are tested. No additional iterations are carried out. The non-linear parameters a and d are, a posteriori, considered to be known and fixed and do no longer play a role

62

in the analysis. The hat-matrix is calculated as $\mathbf{W}^{1/2}\mathbf{X}(\mathbf{X}^{t}\mathbf{W}\mathbf{X})^{-}\mathbf{X}^{t}\mathbf{W}^{1/2}$. The analysis of variance is constructed as follows: For each of the hypotheses to be tested, an appropriate design matrix \mathbf{X} and a hypothesis matrix \mathbf{L} is constructed. The number of columns of \mathbf{L} is equal to the number of parameters fitted, and the number of rows of \mathbf{L} is equal to the number of degrees of freedom of the hypothesis. The sum of squares is then calculated as $SS = (\mathbf{L}\mathbf{b})^{t}(\mathbf{L}(\mathbf{X}^{t}\mathbf{W}\mathbf{X})^{-}\mathbf{L}^{t})^{-}(\mathbf{L}\mathbf{b})$ where $\mathbf{b} = (\mathbf{X}^{t}\mathbf{W}\mathbf{X})^{-}(\mathbf{X}^{t}\mathbf{W}\mathbf{Y})$ and \mathbf{W} is the final diagonal matrix as calculated above (the transformation is supposed to be fixed, so that \mathbf{W} and \mathbf{Y} are taken as they appeared in the final cycle. No new cycles are performed).

Seven types of matrices are constructed. Each matrix also takes account of the block constraints in the last r + pq columns:

- 1. $\mathbf{X}_{\text{fixed}}$: Assuming linear and parallel (if $\lambda = 0$) or intersecting (if $\lambda > 0$) lines with a specified fixed common slope or intercept. This matrix has p + r + pq columns and is used to test for deviations from the common parameter.
- 2. \mathbf{X}_{model} : Assuming linear and parallel (if $\lambda = 0$) or intersecting (if $\lambda > 0$) lines. This matrix has p + 1 + r + pq columns and is used to test for regression and deviations from model assumptions. It is identical to the matrix used above.
- 3. \mathbf{X}_{lin} : Assuming linear, but not necessarily parallel or intersecting lines. This matrix has 2p + r + pq columns and is used to test for non-parallelism or intersection.
- 4. \mathbf{X}_{quad} : Assuming a common quadratic curvature. This matrix has 2p + 1 + r + pq columns and is used to test for quadratic curvature.
- 5. \mathbf{X}_{prep} : Assuming a dose independent response per sample. This matrix has p + r + pq columns and is used to test for differences between preparations.
- 6. \mathbf{X}_{blank} : Assuming intersecting linear lines, allowing for an extra parameter for the blanks. This matrix has p + 2 + r + pq columns and is used to test for blanks.
- 7. \mathbf{X}_{full} : Assuming a full factorial model. This matrix has pq + 1 + r + pq columns and is used to test for linearity, treatments, blocks, columns and the full factorial hypothesis.

The hypothesis matrices are in general constructed in such a way that the column of the first estimable parameter of interest is set to 1 and the other columns are set in such a way as to express a meaningful hypothesis. For

example, to test for parallelism in an assay with 1 standard and 2 test samples, the hypothesis matrix would be constructed as:

$$L = \begin{bmatrix} 0 & 0 & 0 & 1 & -1 & 0 & \dots \\ 0 & 0 & 0 & 1 & 0 & -1 & \dots \end{bmatrix}$$

where the first 3 columns relate to the 3 intercepts (unimportant for the test), the next 3 columns relate to the 3 slopes (these are the parameters of interest) and the subsequent columns relate to the block effects (unimportant for the test, so they are all set to 0). The matrix expresses the simultaneous hypothesis that $\mathbf{b}_S - \mathbf{b}_T = 0$ and $\mathbf{b}_S - \mathbf{b}_U = 0$. It should be noted that the test for linearity is constructed from the distance between 3 doses where the first 2 doses are taken to be fixed. For example, to test for linearity of one sample with 4 equally spaced doses, the hypothesis matrix would be constructed as:

$$L = \begin{vmatrix} -1 & 2 & -1 & 0 & \cdots \\ -2 & 3 & 0 & -1 & \cdots \end{vmatrix}$$

where the first 4 columns relate to the treatments (the parameters of interest) and the remaining columns relate to the block effects (unimportant for the test, so set to 0). The matrix expresses the simultaneous hypothesis that $-d_1 + 2d_2 - d_3 = 0$ and $-2d_1 + 3d_2 - d_4 = 0$.

Equivalence statistics are based on \mathbf{X}_{lin} . For models with $\lambda = 0$, let \mathbf{b}_T denote the slope of any preparation and v_{22} its variance multiplier. The equivalence limits of the individual slopes are then calculated as $\mathbf{b}_T \pm ts \sqrt{v_{22}}$, where s is the square root of the selected variance and t is Student's twosided value (p = 0.90) for the number of degrees of freedom of the selected variance (∞ if theoretical). If a standard is included, let \mathbf{b}_S denote the slope of the standard, v_{11} its variance multiplier and v_{12} the covariance multiplier, then the equivalence limits of the difference between slopes is calculated as $\mathbf{b}_T - \mathbf{b}_S \pm ts\sqrt{v_{11} + v_{22} - 2v_{12}}$. The equivalence limits of the ratio of slopes is calculated with Fieller's theorem (see above) with $m = \frac{\mathbf{b}_T}{\mathbf{b}_S}$ and $b = \mathbf{b}_S$. For models with $\lambda > 0$, the intercepts are used instead of the slopes but the equations are the same. No ratio between intercepts is calculated because this has no meaningful interpretation. It should be noted that equivalence limits use the 2-sided probability level p = 0.90 instead of p = 0.95 as is used for the confidence limits of potency. This is because equivalence tests are intended to be used as 1-sided tests.

Chapter 9

Preferences

9.1 Introduction

You can configure several aspects of the global behaviour of CombiStats through the 'Preferences' dialogue box (see figure 9.1). You can access the preferences via the menu $Options \triangleright Advanced \triangleright Preferences$. You can modify the location of your licence authorisation file, the location of your library of templates, the default Internet address of the CombiStats website, several features required in some quality controlled environments and miscellaneous other options.

9.2 Location of passwords

By default, the file with information about your CombiStats licence is located in the program directory. If your organisation owns multiple licences, you may find it cumbersome to have to enter the licence details such as expiry date, contact person and password on each individual computer. Even though you are not allowed to install the CombiStats program on a central server, you are allowed to store the licence details on a server, provided this file is only accessed from within your organisation. You can do this by moving the file 'Authorisation' from the program directory to a location of your choice on a server. Typically you would make the file read-only for all users except personnel responsible for updating the licence details. After moving the file you have to tell CombiStats where to find it. You do this by browsing to the new location of the passwords via the preferences dialogue box. You have to do this only once on each computer.

9.3 Location of library of templates

Similar to the location of passwords, you may find it undesirable that individual users have to maintain their own library of templates. Instead, you

🖉 Preferences 📃				
Locations				
Location of passwords: C:\Program Files (x86)\CombiStats60\Authorisat Browse				
Location of library: C:\Program F	C:\Program Files (x86)\CombiStats60\Templates Browse			
URL of CombiStats site: http://combis	tats.edqm.eu/			
QA controls				
Maximum length of path of filename printed on each page:				
Print file size on each page Print file hash on each page (RIPEMD-160)				
Use of colours in designs				
C Never use colours	 Open files in read/write mode (Lv. 1) 			
Only in plate design	C Open files in read-only mode (Lv. 4)			
C In all tables	Password:			
Use of colours on graphical devices	Miscellaneous			
 Only on screen 	✓ Show message for slow convergence			
C On screen and printer	✓ Enable UND0 functionality			
	<u>D</u> K			

Figure 9.1: The 'Preferences' dialogue box

can instruct CombiStats to look for the library on a central server. Typically you would make that location read-only for all users except those who are responsible for maintaining the library. If, in addition, you make sure that the templates to which the library links are located on a read-only location, you can be sure that nobody can accidentally alter a template and you can be sure that everybody is always using the same and most recent version of any given template.

It should be noted that this does not prevent users from modifying a template once it is loaded into CombiStats, unless you use password protection of the data sheet as described in sections 6.6 and 9.11.

9.4 The official CombiStats website

Although the EDQM has no intention to change the internet address of the official CombiStats website, it cannot be excluded that this will never happen. If it should happen, you can change the URL of the CombiStats website via the Preferences. CombiStats will open this address in your default browser whenever you click on \bigcirc or the menu Help \triangleright Internet Homepage or the shortcut CTRL+I.

9.5 Print file name on each page

You can instruct CombiStats to print the file name at the bottom of each page of the output. This way, it is easier to locate the original file on the basis of archived print-outs. The number you put in the preferences indicates the maximum path length you want to appear. Valid numbers are:

-1	Print	full	path.
-1	Print	tull	path

0 Print nothing.

1 Print file name only.

>1 Print file name and parent directories up to the specified path length.

9.6 Print file size on each page

You can instruct CombiStats to print the file size in bytes on each page of the output by checking this option in the preferences. It should be noted that the possibility exists that the output is printed after modifications were made to the data without saving these modifications. In that case, it is impossible for CombiStats to determine the file size and it will issue a warning that the file size will not be printed, giving you the option to cancel the print command so you can save the file first. If you ignore the warning and print the output without saving, CombiStats will print the following message at the bottom of each page: "Document was printed without saving modifications to disk."

9.7 Print hash code of the file on each page

You can also instruct CombiStats to print a hash code on each page. The hash code serves as a 'fingerprint' of the file. Even the smallest modification to the file will result in a different hash code. It is therefore a very reliable way to determine whether a file has not been altered after it was printed. CombiStats uses a publicly available algorithm known as RIPEMD-160. To check whether the hash code of a given CombiStats file is the same as the hash code printed on a page, simply open the file in CombiStats and click on the menu File>Hash RIPEMD-160 or use the shortcut CTRL+H. Alternatively you can use third party software to generate the hash code without having to open it in CombiStats. Suitable programs are abundantly available from the Internet.

CombiStats generates a warning if you attempt to print the output without first saving modifications to disk, giving you the option to cancel the print command or print the file without hash code.

9.8 Title 21 CFR Part 11

Title 21 CFR Part 11 defines the criteria under which electronic records and electronic signatures are considered to be trustworthy, reliable and equivalent to paper records. In case you want to send electronic records to regulators, such as the FDA, you have to comply with Part 11 of the Code of Federal Regulations of the United States of America. Inspectors, accreditors and auditors, on other markets, may also require that you comply with this rule. CombiStats offers the required technical controls of a compliant system. However, it should be noted that Part 11 requires both procedural controls (i.e. notification, training, SOPs, administration) and administrative controls to be put in place by the user, in addition to the technical controls that CombiStats can offer.

One of the easiest and most universally applicable ways to comply with Part 11 is to use third party software such as Acrobat Distiller to transform the CombiStats output to Portable Document Format (PDF) and to apply your certified digital signature to the document using the Adobe product suite. A popular standard in the bio-pharmaceutical industry is Signatures and Authentication For Everyone (SAFE). This standard is supported by Adobe Acrobat and certified digital signatures can be acquired from SAFE BioPharma and other vendors.

In practice, you will probably not only archive the (digitally signed) PDF version of the computer output, but also the original CombiStats file (the master-file), and perhaps also a paper version. The link between the PDF version, the paper version, and the master-file is made by the file name, the file size and the hash code printed on each page. See sections 9.5 to 9.7 for more details. An example of a hybrid configuration (i.e. a system in which both electronic versions and paper versions are used) is illustrated in figure 9.2.

9.9 Use of colours in designs

CombiStats offers the possibility to display designs with colours as a visual aid to assess the position of preparations in the layout. Up to a maximum of 12 preparations can be distinguished this way. Additional preparations will be shaded in grey, as well as the cells containing labels instead of references. The use of colours can be extended to all tables, be limited to the design only, or be completely disabled. Furthermore, it is possible to enable or disable the use of colours independently for screen and printer.

Figure 9.2: Three document formats in a Part 11 compliant configuration

9.10 Miscellaneous other preferences

For non-linear models, convergence is not guaranteed or convergence may be very slow. By default, a message is displayed after 1000 iterations, informing the user of possible reasons for slow convergence. This message can be disabled in the preferences.

The 'Undo' functionality, which can be accessed via the button \clubsuit , the menu Edit \triangleright Undo or the shortcut CTRL+Z, are enabled by default. However, on some (older) computers, this functionality can noticeably slow down responsiveness of the software during data entry. If this happens to be the case on your computer, you can disable the 'Undo' functionality in the preferences to improve speed of data entry.

9.11 Protection of version 4.0 and earlier files

Data sheets and templates created with older versions of CombiStats are, by default, opened in unprotected mode, because these files contain no information on data sheet protection. However, you can force CombiStats to open these files in read-only mode (level 4 protection) by ticking the corresponding box in the preferences and optionally specify a password. If you place the preferences in a read-only location for your users, you can be sure that they cannot alter the preferences and can only remove the protection from legacy files using the default password you specified in the preferences.

Appendix A

Examples

This appendix provides a large set of examples, which can be used to validate the software in your hardware configuration or as inspiration to create your own templates. They break down into three categories:

- Section A.1 contains all examples published in the European Pharmacopoeia, chapter 5.3 'Statistical Analysis of Results of Biological Assays and Tests'.
- Section A.2 contains almost all numerical examples given by D.J. Finney in his standard work 'Statistical Method in Biological Assay, 3rd Edition, Griffin, London (1978)'.
- Section A.3 contains an additional multitude of examples taken from practice or to illustrate different approaches and configurations.

The examples are not primarily intended to illustrate how a specific type of assay or substance should be analysed. Indeed, some types of assays may be obsolete or alternative statistical approaches may have come into use. Instead, the examples are intended to provide a source of inspiration of how templates can be configured to accommodate different types of data and models.

All examples are installed on the hard-disk of your computer and can be accessed by clicking on the button \widehat{V} depicting a light bulb.
A.1 Examples from the European PharmacopoeiaA.1.1 Example 5.1.1. (Including all samples)

Project \	alidation C	ombiState ver	tion 7.0	Remark	s: Including	alln	reparation	19				 *		× v
Assav E	xample 5.1	.1 from the Ph	Eur.	rtemant	s. morading	un p	reparation					*		*
, 100d y 1	skampie er i											7	* *	*
	Standard			Sample '	I]		Sample	2					
ld.	S		ld.	T		-	ld.	U						
Ass. pot.	1 unit/mg		Ass. pot.	1 unit/mg		_	Ass. pot.	1 unit/m	Ig					
Doses	0.25 unit	1.0 unit	Doses	0.25 uni	1.0 unit	_	Doses	0.25 ur	nit 1	.0 unit				
(1)	300	289	(1)	310	230	_	(1)	250		236				
(2)	310	221	(2)	290	210	-	(2)	268		213				
(3)	330	267	(3)	360	280	-	(3)	273		283				
(4)	290	236	(4)	341	261	-	(4)	240		269				
(5)	364	250	(5)	321	241	4	(5)	307		251				
(6)	328	231	(6)	370	290	4	(6)	270		294				
(7)	390	229	(7)	303	223	4	(7)	317		223				
(8)	360	269	(8)	334	254	-	(8)	312		250				
(9)	342	233	(9)	295	216	_	(9)	320		216				
(10)	306	259	(10)	315	235		(10)	265		265				
Transform /ariance: (ation: y' = y Observed re	esiduals		1										
Source	of variation	Degrees	of freedom	Sum o	f squares	Me	an square	e F-ra	itio	Proba	bility			
Preparatio	ns		2	6256	6.63	3	128.32	4.0	86	0.022	(*)			
Regressio	n		1	63830).8	63	830.8	83.3	77	0.000	(***)			
Non-paral	elism		2	8218	3.23	4	109.12	5.3	67	0.007	(**)			
Treatment	s		5	78305	5.7	15	661.1	20.4	57	0.000	(***)			
Residual e	rror		54	41340).9		765.572							
Iotal			59	119647	, 	2	027.91							
		Comple 1					Compl	• •						
Id		т			4		Sampi	11						
(unit/ma)	Lowerl	imit Estimat	a Unner lir	nit (unit/ma)	10	ver limit	Estimate	Lin	ner limit				
Potency	0 7836	48 1 1420	5 1 6869		otency	1	14813	1 66889	2	55503				
Rel to Ass	78.49	6 114 2%	168 79		el to Ass	1	14.8%	166.9%	2	55.5%				
Rel. to Est	. 68.69	6 100.0%	147.79		Rel. to Est.	6	68.8%	100.0%	1	53.1%				
All san	nples	Standa S	ırd	Sam	ple 1 T		Sampl U	e 2						
Executed b	ıy:		Calculated by	:		Ap	pproved by	<i>I</i> :						

A.1.2 Example 5.1.1. (Excluding sample U)

73

A.1.3 Example 5.1.2.

(E) (F) 171 194 170 192			* * *
(E) (F) 171 194 170 192]		^ * ^
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
 (E) (F) 171 194 170 192]		
 (E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
(E) (F) 171 194 170 192]		
171 194 170 192	1		
170 192	I		
	1		
193 151]		
163 171	1		
154 151			
198 182]		
an square	F-ratio	Probability	
1.1111	0.535	0.473	
5.04	408.108	0.000 (***)	
2 73611	0.885	0.358	
0.0277778	0.001	0.971	
5.44444	0.262	0.614	
2.00	81.958	0.000 (***)	
2.4000	3.968	0.012 (*)	
3.7333	2.106	0.107	
0.7667			
			J
3.029			
3.029			
3.029			
3.029			
3.029			
3.029			
nr re an 1.1 5.0 2.7 2.0 2.4 3.7	non slope lation r : 1111 14 3750 73611 0277778 14444 1000 7333	square F-ratio 1111 0.535 14ion r : 0.976750 3750 0.885 3751 0.132 0277778 0.001 14444 0.262 00 81.958 4000 3.968 3333 2.106	square F-ratio Probability 1111 0.535 0.473 144 0.885 0.358 3750 0.885 0.358 3751 0.132 0.877 1277778 0.001 0.971 14444 0.262 0.614 100 3.968 0.002 (***) 333 2.106 0.107 ***

A.1.4 Example 5.1.3.

Project Valio	lation Co	mbiSta	ats ver	rsion 7.0	ן ך	Remarks:] ★
Assay Exa	mple 5.1.	3 from	the P	h. Eur.	- '								' ★ , _•
					-								* * *
14	Standa	rd		_	1.1	5	Sample	1					
Id.	S 670 II	1000			Id.	not	1	ILLArial					
Ass. pol. Reconsitution	16.7 m	////ig ng/25m	1		ASS.	pol.	20000	10/viai 10 ml					
Pre-dilution	1 ml/4	0 ml			Pre-	dilution	1 ml/4	0 ml	_				
Doses	S1	S2	S3	S4	Dose	es	T1	T2 T3	T4				
(1)	252	207	168	113		(1)	242	206 146	115				
(2)	249	201	187	107		(2)	236	197 153	102				
(3)	247	193	162	111		(3)	246	197 148	104				
(4)	250	207	155	108	<u> </u>	(4)	231	191 159	106				
(5)	235	207	140	98		(5)	232	186 146	95				
											055 (44		100.000
viouei: Paralle	n IINES	look								sope(ractor) = -11°	.255 (-11	o.012 to -	100.898)
Design: Rand	omised b	IOCK						Co	orrelation	n r : 0.991424			
Varianasu Ob	11: y = y	nidual-											
Variance: Obs	erved re	siduais											
ununon step (ncreasif	y). 1.5											
Source of	variation		oaroo	e of from	hom	Sum of a	quaree	Moor	equero	E_rotio	Proh	ability	1
Prenarations	variatiON		egiee	1		632 0	<u>quares</u> 25	632	025	11 722	0.002	(**)	
Regression		-		1		101746		101746		>1000	0,000	(***)	
Non-parallelis	m			1		25.2	050	25	2050	0.467	0.500	\ /	
Non-linearity				4		259.1	40	64.	.7850	1.202	0.332		1
Standard				2		238.1	40	119.	070	2.208	0.129		
Sample 1				2		21.0	000	10.	5000	0.195	0.824		
Treatments				7		102662		14666	.0	272.015	0.000	(***)	
Blocks		_		4		876.7	50	219.	.188	4.065	0.010	(*)	
Residual erro	r	_		28		1509.6	5	53.	.9161				
Total				39		105048		2693	.55]
						_							
	S	ample	1			_							
ld.			T										
(IU/vial)	Lower li	nit E	stima	te Upp	er lim	iit							
Potency	18423.	4 1	9228	.5 20	075.2	_							
Rel. to Ass.	92.1%		96.1%	6 10 V 10	0.4%	-							
rtei. to Est.	95.8%	1	100.0%	/0 10	4.4%								
All '			04			0		1					
All sample	:5	'	ວtand S	aru		Sample T	; 1						
N.		1.				X							
		$ \rangle$	\										
N			X			/							
1			$\langle \rangle$./							
N.			/	Ň			,						
							\						
	\ .						- \						
	N			N)						
		L]					
				Calculate	ed by:			Annro	ved bv:				
Executed by:									VILLAN LIV.				
Executed by:				oulouluk	<i></i>								
Executed by:				ouloulut	<i></i>								

A.1.5 Example 5.1.4.

A.1.6 Example 5.2.1.

A.1.7 Example 5.2.2.

<i>lambⁱstats</i> Ver	sion 7.0. F	riday, 15 O	ctober 202	21, 12	:00:00 [+01:00]. Pa	ge 1	1 of 1					*	* * *	*
Project Valia	dation Com	hiState ve	sion 7 0	a	Remarks								*		*
Assav Exa	mple 5.2.2	from the P	h. Eur.	Ľ									*		*
	mpic 0.2.2	inoin the r												* * *	
St	andard			Sa	mnle 1		Γ	Sa	mple 2						
ld.	S		ld.	- 00	T		ŀ	ld.	U						
Ass. pot.	39 µa HA/	/ml	Ass. pot		15 ua H	A/dose	t	Ass. pot.	- 15 µa HA	Vdose					
Doses	(1)	(2)	Doses		(1)	(2)	F	Doses	(1)	(2)					
7.5 µg HA	18.0	18.0	7.5 µg	HA	15.1	16.8	ŀ	7.5 µg HA	15.4	15.7					
15.0 µg HA	22.8	24.5	15.0 µg	HA	23.1	24.2	Ē	15.0 µg HA	20.2	18.6					
22.5 µg HA	30.4	30.4	22.5 µg	HA	28.9	27.4	ſ	22.5 µg HA	24.2	23.1					
30.0 µg HA	35.7	36.6	30.0 µg	HA	34.4	37.8		30.0 µg HA	27.4	27.0					
Model: Slope Design: Comp Transformatic Variance: Obs	ratio pletely rand on: y' = y served resi	domised iduals						Common in Correlation	tercept = r : 0.99	11.0417 0326	(10.120	8 to 11.9626	3)		
		-													
Source of	variation	Degree	s of freedo	om	Sum	of squares		Mean s	quare	F-1	atio	Probab	ility		
Regression		_	3		1087	.67		362.555		339	.498	0.000	(***)		
Intersection		+	2	+	3	47389		1.736	94		.626	0.237			
Non-linearity		+	2		5.	UCCOU.		0.844	200		200	0.94			
Sample 1		+	2	+		45350		2 226	75		085	0.014			
Sample 2			2			166000		0.083	0000		078	0.107			
Treatments			11		1096	20		99.655	0000	93	317	0.000	(***)		
Residual erro	r		12		12	.8150		1.067	92			0.000	()		
Total	-		23		1109.	02		48.218	2						
ld.	Sa	ample 1 T				ld.		Sampl	e 2 U						
(µg HA/dose)	Lower I	imit Estir	nate Up	per lir	nit	(µg HA/dos	ie)	Lower limit	Estimat	e Uppe	er limit				
Potency	13.368	81 14.2	920 1	5.271	1	Potency		8.85416	9.7294	8 10.	6088				
Rel. to Ass.	89.1%	% 95.	3% 1	01.8%	6	Rel. to Ass.		59.0%	64.9%	70	.7%				
Rel. to Est.	93.5%	% 100	.0% 1	06.9%	6	Rel. to Est.		91.0%	100.0%	6 109	9.0%				
All sample	es	Stand S	Calculated	l by:	Samr	ole 1	Ap	Sample 2	/						
Filename:V	107 PhEu	r Ex 522 SI	ope Ratio.	.epa. I	ID: EDG	M/DBO/FR	A								

A.1.8 Example 5.3.1. (Probits)

A.1.9 Example 5.3.2. (Logits)

Project V Assay E	alidation Comb xample 5.3.2 fr	iStats version rom the Ph. Eu	7.0 R r.	emarks: Using the le	ogit curve.		*
							* *
Sta	ndard	Sa	mple 1				
Id.	S	ld.	Т	_			
Ass. pot.	132 IU/vial	Ass. pot.	140 IU/via				
Doses	(1)	Doses	(1)				
1.0 IU	0/12	1.0 IU	0/11				
1.6 IU	3/12	1.6 IU	4/12	_			
2.5 IU	6/12	2.5 IU	8/11	_			
4.0 IU	10/11	4.0 IU	10/11				
Model: Our	antal racpance				Common clone/facto	x) - 4 10142 (2 70020	to 5 41449)
Nouel. Qua	moletely rando	mised			Correlation Lr I: 0.96	01) = 4.10143 (2.70030 (1543 (Weighted)	0 10 5.4 1440)
Transforma	tion: v' = logit(v)			Coneiation [1]. 0.30	(Weighted)	
Theoretical	variance: 1	,					
Source	of variation	Degrees of f	reedom	Sum of squares	Mean square	Chi-square	Probability
Preparation	ns	1		0.0407131	0.0407131	0.0407131	0.840
Regressior	۱ <u> </u>	1		26.3975	26.3975	26.3975	0.000 (***)
Non-parall	elism	1		0.00662306	0.00662306	0.00662306	0.935
Non-lineari	ty	4		2.15046	0.537614	2.15046	0.708
Standa	rd	2		1.09388	0.546940	1.09388	0.579
Sample	e 1	2		1.05658	0.528288	1.05658	0.590
Theoretica) Lyorianoo	7		28.5953	4.08504	28.5953	0.000 (***)
Total	variance	7		28 5053	1.00000		
ld. (IU/vial) Potency	Lower limit 121.131	T Estimate 162.859	Upper limit 221.106	-			
Rel. to Ass	. 86.5%	116.3%	157.9%				
Rel. to Est.	74.4%	100.0%	135.8%]			
All sam	ples	Standard S		Sample 1 T			
			/				
Executed b	y:	Calcu	ulated by:		Approved by:		

A.1.10 Example 5.3.2. (Gompits)

A.1.11 Example 5.3.2. (Angles)

Project Vali	dation Comb	iStats versio	n 7.0 R	emarks: Using the a	ngle curve.		→
Assav Exa	mple 5.3.2 fr	om the Ph. E	irr.				┘ ★
/ 10003 12/10							* * *
Stand	lard	S	ample 1				
ld. S		ld.	Т				
Ass. pot. 13	32 IU/vial	Ass. pot.	140 IU/via	_			
Doses	(1)	Doses	(1)				
1.0 10	3/12	1.0 10	0/11	_			
2.5 IU	6/12	2.5 IU	8/11	_			
4.0 IU	10/11	4.0 IU	10/11				
]			
Model: Quan	tal responses	3			Common slope(factor)	= 1.71688 (1.38077 to 2	2.05299)
Design: Com	, pletely rando	mised			Correlation r : 0.9896	63 (Weighted)	
Transformati	on: y' = angle	(y)					
Theoretical v	ariance: 1						
Source of	variation	Degrees of	freedom	Sum of squares	Mean square	Chi-square	Probability
Preparations		1		0.924441	0.924441	0.924441	0.336
Regression		1		70.5948	70.5948	70.5948	0.000 (***)
Non-paralleli	sm	1		0.000995470	0.000995470	0.000995470	0.975
Standard		4		0.426808	0.375196	0.426808	0.808
Sample 1		2		1.07398	0.536989	1.07398	0.585
Treatments		7		73.0210	10.4316	73.0210	0.000 (***)
Theoretical v	ariance				1.00000		
Total		7		73.0210	10.4316		
	Sam	ple 1					
ld.		Т					
(IU/vial)	Lower limit	Estimate	Upper limit				
Potency	122.589	155.812	200.720				
Rel. to Ass.	87.6%	111.3%	143.4%				
Rel. to Est.	78.7%	100.0%	128.8%]			
All		Oteredend		Operate 4			
All samp	es	Standard S		Sample 1			
				,			
			/	· / ·			
./		/	/	./			
	′	/					
-		<i> </i> .					
.//				./			
		-/					
1		/		, I			
Executed by:		Cal	culated by:		Approved by:		

A.1.12 Example 5.3.3.

A.1.13 Example 5.3.3. (Alternative)

Assay Examp	ion Combi le 5.3.3 fro	iStats vers om the Ph.	ion 7.0 . Eur.	Remai respor positiv	rks: This e nses to the e).	xample u ir comple	ses the ac ments (i.e	lvanced o e. reversin	g the role	convert f of nega	tive and		* * * * * *
				Sar	nple 1								
Ass. pot.	? log10	ED50/ml											
Conversion	1ml/100	0µI											
Volume applied	50 µl/we												
Doses	-3.5 log	-4.0 log	-4.5 log	-5.0 log	-5.5 log	-6.0 log	-6.5 log	-7.0 log	-7.5 log	-8.0 log	3		
(1)	+	+	+	+	-	-	-	-	-	-			
(2)	+	+	+	+	-	-	-	-	-	-			
(3)	+	+	-	-	-	-	-	-	-	-			
(4)	+	+	+	+	-	-	-	-	-	-			
(5)	+	+	+	-	-	-	-	-	-	-	7		
(6)	+	+	+	+	+	-	-	-	-	-	7		
(7)	+	+	+	+	+	-	+	-	-	-	7		
(8)	+	+	+	+	-	+	-	-	-	-	1		
Source of var Regression	iation	Degrees	of freedo 1	m Sum	n of square 23.3374	es M	ean squa 23.3374	re	Chi-squar 23.3374	re	Prob: 0.000	ability (***)	
Non-linearity			8		2.71119		0.33889	99	2.7111	9	0.951		
Treatments			9		26.0486		2.89429)	26.0486	;	0.002	(**)	
Residual error			70		51.1447		0.73063	9	51.1447		0.956		
Theoretical varia	ince						1.00000)					
Total			79		77.1933		0.97713	80					
	Sa	ample 1											
(log10 ED50/ml)	Lower	limit Es	timate	Upper limi	it								
log10 ED50/ml	6.303	328 6.6	63128	6.95780									
Rel. to Ass.	?		?	?									
Rel. to Est.	-0.328	001 0.0	00000	+0.326519	9								
Sample 1													
Executed by:		С	alculated	by:		Арр	roved by:						

A.1.14 Example 5.4.1.

A.1.15 Example 6.4.

Ass.poi. Example 6.4 from the Ph. Eur. Ass.poi. 1 1 10 est. Ass.poi. 1 10 est. 2 1 1 1 est. 1 1300.0 1 1300.0 1 20 2 1 1 1 est. 17210.0 1 1800.0 1 1808.0 20 2 1 1 1 est. 1722.0 1 1820.0 1 1803.0 1 20 3 1 1 1 est. 1722.0 1 1820.0 1 1837.0 20 5 1 1 1 est. 1722.0 1 1820.0 1 1838.0 20 5 1 1 1 est. 1722.0 1 1820.0 1 1838.0 20 5 1 1 1 est. 1722.0 1 1820.0 1 1838.0 20 5 1 1 1 1 est. 1722.0 1 1820.0 1 1838.0 20 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ass.p. t. Example 6.4 from the Ph. Eur. Ass.p. t. P. IUVial	Project	Valida	tion Co	mbiStats ver	sion 7.0	Ren	narks:						*	
		Assay	Exam	ple 6.4	from the Ph.	Eur.	·							 *	L .
		Ass. po	t. ?IU/v	ial										7	* * *
Assay Assay Integrit Integrit Integrit Integrit 2 1 1 Test 17310.0 18003.0 18010.0 20 3 1 Test 17310.0 18004.0 18832.0 20 3 1 Test 17720.0 18269.0 19339.0 20 Sentrecombination Test 17720.0 18269.0 18834.0 20 Image: person Test 17720.0 18269.0 18834.0 20 Sentrecombination Test 17720.0 18269.0 18834.0 20 Image: person 1 1865.0 19339.0 20 20 Sentrecombination Image: person Image: person Image: person Image: person Image: person 1 1866.0 1843.0 Image: person Image: person Image: person 1 18166.0 1843.0 Image: person Image: person Image: person 1 18169.0 1949.7 Image: person Image: person Image: person 1 18193.1 1949.7 Image: person Image: person Image: person 1 18193.1 1949.7 Image: person Image: person															
1 1 Test 177550 18367.0 19002.0 20 3 1 Test 17751.0 18004.0 18838.0 20 3 1 Test 17752.0 18020.0 18838.0 20 6 1 Test 17752.0 1828.0 1833.0 20 7 1 1 186.0 1833.0 20 20 7 1 1 1810.0 1830.0 20 20 7 1 1 1810.3 1840.0 20 20 20 7 1 1 1810.3 160.0% 163.0 1643.3 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1 Test 17755.0 18367.0 19002.0 20 3 1 Test 17753.0 18064.0 18833.0 20 5 1 Test 17725.0 18269.0 1833.0 20 6 1 Test 17725.0 18269.0 1833.0 20 6 1 Test 17725.0 18269.0 1833.0 20 5 1 Test 17725.0 18269.0 1833.0 20 Semetric combination (Weighted combination Upper limit Potency Test 165.0 1843.0 160.0 161.0 <t< td=""><td>Assay</td><td>Sample</td><td>Info</td><td>Lower limit</td><td>Estimate</td><td>Uppe</td><td>er limit</td><td>df</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Assay	Sample	Info	Lower limit	Estimate	Uppe	er limit	df						
2 1 Test 17415.0 1803.0 1803.0 20 4 1 Test 17253.0 17832.0 18838.0 20 5 1 Test 17722.0 18269.0 1883.0 20 Geometric combination Homogeneity: p = 0.491 Image: transfer transf	$\frac{2}{4} \frac{1}{1} \frac{1}$	1	1	Test	17755.0	18367.0	190	02.0	20						
$\frac{3}{1} 1 1 1 1 1 1 1 1 1 $	3 1 1 etest 1/2190 10040 18330.0 20 5 1 1 est 1/2792.0 18239.0 20 Generic combination Image: perfect combination Image: perfect combination Image: perfect combination (U/ui) Weighted combination Image: perfect combination Image: perfect combination Image: perfect combination Rel. to Est. 0.00.0% 101.3% Image: perfect combination Image: perfect combination (U/ui) Image: perfect combination Image: perfect combination Image: perfect combination Image: perfect combination (U/ui) Image: perfect combination Image: perfect combination Image: perfect combination Image: perfect combination (U/uia) Image: perfect combination Image: perfect combination Image: perfect combination Image: perfect combination (U/uia) Image: perfect combination Image: perfect combination Image: perfect combination Image: perfect combination (U/uia) Image: perfect combination Image: perfect combination Image: perfect combination (U/uia) Image: perfect combination Image: perfect combination Image: perfect combination	2	1	Test	17415.0	18003.0	186	10.0	20						
$\frac{1}{6} \frac{1}{1} \frac{1}{1681} \frac{17230}{17292.0} \frac{17026.0}{182360.0} \frac{10323}{192330} \frac{10}{20}$ Genetic combination Honogeneity: p = 0.491 $\frac{(U/ia)}{(U/ia)} \frac{1}{(10wer limit)} \frac{1}{1818.9} \frac{1186.9}{1843.0} \frac{18430}{100.0\%} \frac{1}{101.3\%}$ $\frac{1}{1000} \frac{1}{1000\%} \frac{1}{101.4\%} \frac{1}{1000\%} \frac{1}{101.4\%}$ $\frac{1}{1000\%} \frac{1}{101.0\%} \frac{1}{100.0\%} \frac{1}{101.0\%} \frac{1}{100.0\%} \frac{1}{101.0\%} \frac{1}{100.0\%} \frac{1}{101.0\%} \frac{1}{100.0\%} \frac{1}{100.$	$\frac{1}{6} \frac{1}{1} \frac{1}{1 \text{ test}} \frac{17230.0}{17230.0} \frac{17230.0}{18230.0} \frac{17230.0}{18230.0} \frac{120}{20}$ Genetric combination Honogeneity: p = 0.431 $\frac{1}{(U/via)} \frac{Veighted combination}{Veighted combination} \frac{Veighted combination}{Veighted combi$	3	1	Test	17319.0	18064.0	188	38.0	20						
$\frac{1}{6} 1 \overline{\text{test}} 17722.0 18269.0 18834.0 20$ Geometric combination Homogeneity: p = 0.491 $\frac{ (U/ia) }{ (U/ia) } \underline{\text{Lower limit}} \underline{\text{Estimate } Upper limit} \\ \underline{\text{Potency}} 17946.1 18186.9 18430.9 \\ \underline{\text{Re. to } Ass. } 2 7 2 7 \\ \underline{\text{Re. to } Ass. } 2 7 2 7 \\ \underline{\text{Re. to } Ass. } 2 7 2 7 \\ \underline{\text{Re. to } Ass. } 2 7 2 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 7 \\ \underline{\text{Re. to } Ass. } 2 7 \\ \underline{\text{Re. to } Bs. 7\% \\ 100.0\% 101.7\% \\ \underline{\text{Re. to } Bs. 7\% \\ \underline{\text{Re. to } Est. } 98.7\% \\ \underline{\text{Re. to } Est. } 98.7\% \\ \underline{\text{Re. to } Est. } 2 \\ \underline{\text{Re. to } Est. $	$\overline{0}$ $\overline{1}$ $\overline{18281}$ $\overline{18280.0}$ $\overline{18834.0}$ $\overline{20}$ Geometric combination (uviai) $\overline{11722.0}$ $\overline{18280.0}$ $\overline{18834.0}$ $\overline{20}$ $\overline{(Uviai)}$ $\overline{Uweighted combination}$ $\overline{Uweighted combination}$ $\overline{Uweighted combination}$ $\overline{(Uviai)}$ $\overline{1808.0}$ $\overline{18430.0}$ $\overline{18430.0}$ $\overline{18430.0}$ $\overline{Rel. to Ass. To 200.779.46.1}$ $\overline{1918.6.9}$ $\overline{19433.1}$ $\overline{18430.0}$ $\overline{18400.00\%}$ $\overline{Rel. to Est. 100.0\%$ $\overline{100.0\%}$ $\overline{100.0\%}$ $\overline{100.0\%}$ $\overline{101.4\%}$ $\overline{18180.8,0}$ $\overline{18433.4}$ $\overline{Uweighted combination}$ $Uweighted $	5	1	Test	17959.0	18635.0	193	39.0	20						
Geometric combination Homogeneity: $p = 0.491$ $\boxed{(U/via) \ Lower limit Estimate Upper limit} \\ Potency 17946.1 18186.9 18433.4 \\ Rel. to Ass. \frac{2}{7} \frac{1}{100.0\%} \frac{101.1\%}{100.0\%} \frac{101.1\%}{101.1\%}$	Geometric combination Homogenelity: $p = 0.491$ $\boxed{\frac{(U/via)}{Lower limit Estimate Upper limit Potency 17946.1 18186.9 19433.4 Re. to Ass. \frac{7}{2} \frac{7}{2} \frac{7}{2}Rel to Est. \frac{98.7\%}{100.0\%} \frac{100.0\%}{101.3\%}\boxed{\frac{U/wielghted combination}{Via}\boxed{\frac{U/wielghted combination}{Via}\boxed{\frac{U/wielghted combination}{Via}\boxed{\frac{U/wielghted combination}{Via}\boxed{\frac{U/wielghted combination}{Via}}\boxed{\frac{U/wielghted combination}{Via}\boxed{\frac{U/wielghted combination}{Via}}\boxed{\frac{U/wielghted combination}{Via}}\frac{U/wielghted $	6	1	Test	17722.0	18269.0	188	34.0	20						
(IU/vial)Lower limitEstimateUpper limit PotencyRel. to Est98.7%100.0%101.3%IU/vial)Unweighted combination (UU/vial)Iu/vial)Iu/vial)Unweighted combination (UU/vial)Iu/vial)Iu/vial)IU/vial)Lower limitEstimateUpper limit Potency1784.118193.118497.1 Rel. to Est98.7%100.0%Netro17894.118193.118497.1 Rel. to Est98.7%Rel. to Est98.4%100.0%101.7%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Homoge	eneity: p =	= 0.491 eighted	combination					Semi-weighte	d combinatic	'n]		
Potency17946.118186.918430.9Rel. to Ass.???Rel. to Est.98.7%100.0%101.3%Image: the tot intermediate to the tot intermediate to	Potency17946.118186.918430.9Rei. to Ass. 2 2 Rei. to Ass. 2 2 Unweighted combination $ kei to Ass.$ 2 (U/via) Lower limitEstimateUpper limitEstimateUpper limitRei. to Ass. 2 2 Rei. to Est98.7%100.0%101.3%	(IU/vial)) Lo	wer lim	it Estimate	Upper lim	iit	(IU/vi	al)	Lower limit	Estimate	Upper limit]		
Rel. to Ass. $?$	Rel. to Ass. $?$ $?$ $?$ $?$ $?$ Rel. to Ass. $?$ $?$ $?$ $?$ $?$ Unweighted combination Upper limit Estimate Upper limit $Bs/76$ 100.0% 101.4% Unweighted combination Upper limit Estimate Upper limit $Bs/76$ 100.0% 101.4% Path to Est 98.7% 100.0% 101.7% Path to Estimate $Bs/76$ 100.0% 101.4%	Potency	y 1	7946.1	18186.9	18430.9		Poter	ncy	17943.7	18186.9	18433.4	4		
Ref. to Est. 96.7% 100.0% 101.4% Unweighted combination (U/via) Lower limit Estimate Upper limit Potency 17894.1 18193.1 18497.1 Ref. to Est. 98.7% 100.0% 101.4% Ref. to Est. 98.4% 100.0% 101.7% 101.6% 101.6% 101.4%	Ref. to Est 96.7% 100.0% 101.4% Unweighted combination (UVia) Lower limit Estimate Upper limit Ref. to Ass. ? ? ? ? Ref. to Est 98.4% 100.0% 101.7%	Rel. to /	Ass.	?	?	?	-	Rel. t	o Ass.	?	?	?	-		
Unweighted combination (IU/via) Lower limit Potency 17894.1 18193.1 Rel. to Ass. ? ? Rel. to Est. 98.4% 100.0% 101.7%	Unweighted combination (U/vial) Lower limit Estimate Upper limit Potency 17894.1 18193.1 18497.1 Rel. to Ass. ? ? ? Rel. to Est 98.4% 100.0% 101.7%	rtei. to i	ESI.	10.1%	100.0%	101.3%		Rel. t	u ⊑St.	98.7%	100.0%	101.4%]		
Executed by: Calculated by: Approved by:	Current unit to consume the community Potency 17894.1 18193.1 18497.1 Rei. to Ass. ? ? ? Rei. to Est. 98.4% 100.0% 101.7%		nu	einhte	d combinatio	n									
Potency 17894.1 18193.1 18497.1 Rel. to Ass. 7 7 7 Rel. to Est. 98.4% 100.0% 101.7% Ionomode to the second se	Potency 17894.1 18193.1 19497.1 Rel. to Ass. ? ? ? Rel. to Est. 98.4% 100.0% 101.7%	(IU/vial)) Lo	wer lim	it Estimate	Upper lim	it								
Rel. to Ass. ? ? ? Rel. to Est. 98.4% 100.0% 101.7%	Rel. to Ass. ? ? ? Image: Rel. to Est. 98.4% 100.0% 101.7% Image: Rel. to Est. 98.4% 100.0% 101.7%	Potency	y 1	7894.1	18193.1	18497.1									
Rel. to Est. 98.4% 100.0% 101.7% Image: the set of the	Rel. to Est. 98.4% 100.0% 101.7% Image: the state of the state o	Rel. to /	Ass.	?	?	?									
Image: Second by: Calculated by: Approved by:	Image: secured by: Calculated by: Approved by:	Rel. to I	Est. 9	98.4%	100.0%	101.7%									
Executed by: Approved by:	Executed by: Approved by:		1	-											
				-											
			d by:		Ca	alculated bys				Approved	by:				
		Execute	d by:		Ca	alculated by:				Approved	by:				

A.2 Examples from D.J. Finney

A.2.1 Example 3.9.1. (Without transformation)

Substance	e	Vitami	n B12			R	emark	s: Exa	nple tak	en from	Statistical Me	thod in I	Biological A	ssay' by	*	
Method		turbidi	metric			a	nalysis	ney, 3r of var	a Edition	in agree	nent with that	given o	on page 48 n page 50.	. The	★	÷. •
Micro-orga	anism	Lactob	bacillus	leichn	nannii							5	1.2.		1	^ * ^
			Sta	ndard]							
d.									-							
Ass. pot.	1 unit/	unit	62	64	05	66	07	<u> </u>	-							
(1)	0.15	0.28	0.36	0.51	0.68	0.85	1.06	1 21	1							
(2)	0.14	0.20	0.36	0.53	0.63	0.80	0.91	1.22								
(3)	0.19	0.23	0.34	0.54	0.64	0.71	1.09	1.29								
(4)	0.19	0.25	0.37	0.45	0.61	0.85	0.93	1.24								
(5)	0.17	0.23	0.33	0.57	0.65	0.94	1.09	1.18								
(6)	0.16	0.23	0.38	0.49	0.68	0.83	1.12	1.24	J							
Design: Co Fransform /ariance: 0 Dilution sto	omplete ation: y Observ ep (Inci	ely rand ' = y ed resi reasing	domise iduals j): 1.5	d						Corre	elation r : 0.9	983781				
Source	of vari	ation	De	grees o	of freed	lom	Sum	n of sq	Jares	M	ean square		F-ratio	Prob	ability	1
Regressio	n				1		(6.0171	6		5.01716	>	1000	0.000	(***)]
Non-linea	rity				6		(0.1044	68).0174113		7.288	0.000	(***)]
Quadratic	curvat	Jre			1		(0.0996	036		.0996036		41.690	0.000	(***)	
_ack of qu	adratic	fit			5		(0.0048	6429	(0.000972857		0.407	0.841		-
Treatment	s		_		7		(6.1216	3	1).874518		366.035	0.000	(***)	4
Viodel	from	nodol			1			6.0171	6		0.01716		7 299	0.000	(***)	-
Sull factor	5 110111 1 ial	nouei			7			0.1044 6.1216	3		0.0174113		366.035	0.000	()	1
Residual e	error			4	0			0.0955	667		0.00238917		300.033	0.000	()	1
Total				4	7		(6.2171	9		.132281					1
Executed b	by:			Ca	alculate	d by:				Approve	l by:					

A.2.2 Example 3.9.1. (With exact transformation)

Substanc Method	e	Vitami turbidi	n B12 metric				emark J.J. Fin	s: Exar ney, 3r	ple take Edition,	n from 'Statistical Metho 1978, Griffin. Data as gi	d in Biological As	say' by nd	* *.
Micro-org	anism	Lactob	oacillus	leichn	nannii	a a T v 5 5	pplying nalysis he sma alues a 2 are u 2. (See	a squ of vari all diffe after the used, the Exam	re-root t ince is ir ences ca transfor analysi le Finne	ransformation as describ n close agreement with than be explained because mation. If the rounded va is of variance is in agreei ey052 PLA SqrtY rounder	ed on page 52. I nat given on page Finney used rou alues as given on ment with that on d.epa)	ne 52. nded page page	**'
			01-										
Id			Sta	ndard									
Ass. pot.	1 unit	/unit											
Doses	S1	S2	S3	S4	S5	S6	S7	S8					
(1)	0.15	0.28	0.36	0.51	0.68	0.85	1.06	1.21					
(2)	0.14	0.20	0.36	0.53	0.63	0.80	0.91	1.22					
(3)	0.19	0.23	0.34	0.54	0.64	0.71	1.09	1.29					
(4)	0.19	0.25	0.37	0.45	0.61	0.85	0.93	1.24					
(5)	0.17	0.23	0.33	0.57	0.65	0.94	1.09	1.18					
(6)	0.16	0.23	0.38	0.49	0.68	0.83	1.12	1.24					
Design: C Transform Variance: Dilution st	ompletent nation: y Observ tep (Inc	ery rand / = sqrt red resi reasing	iomise (y) duals i): 1.5	d						Correlation r : 0.993	019		
Source	e of vari	ation	De	arees	of free	nor	Sur	n of se	ares	Mean square	F-ratio	Prob	ability
Regressio	on	ation		grees	1	20111	Oui	2.6330	arco	2.63302	>1000	0.000	(***)
Non-linea	rity				6			0.0031	761	0.000527935	0.621	0.712	
Quadratic	curvat	ure			1			8.4661	E-06	8.46615E-06	0.010	0.921	
Lack of q	uadratio	; fit	1		5			0.0031	914	0.000631829	0.744	0.595	
Treatmen	ts				7			2.6361		0.376598	443.270	0.000	(***)
Model					1			2.6330		2.63302	>1000	0.000	(***)
Deviation	s from r	nodel			6			0.0031	761	0.000527935	0.621	0.712	
Full factor	rial		_		7			2.6361		0.376598	443.270	0.000	(***)
Residual	error		-	4	10			0.0339	36	0.000849590		-	
Iotal	dard		-	4	17			2.6701		0.0568122			
]) . .												
Executed	by:			Ca	alculate	ed by:			A	pproved by:			

A.2.3 Example 3.9.1. (With rounded transformation)

Substance	Vitami	n B12				lemark	s: Exar	nple take	en from 'Statisti	cal Method	in Biological	Assay' by	×.	
Method	turbidi	metric				nalvsis	of vari	ance is i	n agreement w	ith that giv	en on page 52	2. The	★⊥	
Micro-organism	Lactob	bacillus	leichn	nannii	s	lope di	ffers by	a factor	In(1.5) from the	at given by	Finney becau	ise he	× *	* *
					u	sed do	se-met	ameters	instead of natu	ral logarith	ims.			
		Sta	ndard											
ld.		Old	naara											
Ass. pot. 1 uni	/unit													
Doses S1	S2	S3	S4	S5	S6	S7	S8							
(1) 0.39	0.53	0.60	0.71	0.82	0.92	1.03	1.10							
(2) 0.37	0.45	0.60	0.73	0.79	0.89	0.95	1.10							
(3) 0.44	0.48	0.58	0.73	0.80	0.84	1.04	1.14							
(4) 0.44	0.50	0.61	0.67	0.78	0.92	0.96	1.11							
(5) 0.41	0.48	0.57	0.75	0.81	0.97	1.04	1.09							
(6) 0.40	0.48	0.62	0.70	0.82	0.91	1.06	1.11							
Model: Parallel li	nes								Common sk	nne(factor)	= 0 251230 (() 243411 to	0 259049)	
Design: Complet	elv ran	domise	d						Correlation	r · 0.9927	714		00040)	
Transformation:	v' = v	Junioe	u						Someradon	1. 0.3321	17			
	y - y	iduala												
variance: Obser	vea resi													
Juution step (Inc	reasing	j): 1.5												
Source of var	iation	De	grees o	of freed	lom	Sun	n of sa	lares	Mean so	uare	F-ratio	Pro	bability	
Regression				1			2.6148	3	2.6148	8	>1000	0.000) (***)	
Non-linearity				6		(0.0027	9008	0.0004	65013	0.521	0.789	3	
Quadratic curva	ture	+		1			3.5714	3E-06	3.5714	3E-06	0.004	0.950)	
Lack of quadrati	c fit	+		5			0027	3651	0.0005	57302	0.004	88.0	,	
Treatments				- 7			2 6176	7	0.3730	52	418 603	0.00) (***)	
Model				1	-		2 6148	3	2 61/19	8	>1000	0.000) (***)	
Deviations from	model	-		6			0.0027	2008	0 0004	65013	0.521	0.000		
Full factorial				- 7			2.6176	7	0.3739	52	418 603	0.00) (***)	
Residual error			1				0357	333	0.0708	93333	+10.000	. 0.000	,	
Total		+	4	7			2 653/)	0.0000	553				
IUIAI			4	1			4500.2	,	0.0564	000				
	ě													
Executed by:			Ca	alculate	ed by:			А	pproved by:					

* * *

*

A.2.4 Example 4.2.1.

Substance Method	ersion 7.0. Friday, 15 October 2021 D3 in cod-liver oil Antirachitic activity in chickens	, 12:00:00 Rema by D., The a The s round given those) [+01:00]. Pa arks: Example J. Finney, 3rd nalysis of va mall differend ling by Finney on page 80 a given on page	ge 1 of 2 taken from 'Statistical Method in Biological Edition, 1978, Griffin. Data as given on pag iance is in agreement with that given on pag es for non-parallelism can be explained fror . The estimated potency is in agreement wil und the 95% confidence limits are in agreem e 87.	Assay' le 70. ge 73. m th that nent with
	Standard			Sample 1	1
ld.			ld.		1
Ass. pot.	1 unit/mg		Ass. pot.	? unit/mg	1

Ass. pot.	1 unit/mg			
Pre-dil. 1				
Doses	5.76 unit	9.6 unit	16 unit	
(1)	35	62	116	
(2)	30	67	105	
(3)	24	95	91	
(4)	37	62	94	
(5)	28	54	130	
(6)	73	56	79	
(7)	31	48	120	
(8)	21	70	124	
(9)	-5	94		
(10)		42		

		Sample 1		
ld.				
Ass. pot.	? unit/mg			
Pre-dil. 1				
Doses	32.4 mg	54 mg	90 mg	150 mg
(1)	20	26	57	140
(2)	39	60	89	133
(3)	16	48	103	142
(4)	27	-8	129	118
(5)	-12	46	139	137
(6)	2	77	128	84
(7)	31		89	101
(8)			86	
(9)				
(10)				

Model: Parallel lines Design: Completely randomised Transformation: y' = yVariance: Observed residuals Dilution step (Increasing): 1.666666 Common slope(factor) = 73.9443 (63.9860 to 83.9026) Correlation | r |: 0.864621

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	687.086	687.086	1.438	0.236
Regression	1	74088.4	74088.4	155.104	0.000 (***)
Non-parallelism	1	9.29015	9.29015	0.019	0.890
Non-linearity	3	2311.77	770.591	1.613	0.199
Standard	1	96.1211	96.1211	0.201	0.656
Sample 1	2	2215.65	1107.83	2.319	0.109
Treatments	6	77096.6	12849.4	26.900	0.000 (***)
Residual error	48	22928.2	477.670		
Total	54	100025	1852.31		

	Sam	ole 1	
ld.			
(unit/mg)	Lower limit	Estimate	Upper limit
Potency	0.124330	0.145995	0.172315
Rel. to Ass.	?	?	?
Rel. to Est.	85.2%	100.0%	118.0%

Filename: ...\A204 Finney070 PLA.epa. ID: EDQM/DBO/FRA

A.2. EXAMPLES FROM D.J. FINNEY

A.2.5 Example 4.15.1.

A.2.6 Example 5.2.1.

A.2.7 Example 5.4.2.

Substance	Pen	icillin	Remar	ks: Examp	le taken from	n 'Statistical Method	l in Biological A	ssay' by D	.J.	*	
Method	Aga	r diffusion	Finney	3rd Editio	n, 1978, Grif	fin. Data as given o	n page 114. Th	e analysis	of	*	, ,
Micro-organis	sm Bac	illus subtilis	agreen	e is in agri	eement with	that given on page page 113 and the 9	115. The estim 5% confidence	limits are	icy is in in	/ /	* * *
-			agreen	nent with th	nose given o	n page 115.					
St	andard			Sample 1							
ld.			ld.								
Ass. pot. 1	unit/ml		Ass. pot.	1 unit/ml							
Doses 5	0 unit	200 unit	Doses	1/4	1/1						
(1)	92	108	(1)	68	90						
(2)	95	109	(2)	74	91						
(3)	90	108	(3)	75	88						
Model: Parall Design: Rand Transformatic Variance: Obs	el lines lomised on: y' = y served re	block esiduals				Common slo Correlation	ope(factor) = 12 r : 0.993475	.1727 (10.	9248 to 1	3.4206)	
Source of	variation	Dogra	e of froodo	m Sum	of coupros	Moon equara	E ratio	Brohr	bility		
Preparations	vanatiOl	- Degree	1	150	01 3quares 01.56	1501.56	421.491	0.000	(***)		
Regression			1	113	39.06	1139.06	319.737	0.000	(***)		
Non-parallelis	sm		1		3.06250	3.06250	0.860	0.378			
Treatments			3	264	13.69	881.229	247.363	0.000	(***)		
Blocks	-		3	2	24.6875	8.22917	2.310	0.145			
Residual erro	r		9	3	32.0625	3.56250					
(unit/ml) Potency Rel. to Ass. Rel. to Est.	Lower 30.27 3027.5 74.4	limit Estima 50 40.717 5% 4071.7 % 100.0	te Upper 70 51.9 7% 5199 7% 127.	1imit 974 .7% 7%							
All sample	/4.4	Stand	ard Calculated	by:	mple 1	Approved by:					

A.2.8 Example 7.3.1. (Including blanks)

Substance	Nico	tine acid	l			Rem	arks: Exar	nple taken	from 'Sta	tistical Met	hod in I	Biological
/lethod	Acid	ity by titr	ation with	N/14 NaC	н	Assa	y' by D.J.	Finney, 3rd	Edition,	1978, Griffi	n. Data	as given
Aicro-organis	m Lact	obacillus	arabinos	us		that of	age 150. I aiven on n	ne analysis ages 152 a	nd 154.	nce is in ag The estimat	reemer	nt with ency is in
						agrei confi 115.	ement with dence limi	that given ts are in ag	on page reement	113 and th with those	e 95% given c	on page
						-						
		Stan	dard			-			San	nple 1		
d.						-	ld.	0 / 1				
Ass. pot. 1	ug/tube	0.40	0.45	0.00	0.05	-	Ass. pot.	? µg/mi	4.5 ml	0.0 ml		0
(1)	3.5	5.0	6.2	0.20 µg	0.25 µg	4	(1)	1.0 mi	63	2.0 111		15
(1)	3.2	4.7	6.1	7.7	9.5	1	(1)	4.8	6.5	7.7		1.4
odel: Slope esign: Com ansformatio ariance: Ob	ratio oletely ra on: y' = y served re	indomise esiduals	ed					Common Correlatio	intercept n r : 0.9	= 1.64533 997657	(1.5210	08 to 1.769
Source of	variatior	De	grees of f	reedom	Sum o	of squa	ares	Mean squ	are	F-ratio		Probabil
Regression			2		96.	4116		48.2058		>1000		0.000 (*
Blanks			1		0.	14468	39	0.1446	89	7.44	11	0.023 (*
ntersection			1		0.	02487	773	0.0248	773	1.27	79	0.287
Ion-linearity			4		0.	10883	33	0.0272	083	1.39	99	0.309
Standard			3		0.	08800	000	0.0293	333	1.50	9	0.278
Sample 1			1		0.	02083	333	0.0208	333	1.07	71	0.328
reatments		_	8		96.	6900		12.0863		621.57	79	0.000 (*
lodel	mmade		2		96.	4116	20	48.2058	000	>1000		0.000 ('
Full factorial	mmode	:1	8		0.	27040 6000	00	12 0863	000	621.5	70	0.000 (*
Residual erro	r		9		0	17500	00	0.0194	444	021.01	3	0.000 (
fotal		+	17		96.	8650		5.6979	4			
		Sample '	1									
d.												
µg/ml)	Lower I	imit E	stimate	Upper lim	it							
Potency	0.0963	274 0.0	0996139	0.10295	5							
Rel. to Ass.	?		?	?	_							
tel. to Est.	96.79	% 1	00.0%	103.4%								
All sample	es	s	itandard		Samp	le 1						
	/						-					

A.2.9 Example 7.3.1. (Excluding blanks)

Substance	Nice	tine acid	4			Remarke: F	vamnle taken	from 'Stat	istical Mot	hod in Ri	ological	ר ★ ר	
Method	Acid	ity by titr	ation with	N/14 NaC	н	Assay' by D	J.J. Finney, 3rd	d Edition, 1	978, Griffi	n. Data a	is given	*	
Micro-organien	n Lact	obacillus	arahinoe	15		on page 15	0. The blank h	ave been	excluded (due to	0.000	**	\star
						example Fii potency is i confidence page 156. T Finney chos (see remark excluded va	nney150 Slope n agreement v limits are in cl Fhe very small se to estimate k before equat alues to compo	e Ratio Bla with that or ose agree difference the residu ion 7.6.4).	inks incl.ep n page 155 ment with is due to al error inc CombiSta idual error	the fact the	stimated 6 en on hat le blanks uses	5	
		Stan	dard					Sam	ple 1				
ld.						ld.						_	
Ass. pot. 1 µg	g/tube					Ass. p	oot. ?µg/ml					_	
Doses 0.0	5 µg	0.10 µg	0.15 µg	0.20 µg	0.25 µç	Dose:	s 1.0 ml	1.5 ml	2.0 ml		0 ml	_	
(1) 3	.5	5.0	6.2	8.0	9.4	(1) 4.9	6.3	7.7		1.5		
(2) 3	.2	4.7	6.1	7.7	9.5	(2) 4.8	6.5	7.7		1.4		
Source of v	ariation	De	grees of fr	eedom	Sum o	of squares	Mean squ	Jare	F-ratio		Probabi	lity	
Regression		_	2		54	.3063	27.153	1	>1000	74 0	J.UUU ()	
Intersection		_	1		0	109922	0.0248	5//3	1.1		1.311		
Non-linearity Standard		_	4		0.	0880000	0.0272	2083	1.28) 317		
Sample 1			3		0.	0208333	0.029	3333	1.30) 351		
Treatments			7			4400	7 777	14	365 9	33 0	0.000 ((***)	
Model			2		54	.3063	27,153	1	>1000).000 ((***)	
Deviations from	n mode	1	5		0	.133711	0.026	7421	1.2	58 (0.367	<u> </u>	
Full factorial			7		54	4400	7.777	14	365.98	33 (0.000 ((***)	
Residual error			8		0	170000	0.0212	2500					
Total			15		54	.6100	3.6406	37					
					_								
		Sample '	1										
ld.					_								
(µg/ml) I	Lower I	imit E	stimate	Upper lim	nit								
Potency (0.0955	214 0.0	0991645	0.102849	9								
Rel. to Ass.	?		?	2 102 70/	_								
REI. IU ESI.	90.35	/0 1	00.0%	103.7%									
All samples		_	tandard		Samr	ole 1							
, Jumples	.				Jun								
	-			,									
Executed by:			Calcu	lated by:			Approved by:						

A.2.10 Example 7.10.2.

A.2.11 Example 9.5.1.

	Artificat	uata	Edition, 19 agreement automatica confidence of entering	78, Griffin. Da with the 2nd lly generate t limits are in a these data se	ata as giver part of the he 1st part agreement ee example	table giver of the table with those Finney18	184. The ar n on page 1 e. The estir given on p 4 PLA Bloc	alosi of variance is in alosis of variance is in 186. CombiStats does not mated potency and the 95% vage 187. For an alternative way ks Table.epa.	* * *
	Stand	lard			Sam	ple 1]	
l.				ld.					
ss. pot.	1 unit/unit			Ass. pot.	? unit/mg				
oses	0.9 unit	1.5 unit	2.5 unit	Doses	0.45 mg	0.75 mg	1.25 mg		
(1)	20	33		(1)					
(2)	18	36		(2)					
(3)	16		44	(3)					
(4)	22		33	(4)	0.5				
(5)	29		 	(5)	35			1	
(6)	26			(6)	14	40			
(1)	4/		 	(7)		48 30		4	
(0)	16			(0)		30	3.8	•	
(10)	30			(9)			41	-	
(11)	50	40	47	(10)					
(12)		40	59	(12)				-	
(13)		35		(13)	4				
(14)		47		(14)	16				
(15)		27		(15)		35			
(16)		43		(16)		35]	
(17)		43		(17)			50		
(18)		37		(18)			33		
(19)			44	(19)	26				
(20)			48	(20)	28				
(21)			35	(21)		43			
(22)			43	(22)		33			
(23)			46	(23)			23		
(24)			51	(24)	20	27	51		
(20)			├ ──┤	(25)	10	3/		-	
(20)				(20)	21	30	32		
(28)				(28)	25		40		
(29)				(29)		39	43		
(30)				(30)		18	27		
odel: Par esign: Ra ansforma ariance: C	rallel lines andomised ation: y' = y Observed n	block				Ci Ci	ommon slo	pe(factor) = 18.2303 (13.8330 to 22.6; r : 0.915154	276)

A.2. EXAMPLES FROM D.J. FINNEY

A.2.12 Example 9.5.1. (Alternative)

Substance	e Artific	al data	Remarks Edition, agreeme automati confiden of enterin	: Ex 1978 Int w cally ce lin ng th	ample taken a, Griffin. Da ith the 2nd generate the mits are in a nese data se	n from 'Sta ta as giver part of the he 1st part agreement ee example	tistical Me n on page table given of the tabl with those Finney18	thod in Biol 184. The a n on page ' e. The esti given on p 4 PLA Bloc	slogical Assay' by D.J. Finney, 3rd analysis of variance is in 186. CombiStats does not imated potency and the 95% page 187. For an alternative way cks.epa.	* * **
	Sta	andard		٦		Sam	ple 1]	
ld.				1	ld.		p10 1		1	
Ass. pot.	1 unit/u	nit			Ass. pot.	? unit/mg				
Doses	0.9 un	it 1.5 uni	2.5 unit		Doses	0.45 mg	0.75 mg	1.25 mg	_	
(1)	20	33	44	-	(1)	35	48	38	-	
(2)	18	36	33	-	(2)	14	30	41	-	
(3)	22	40	4/	-	(3)	16	35	33	4	
(5)	29	35	44	1	(4)	26	43	23	-	
(6)	26	47	48	1	(6)	28	33	51	1	
(7)	47	27	35]	(7)	20	37	33]	
(8)	30	43	43		(8)	12	30	40	-	
(9)	16	43	46	-	(9)	21	39	43	-	
(10)	30	37	51		(10)	25	18	27		
Desian	(A)	(B)	Observ	(A)	(B)					
(1)	1 1 1	1 2 1	(1)	20	33					
(2)	1 1 2	1 2 2	(2)	18	36					
(3)	1 1 3	1 3 1	(3)	16	44					
(4)	1 1 4	1 3 2	(4)	22	33					
(5)	1 1 5	2 1 1	(5)	29	35					
(6)	1 1 6	2 1 2	(6)	26	14					
(7)	1 1 7	2 2 1	(7)	47	48					
(9)	11119	2 3 1	(0)	16	38					
(10)	1 1 10	2 3 2	(10)	30	41					
(11)	1 2 3	1 3 3	(11)	40	47					
(12)	1 2 4	1 3 4	(12)	40	59					
(13)	1 2 5	2 1 3	(13)	35	4					
(14)	1 2 6	2 1 4	(14)	47	16					
(15)	1 2 7	2 2 3	(15)	43	35					
(17)	1 2 9	2 3 3	(17)	43	50					
(18)	1 2 10	2 3 4	(18)	37	33					
(19)	1 3 5	2 1 5	(19)	44	26					
(20)	1 3 6	2 1 6	(20)	48	28					
(21)	1 3 7	2 2 5	(21)	35	43					
(22)	1 3 8	2 2 0	(22)	43	33					
(23)	1 3 10	2 3 6	(23)	40 51	23 51					
(25)	2 1 7	2 2 7	(25)	20	37					
(26)	2 1 8	2 2 8	(26)	12	30					
(27)	2 1 9	2 3 7	(27)	21	33					
(28)	2 1 10	2 3 8	(28)	25	40					
(29)	2 2 9	2 3 9	(29)	39	43					
(30)	2 2 10	2 3 10	(30)	18	21					
lodel [.] Par	rallel line	s					C	ommon slo	ope(factor) = 18,2303 (13,8330 to 22.6)	276)
Design: Ra	andomis	ed block					c	orrelation I	r : 0.915154	,
ransform	ation: v'	= v							• •	

A.2. EXAMPLES FROM D.J. FINNEY

A.2.13 Example 11.2.1.

A.2.14 Example 11.3.1.

			ney doe	imits es not	erence s for pr give th	e is no repara ne pot	lom by t very i tion D encies	s lost fo modelin mportan are in a for the	r rows and prep nt thoug greeme other p	and co aration gh. The ent with repara	lumns ns (df= e estin those tions.	Finr 7) ins nated give	ney reta stead o potenc n on pa	aine f tre cy ar age	atments atments ad 95% 234.				
														Г					
dard				s	ample	1		+ <u>.</u>		Sam	ple 2		_	ŀ		Sam	ple 3		
			ld.	A				Id.		В				H	d.	C			
t/unit			Ass. po	ot. 1	unit/ur	nit		As	s. pot.	1 un	t/unit	(0)	(1)	H	Ass. pot.	1 un	t/unit	(0)	(
(2)	(3) (4	+)	Doses	(1) (2	(3) (4)		oses	(1)	(2)	(3)	(4)	Ч	Joses	(1)	(2)	(3)	(4)
2.6	2.2 1.	.9	1/10	1	.2 1.	3 1.0) 1.0		1/10	1.5	1.0	0.3	0.6	┝	1/30	1.5	1.0	1.0	1.0
3.8	3.8 3.	.8	1/5	4	.0 3.	0 3.0	3 3.4		1/5	3.0	3.0	3.0	2.9	L	1/15	4.3	4.3	3.0	3.4
ple 4				s	ample	5				Sam	ple 6			Г		Sam	ple 7		
			ld.	F		-		ld		F				h	d.	G			
t/unit		- 1	Ass. po	ot. 1	unit/ur	nit		As	s. pot.	1 un	it/unit		\neg	Ā	Ass. pot.	1 uni	t/unit		
(2)	(3) (4	1)	Doses	(1) (2	2) (3) (4)	Do	oses	(1)	(2)	(3)	(4)		Doses	(1)	(2)	(3)	(4)
0.9 (0.3 0.	.9	1/10	1	.9 1.	7 1.6	3 1.0	1	1/20	2.3	1.6	1.9	1.9	Γ	1/10	2.3	1.6	1.5	1.0
2.8	3.3 2.	.8	1/5	4	.4 3.	3 3.5	5 3.4		1/10	4.3	4.0	3.6	3.4		1/5	3.8	3.0	3.4	3.4
6 2 1 3 2 2 4 1 2 8 1 3 7 1 4 2 1 4 1 2 3 ines square y' = y ved res	5 1 1 1 1 2 7 2 2 2 2 3 4 2 4 8 2 4 3 1 3	1 2 1 5 2 2 2 1 2 7 1 3 8 1 4 4 1 4 6 2 3	4 1 1 8 1 2 6 2 2 3 2 3 5 2 4 1 2 4 2 1 3	3 1 1 6 1 2 8 2 2 4 2 3 2 2 4 7 2 4 5 1 3	2 1 7 1 ; 1 2 ; 5 2 ; 3 5 2 ; 4 3 2 ; 6 2 ; 3 4 1 ;	1 7 2 2 2 2 2 5 1 3 1 1 4 6 1 4 3 1 3 8 2	1 2 2 3 4 4 3	(2) (3) (4) (5) (6) (7) (8)	3.8 4.3 1.0 1.6 1.9 0.9 3.6 Commo Correlat	4.4 3.0 1.0 1.5 1.9 1.0 3.8 n slop tion r	0.5 2.6 4.0 3.3 3.4 3.4 0.3 e(facto : 0.98	4.2 2.8 1.3 1.9 1.0 1.0 3.5 0r) = 3 35111 s con	1.5 1.6 3.3 3.0 2.8 3.8 1.0 0 3.1333 founde	1.5 1.7 3.0 3.6 3.4 3.4 0.3 5 (2.	1.2 4.3 1.6 3.6 3.8 0.9 3.3 2.2 1.0 3.4 0.6 3.4 97929 to fects (df=	- - - - - - - - - - - - - -	41)		
riation	D	egrees	of freed	lom	Sum	n of sq	uares	М	ean sq	Jare		F-ra	atio		Probab	oility			
	_		7		<u> </u>	9.333	359		1.333	37		20	0.831		0.000	(***)	_		
			1		<u> </u>	75.472	27	-	75.472	7	_	>1000)	+	0.000	(***)	_		
			7		<u> </u>	0.624	1531		0.089	2188	+		1.394	+	0.238		_		
	_		15		<u> </u>	85.430	08	-	5.695	39	_	88	3.976	+	0.000	(***)	-		
			6			3.988	344		0.664	/40	+	1(0.385	+	0.000	(***)	-		
	_		ซ วว		-	0.319	1688 74	-	0.053	2813	-	(1.832	+	0.553	/***\	-		
model		2	<u>د ۲</u>		, · · · ·	90.828	04		4.128	1062	+	64	+.498	+	0.000	(***^)	-		
model			0 27			0.462	2031	+	3 204	+U03 13	+	5	0.822	+	0.232	(***)	-		
			36		,	2 201	138	-	0.064	0104	+	34	022	+	0.000	()	-		
	_					2.004	-00	-	0.004	0104	_			+			-		
	Zunit (2) 2.6 3.8 3.8 3.8 3.8 3.8 4 //unit (2) 0.9 2.8 (B) 5/211 6/211 3/22 4/1/2 8/112 7/114 2/2114 1/23 ines quare y' = y ved restriction	Vunit (2) (3) (4) (2) (3) (4) (2) (3) (4) 3.8 3.8 3.8 3.8 3.8 3.8 3.8 7/unit (2) (3) (4) (2) (3) (4) (2) (3) (2) (3) (4) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (1) (2) (3) (3) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	VUIIT (2) (3) (4) (2) (3) (4) (4) (4) (5) (7)<	Vunit Ass. pc (2) (3) (4) 2.6 2.2 1.9 3.8 3.8 3.8 3.8 3.8 3.8 1/10 1/10 3.8 3.8 1/2 1.9 1/2 1.9 1/2 1.9 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1/2 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2	Vunit Ass. pot. 1 (2) (3) (4) 2.6 2.2 1.9 3.8 3.8 3.8 3.8 3.8 3.8 1/10 1 3.8 3.8 1/10 1 3.8 3.8 1/10 1 1/5 4 1/10 1 1/10 1 1/10 1 1/10 1 1/10 1 2.8 3.3 2.8 3.3 2.8 3.3 2.8 1/11 1/21 5/111 1/21 5/111 1/22 1/12 5/21 6/111 3/21 1/12 1/12 1/21 4112 7/22 2114 8/24 4114 124 123 3/13 6/21 2/13 114 4/24 123 3/13 6 1 7 1 15 6 6 22 model 5 36 27	Vunit Ass. pol: 1 (2) (3) (4) 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 $1/10$ 1.2 1.1 $1/10$ 1.2 1.1 $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 4.0 3. $1/10$ 1.2 1. $1/5$ 1. 1.1 $1/10$ 1.9 1. $1/10$ 1.9 1. $1/10$ 1.9 1. $1/11$ $1/11$ $1/11$ $1/12$ $1/12$ $1/11$ $1/12$ $1/12$ $1/11$ $1/12$ $1/12$ $1/11$ $1/12$ $1/12$ $1/12$ $1/14$ $1/14$ $1/12$ $1/14$ $1/$	Ass. pot. 1 Introduction of the second sec	Ass. pol. 1 Ass. pol. 1 Unitrumit (2) (3) (4) (2) (3) (4) 3.8 3.8 3.8 (4) (1/10) 1.2 1.3 1.0 1.0 3.8 3.8 3.8 3.8 (4) 1.5 4.0 3.6 3.3 3.4 De4	Ass. pot. 1 unit/unit Pass. pot. 1 unit/unit	Junit Jass. pot. 1 unit/unit Jass. pot. Junit/unit Jass. Jass. pot.	Vunit Ass. pol. 1 unit/unit Ass. pol. 1 unit/unit (2) (3) (4) $1/0$ 1.2 (3) (4) 3.8 3.3 3.4 2.6 2.1 1.75 4.0 3.6 3.3 3.4 $1/20$ 2.3 1.75 4.4 3.3 3.4 1.75 4.6 1.01 0.9 0.3 0.9 1.75 4.4 3.3 3.5 3.4 1.01 0.56×1.1 1.01 0.56×1.1 1.02 2.3 1.101 0.50×1.1 1.02 2.3 1.101 0.50×1.1 0.1 0.50×1.1 0.1 0.2 3.8 4.4 3.3	Vunit Ass. pol: 1 unit/unit Doese 1 (1) (2) (3) (4) 2.6 2.2 1.9 1/10 1.2 1.3 1.0 1.0 1.0 1.1 Doeses (1) (2) (3) (4) 3.8 3.8 3.8 3.8 3.8 1/5 4.0 3.6 3.3 3.4 De 4	Numint Ass. pol. 1 Unit/Unit Doses (1) (2) (3) (4) (2) (3) (4) 1/10 1.2 1.3 1.0 1.0 3.8 3.8 3.8 1/10 1.2 1.3 1.0 1.0 2.6 2.2 1.9 1.15 4.0 3.6 3.3 3.4 2.8 3.8 3.8 3.8 1.5 4.0 3.6 3.3 3.4 2.8 3.3 2.8 1.15 4.0 3.6 3.4 1.15 3.6 1.0 1.1 2.8 3.3 2.8 1.16 E - Ass. pot. 1 1.011/Unit Doses 1.1 1.2 3.0 3.0 2.8 3.3 2.8 1.75 4.4 3.3 3.5 3.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>Vunit Ass. pol. 1 unit/unit Doess (1) (2) (3) (4) (2) (3) (4) 1/10 1.2 1.3 1.0 1.0 3.8 3.8 3.8 3.8 1/10 1.2 1.3 1.0 1.0 3.8 3.8 3.8 3.8 1/15 4.0 3.6 3.3 3.4 De 4 </td> <td>Vanit Ass. pol. 1 unit/unit Does (1) (2) (3) (4) (2) (3) (4) 1/10 1.2 (3) (4) 1/10 1.2 (3) (4) 1/10 1.2 (3) (4) 1/15 4.0 3.6 3.3 3.4 Imit/unit Doess (1) (2) (3) (4) 1/15 4.0 3.6 3.3 3.4 Imit/unit Doess (1) (2) (3) (4) 1/15 3.6 3.0 0.0 2.9 Imit/unit Doess Imit/unit Doess Imit/unit Imit/unit Doess Imit/unit Doess Imit/unit I</td> <td>Current (2) Ass. pol. 1 unit/unit Ass. pol. 1 unit/unit Ass. pol. 1 unit/unit Doses (1) (2) (3) (4) 2.6 2.2 1.9 1/10 1.2 1.3 1.0 1.0 1.0 1.5 1.0 0.0 0.6 1/30 3.8 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c$</td></t<></td>	Vunit Ass. pol. 1 unit/unit Doess (1) (2) (3) (4) (2) (3) (4) 1/10 1.2 1.3 1.0 1.0 3.8 3.8 3.8 3.8 1/10 1.2 1.3 1.0 1.0 3.8 3.8 3.8 3.8 1/15 4.0 3.6 3.3 3.4 De 4	Vanit Ass. pol. 1 unit/unit Does (1) (2) (3) (4) (2) (3) (4) 1/10 1.2 (3) (4) 1/10 1.2 (3) (4) 1/10 1.2 (3) (4) 1/15 4.0 3.6 3.3 3.4 Imit/unit Doess (1) (2) (3) (4) 1/15 4.0 3.6 3.3 3.4 Imit/unit Doess (1) (2) (3) (4) 1/15 3.6 3.0 0.0 2.9 Imit/unit Doess Imit/unit Doess Imit/unit Imit/unit Doess Imit/unit Doess Imit/unit I	Current (2) Ass. pol. 1 unit/unit Ass. pol. 1 unit/unit Ass. pol. 1 unit/unit Doses (1) (2) (3) (4) 2.6 2.2 1.9 1/10 1.2 1.3 1.0 1.0 1.0 1.5 1.0 0.0 0.6 1/30 3.8 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c$</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c $

Agar diffusion	_								*	
Agar diffusio									4	-
									<u>^</u>	* +
0										^
	-1- 4		Г		0	-1- 0				
Samp					Samp					
Lowor limit	A	Linnor limit	10	I. upit/upit)	Lower limit	D Ectimato	Linnor limit			
0.723656	0.787131	0.854740		otency	0.643410	0.701138	0.762148			
72.4%	78.7%	85.5%			64.3%	70.1%	76.2%			
01.0%	100.0%	108.6%		el to Est	04.3%	100.0%	108.7%			
31.370	100.070	100.070	<u> </u>	.ei. io Lai.	31.070	100.078	100.770			
	-1- 0		Г		0	-1- 4				
Samp	Die 3		-		Samp	Die 4				
Louis - Parti	C	Linner Press		l.	Louis Part	D	Linner Fred			
Lower limit	Estimate	Opper limit	((nit/unit)	Lower limit	Estimate	o 729497			
2.28802	2.48709	2.09994	E H	olency	0.022825	0.079114	0.73848/			
220.8%	240.7%	270.0%	F	el to Est	02.3%	100.0%	109.7%			
92.0%	100.0%	100.0%	L R	ei. IU ES(.	91.770	100.0%	100.770			
			_							
Samp	ble 5				Samp	ole 6				
	Ë		lo	I. 		F				
Lower limit	Estimate	Upper limit	(1	init/unit)	Lower limit	Estimate	Upper limit			
0.784508	0.852507	0.925366	Ľ	otency	1./1421	1.86142	2.02025			
/8.5%	85.3%	92.5%	E	el to Fot	02.4%	100.0%	202.0%			
92.0%	100.0%	100.5%	LR	ei. IU ESI.	92.1%	100.0%	100.5%			
-										
Samp	ole 7									
Louis - Pro-11	G	Linner Press								
Lower limit	Estimate	Opper limit								
76.0%	0.025/29	0.090413								
92.0%	100.0%	108.6%								
02.070	100.070	100.070								
es	Standard	/.	Sam	ple 1	Sam	ple 2	Sample	23	Samp	le 4
	72.4% 91.9% Samp Lower limit 2.28802 228.8% 92.0% Samp Lower limit 0.784508 78.5% 92.0% Samp Lower limit 0.759601 76.0% 92.0% es	72.4% 78.7% 91.9% 100.0% Sample 3 C Lower limit Estimate 2.28802 2.48709 228.8% 248.7% 92.0% 100.0% Sample 5 E Lower limit Estimate 0.784508 0.852507 78.5% 85.3% 92.0% 100.0% Sample 7 G Lower limit Estimate 0.784508 0.852507 78.5% 85.3% 92.0% 100.0% Sample 7 G Lower limit Estimate 0.76.0% 82.6% 92.0% 100.0%	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Sample 3 C Lower limit Estimate Upper limit 2.28.8% 248.7% 270.0% 92.0% 100.0% 108.6% Sample 5 E Lower limit Estimate Upper limit 0.784508 0.852507 0.925366 78.5% 92.0% 100.0% 108.5% Sample 7 G Lower limit Estimate Upper limit 0.76.0% 82.6% 89.6% 92.0% 100.0% 108.6% Standard S 92.0% 100.0% 108.6% 92.0% 100.0% 108.6%	72.4% 78.7% 85.5% R 91.9% 100.0% 108.6% R Sample 3 C Ic Ic Lower limit Estimate Upper limit ((2.28802 2.48709 2.69994 P 228.8% 248.7% 270.0% P 92.0% 100.0% 108.6% R Sample 5 Lower limit Estimate Upper limit 0.784508 0.852507 0.925366 78.5% 85.3% 92.5% 92.0% 100.0% 108.5% Sample 7 G Cover limit Estimate 0.76.0% 82.6% 89.6% 92.0% 100.0% 108.6%	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Sample 3 Id. Lower limit Estimate Upper limit 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Id. (unit/unit) Detect 2.28.8% 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Id. (unit/unit) Dotency Rel. to Ass. Rel. to Ass. Rel. to Ass. 92.0% 100.0% 108.6% Id. (unit/unit) Dotency Rel. to Ass. 82.0% 92.5% 92.0% 92.0% 100.0% 108.5% Sample 7 G Cover limit 0.76.0% 82.6% 89.6% 92.0% 100.0% 108.6% Standard S Sample 1 A A	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Sample 3 Id. C Id. Lower limit Estimate Upper limit 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Sample 5 Id. (unit/unit) Lower limit Estimate Upper limit 0.784508 0.852507 0.925366 78.5% 85.3% 92.5% 92.0% 100.0% 108.6% Sample 7 G C Lower limit Estimate Upper limit 0.78.5% 82.6% 89.6% 92.0% 100.0% 108.6%	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Rel. to Ass. 64.3% 70.1% Sample 3 100.0% 108.6% C Lower limit Estimate Upper limit 228.8% 248.7% 270.0% 92.0% 0.622825 0.679114 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Sample 5 Lower limit Estimate Upper limit 0.622825 0.679114 Rel. to Ass. 62.3% 67.9% 82.6% 82.6% 82.6% 92.0% 100.0% 108.6% 84.6% 84.6% 84.6% 84.6% 92.0% 100.0% 108.5% 89.6% 92.0% 100.0% 108.6% Standard Sample 1 A A B B 92.0% 100.0% 108.6% 92.0% 100.0% 108.6% Standard S S Sample 1 A B B <tr< th=""><th>72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Sample 3 C Lower limit Estimate Upper limit 228.8% 248.7% 270.0% 92.0% 00.0% 108.6% Sample 4 Id. D 0.622825 0.679114 0.738487 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Sample 5 Lower limit Estimate Upper limit 0.622825 0.679114 0.738487 Rel. to Ass. 62.3% 67.9% 73.8% Rel. to Ass. 62.3% 67.9% 73.8% 92.0% 100.0% 108.6% Rel. to Ass. 100.0% 108.7% Rel. to Ass. 114.% 186.142 2.020.25 78.5% 85.3% 92.5% 92.0% 100.0% 108.5% Rel. to Est. 92.1% 100.0% 108.5% Sample 7 G C B C C Sample 7 Sample 2 Sample 2</th><th>72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Rel. to Ass. 64.3% 70.1% 76.2% Sample 3 0 108.6% 100.0% 108.7% Sample 4 Lower limit Estimate Upper limit D 0.00.0% 108.7% 228.8% 248.7% 270.0% 92.0% 0.622825 0.679114 0.738487 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Rel. to Ass. 62.3% 67.9% 73.8% 92.0% 100.0% 108.6% Rel. to Ass. 62.3% 67.9% 73.8% Sample 5 E 100.0% 108.6% Rel. to Ass. 171.4% 100.0% 108.7% Sample 5 Sample 6 Id. F Id. F Id. Id. F Id. Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Est. 92.1% 100.0% 108.5% Rel. to Est. 92.1%</th><th>72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Rel. to Ass. 64.3% 70.1% 76.2% C 0.6794 100.0% 108.7% Sample 4 Id. D 0.738467 0.73.8% 92.0% 100.0% 108.6% 100.0% 108.7% Sample 5 Id. F 100.0% 108.7% Sample 6 Id. F 100.0% 108.7% Sample 6 Id. F 100.0% 108.5% Sample 7 G G 89.6% 92.0% 100</th></tr<>	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Sample 3 C Lower limit Estimate Upper limit 228.8% 248.7% 270.0% 92.0% 00.0% 108.6% Sample 4 Id. D 0.622825 0.679114 0.738487 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Sample 5 Lower limit Estimate Upper limit 0.622825 0.679114 0.738487 Rel. to Ass. 62.3% 67.9% 73.8% Rel. to Ass. 62.3% 67.9% 73.8% 92.0% 100.0% 108.6% Rel. to Ass. 100.0% 108.7% Rel. to Ass. 114.% 186.142 2.020.25 78.5% 85.3% 92.5% 92.0% 100.0% 108.5% Rel. to Est. 92.1% 100.0% 108.5% Sample 7 G C B C C Sample 7 Sample 2 Sample 2	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Rel. to Ass. 64.3% 70.1% 76.2% Sample 3 0 108.6% 100.0% 108.7% Sample 4 Lower limit Estimate Upper limit D 0.00.0% 108.7% 228.8% 248.7% 270.0% 92.0% 0.622825 0.679114 0.738487 228.8% 248.7% 270.0% 92.0% 100.0% 108.6% Rel. to Ass. 62.3% 67.9% 73.8% 92.0% 100.0% 108.6% Rel. to Ass. 62.3% 67.9% 73.8% Sample 5 E 100.0% 108.6% Rel. to Ass. 171.4% 100.0% 108.7% Sample 5 Sample 6 Id. F Id. F Id. Id. F Id. Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Ass. 171.4% 186.1% 202.0% Rel. to Est. 92.1% 100.0% 108.5% Rel. to Est. 92.1%	72.4% 78.7% 85.5% 91.9% 100.0% 108.6% Rel. to Ass. 64.3% 70.1% 76.2% C 0.6794 100.0% 108.7% Sample 4 Id. D 0.738467 0.73.8% 92.0% 100.0% 108.6% 100.0% 108.7% Sample 5 Id. F 100.0% 108.7% Sample 6 Id. F 100.0% 108.7% Sample 6 Id. F 100.0% 108.5% Sample 7 G G 89.6% 92.0% 100

A.2.15 Example 18.2.1.

A.3 Miscellaneous other examples

A.3.1 Diphtheria vaccine, intradermal challenge

Substance	Diphteria va	ccine	Remark	IS:					★
Method	Intradermal	challenge							[⊥] ★.
									* *
Si Ass. not	andard		Sa	mple 1					
ASS. DOL.	(1) (2) (3)		is. pol.	(1) (2) (3) (4)					
0.2 dose	4 4 3	4 0	08 dose	2 4 4 4					
0.1 dose	2 3 2	2 0.	04 dose	2 2 2 2					
0.05 dose	0 0 1	0 0.	02 dose	1 1 0 1					
Model: Paral	lel lines				Common slo	pe(factor) = 9	.46769 (7	.57410 to 1	1.3613)
Design: Corr	pletely rando	mised			Correlation	r : 0.880367			
Transformati	on: y' = y^2								
variance: Ot	iserved residi	uais							
Source of	variation	Degrees o	f freedom	Sum of squares	Mean square	F-ratio	Proh	ability	
Preparations	3	1		2.66667	2.66667	0.291	0.596		
Regression		1		689.063	689.063	75.170	0.000	(***)	
Non-parallel	ism	1		3.06250	3.06250	0.334	0.570		
Non-linearity		2		32.7083	16.3542	1.784	0.196		
Standard	1	1		10.6667	10.6667	1.164	0.295		
Sample	1	1		22.0417	22.0417	2.405	0.138		
I reatments		5		727.500	145.500	15.873	0.000	(***)	
Residual err	Dr	10	5	165.000	9.10007				
Iotai		Ζ.	5	092.500	30.0043				
Potency Rel. to Ass. Rel. to Est.	16.6014 174.8% 75.0%	22.1352 233.0% 100.0%	29.2553 308.0% 132.2%	<u>}</u>					
Rei. IU ESI.	10.0%	100.0 %	132.270						
All samp	les / . / .	Standard		Sample 1					
Executed by:		Ca	culated by:		Approved by:				

A.3.2 Erythromycin, agar diffusion (assay 1)

<i>ambis<u>tat</u>s</i> Ve	ersion 7.0. Frid	day, 15 Octol	oer 2021, 12	2:00:00 [+01:00]. Pa	age 1 of 1			* * * * *
Project En Assay 1	/thromycin							* * * * **
St	andard		Samp	le 1				
Ass. Pot. 9	20 IU / mg	Ass	. Pot. 1000) IU / mg				
Pre-dil. 1 2	1.3 mg / 20 m	nl Pre-	dil. 1 26.4	mg / 25 ml				
Doses	S1 S2 S	S3 Dos	es T1	T2 T3				
(1)	185 192 2	10	(1) 172	201 214				
(2)	185 199 2	16	(2) 178	205 212				
(3)	174 200 2	11	(3) 185	196 216				
(4)	175 198 2	16	(4) 184	196 208				
(5)	185 201 2	11	(5) 175	201 218				
(6)	180 194 2	11	(6) 178	197 214				
Model: Para Design: Ran Transformat Variance: Ol Dilution step	llel lines domised bloc ion: y' = y oserved residu (Increasing):	k uals 1.5			Common slo Correlation	ope(factor) = 41 r : 0.966561	.2078 (37.6872 to 4	44.7284)
Source -	fuoriation	Dograda -	froodom	Sum of course-	Moon	Erotio	Probability	
Source o	r variation	Degrees of	Treedom	Sum of squares	Mean square	F-ratio	Probability	
Preparation	5	1		1.30111	1.36111	0.081	0.778	
Regression	1	1		6700.04	6700.04	399.737	0.000 (****)	
Non-paralle	ISM	1		15.0417	15.0417	0.897	0.353	
Non-linearity		2		42.3611	21.1806	1.264	0.300	
Standar	1	1		2.25000	2.25000	0.134	0.717	
Sample	1	1		40.1111	40.1111	2.393	0.134	
Quadratic ci	urvature	1		30.6806	30.6806	1.830	0.188	
Lack of qua	dratic fit	1		11.6806	11.6806	0.697	0.412	
Treatments		5		6758.81	1351.76	80.649	0.000 (^^^)	
BIOCKS		5		67.1389	13.4278	0.801	0.559	
Total	01	35	5	7244.97	206.999			
			·			•	•	
	Sam	ple 1		_				
(IU/mg)	Lower limit	Estimate	Upper limi	t				
Potency	874.648	936.639	1003.23					
Rel. to Ass.	87.5%	93.7%	100.3%	_				
Rel. to Est.	93.4%	100.0%	107.1%					
All samp	iles	Standard		Sample 1				
			/.					
Executed by		Cal	culated by:		Approved by:			

A.3.3 Erythromycin, agar diffusion (assay 2)

A.3.4 Erythromycin, agar diffusion (assay 3)

<i>[ambⁱ5]als</i> Vei	rsion 7.0. Fri	day, 15 Octob	oer 2021, 1	2:00:00 [+01:00]. Pa	age 1 of 1			* * *
Project Ery Assay 3	thromycin							*
r								^ ★ ^
Sta	andard		Samp	ble 1				
Ass. Pot. 92	20 IU / mg	Ass.	Pot. 100	0 IU / mg				
Pre-dil. 1 2	1.5 mg / 20 n	nl Pre-	dil. 1 26 r	ng / 25 ml				
Doses 3	51 52 3	53 D05	es In	12 13				
(1) 1	01 207 2	22 (1) 18:	207 218				
(2) 1	00 208 2	20 (2) 100	200 220				
(3)	02 210 2	27 ((1) 100	210 222				
(5) 1	91 202 2	26 (5) 18	3 208 218				
(6) 1	94 215 2	27 (6) 194	1 208 228				
Model: Parall Design: Rand Transformatio Variance: Ob Dilution step	lel lines domised bloc on: y' = y served reside (Increasing):	k uals 1.5			Common slope Correlation r	e(factor) = 41.105 : 0.989129	(39.1533 to 43.05	68)
Source of	variation	Degrees of	freedom	Sum of squares	Mean square	F-ratio	Probability	1
Preparations	Vanadon	1	noodoni	13.4444	13.4444	2.610	0.119	
Regression		1		6666.67	6666.67	>1000	0.000 (***)	
Non-paralleli	sm	1		1.50000	1.50000	0.291	0.594	
Non-linearity		2		20.9444	10.4722	2.033	0.152	
Standard		1		0.694444	0.694444	0.135	0.717	
Sample 1	1	1		20.2500	20.2500	3.931	0.058	
Quadratic cu	rvature	1		14.2222	14.2222	2.761	0.109	
Lack of quad	ratic fit	1		6.72222	6.72222	1.305	0.264	
Treatments		5		6702.56	1340.51	260.237	0.000 (***)	
Blocks		5		162.222	32.4444	6.299	0.001 (***)	
Residual erro	or	25		128.778	5.15111			
Total				0000.00	100.010			1
	Sam	ple 1		7				
(IU/mg)	Lower limit	Estimate	Upper lim	it				
Potency	888.590	923.102	958.767					
Rel. to Ass.	88.9%	92.3%	95.9%					
Rel. to Est.	96.3%	100.0%	103.9%					
All sampl	les	Standard		Sample 1				
			<u>/</u>					
Executed by:		Cal	culated by:		Approved by:			
Filename:V	A304 Erythro	mycin Assay	3 PLA Bloo	ks.epa. ID: EDQM/I	DBO/FRA			

A.3.5 Erythromycin, combination of assays

A.3.6 Erythropoetin rDNA, normocythaemic mice

Substance	Erythro	poietin	rDNA		Remarks	S:					r.
Method	Normo	cythaen	nic assay	in mice							*
											^ *
	<u> </u>							-			
Sampla	Standa		tob 1	Sampla	Samp	le 1		_			
Sample F	2500 III			Sample Ass. pot	120000	II I/ma		-			
Doses	10 11 1	20 11 1	40 11 1	Doses	10 11	20 11 1	40 11				
(1)	1679	1377	1853	(1)	1010	950	2715	·			
(2)	1728	2245	2299	(2)	1536	1172	2325	<u> </u>			
(3)	1127	2359	2298	(3)	1243	2124	2163	•			
(4)	1465	1907	2216	(4)	1526	1748	2175	;			
(5)	1765	1388	2967	(5)	1531	1761	1531				
(6)	1367	1725	2457	(6)	1706	1970	1947	,			
(7)	922	2467	1180	(7)	953	1753	1781				
(8)	1070	1808	2439	(8)	1327	2040	2280				
Transformat	tion: y' = bserved	y residua	lls								
Source of	of variatio	n	Degrees	of freedom	Sum	of squar	es	Mean square	F-ratio	Probability	
Preparation	s			1	161820			161820	1.007	0.322	
Regression				1	4.9	97465E+	-06	4.97465E+06	30.965	0.000 (***)	
Non-paralle	lism			1	9625.	78		9625.78	0.060	0.808	
Non-linearit	у			2	73889.4	4		36944.7	0.230	0.796	
Standar	d			1	61633.3	3		61633.3	0.384	0.540	
Sample	1			1	12256.0)		12256.0	0.076	0.784	4
Quadratic c	urvature			1	9460.	51		9460.51	0.059	0.810	4
Lack of qua	dratic fit			1	64428.8	3		64428.8	0.401	0.531	-
Treatments				5	5.2	21998E+	-06	1.04400E+06	6.498	0.000 (^^^)	-
DIUCKS Decidual or	ror	-		/ 25	639174	20002	06	119002	0.740	0.035	-
Total	101			17	1.	16820E+	-00	248553			-
Total				,,	1.	100202	07	240333			_
		Sample	0.1		-						
Sample	1	Sampi	Teet		-						
(ILI/ma)	Lower	limit	Estimate	I Inner lin	nit						
Potency	6035	5.0	97841.0	148972							
Rel. to Ass.	50.3	3%	81.5%	124.1%							
Rel. to Est.	61.7	7%	100.0%	152.3%							
All samp	oles	Ph.	Standar Eur. BRP I	d Batch 1	Samp Tes	le 1 t					

A.3.7 Factor IX, coagulation

A.3.8 Factor VIII, chromogenic

	Factor VIII	concent	rate		Remarks:							*
Method	Chromoger	nic assa	y of Fac	tor VIII								*.
												^ *
	0.				[-				_		
Sampla	Stan	DDD D	atob 2		Sampla	Sar	nple 1			_		
Ass not	7210	ial	atonz		Ass not	500 II	J/vial			_		
Reconstitutio	on 1 vial /	1 ml			Reconstitution	1 vial	/ 5 ml			_		
Pre-dil. 2	1 ml / 7	.2 ml			Pre-dil. 2	1 ml /	100 ml					
Pre-dil. 3	1 ml / 5	0 ml			Pre-dil. 3	1 ml /	50 ml					
Doses	S1	S2	S3	0 IU	Doses	T1	T2	Т3				
(1)	0.133	0.215	0.299	0.022	(1)	0.120	0.188	0.254		_		
(2)	0.133	0.215	0.299	0.024	(2)	0.119	0.188	0.253		_		
(3)	0.131	0.216	0.299	0.024	(3)	0.118	0.190	0.255		_		
(4)	0.130	0.218	0.297	0.025	(4)	0.120	0.190	0.258		_		
(5)	0.136	0.220	0.207	0.020	(6)	0.120	0 191	0.257		_		
(7)	0.138	0.219	0.299	0.022	(7)	0.121	0.191	0.255		_		
(8)	0.137	0.218	0.302	0.023	(8)	0.121	0.190	0.254		_		
Number of n	on-zero dos	es (Incre	easing):	3								
Source of	variation	Degr	ees of f	reedom	Sum of squares	6	Mean	square		F-ratio	Proba	ability
Source of Regression	variation	Degr	rees of f	reedom	Sum of squares 0.191697	3	Mean 0.09	square 958483		F-ratio >1000	Proba	ability (***)
Source of Regression Intersection	variation	Degr	rees of fr 2 1 2	reedom	Sum of squares 0.191697 2.97619E-09	9	Mean 0.09 2.97	square 958483 7619E-09	9	F-ratio >1000 0.001	Proba 0.000 0.978	ability (***)
Source of Regression Intersection Non-linearity Standard	variation	Degi	rees of f 2 1 2 1	reedom	Sum of squares 0.191697 2.97619E-09 2.30208E-09 3.333333E-00	s 9 5 7	Mean 0.09 2.97 1.15 3.33	square 58483 619E-09 5104E-09 3333E-07	9	F-ratio >1000 0.001 2.984 0.086	Proba 0.000 0.978 0.061 0.770	ability (***)
Source of Regression Intersection Non-linearity Standard Sample	variation	Degi	rees of f 2 1 2 1 2 1 1	reedom	Sum of squares 0.191697 2.97619E-09 2.30208E-09 3.33333E-00 2.26875E-09	3 9 5 7 5	Mean 0.09 2.97 1.15 3.33 2.26	square 958483 7619E-09 104E-09 3333E-07 6875E-09	9 5 7 5	F-ratio >1000 0.001 2.984 0.086 5.882	Proba 0.000 0.978 0.061 0.770 0.020	ability (***) (*)
Source of Regression Intersection Non-linearity Standard Sample 7 Treatments	i variation		rees of f 2 1 2 1 1 5	reedom	Sum of squares 0.191697 2.97619E-00 2.30208E-00 3.33333E-00 2.26875E-00 0.191720	5 9 5 7 5	Mean 0.09 2.97 1.15 3.33 2.26 0.03	square 958483 7619E-09 104E-09 3333E-07 3875E-09 883439	9 5 7 5	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (***)
Source of Regression Intersection Non-linearity Standard Sample 7 Treatments Residual erro	variation		rees of f 2 1 2 1 1 5 42	reedom	Sum of squares 0.191697 2.97619E-00 2.30208E-00 3.33333E-00 2.26875E-00 0.191720 0.00016200	3	Mean 0.09 2.97 1.15 3.33 2.26 0.03 3.85	square 958483 7619E-09 5104E-09 3333E-07 3875E-09 383439 5714E-00	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (***)
Source of Regression Intersection Non-linearity Standard Sample ' Treatments Residual erro Total	variation	Degi	rees of f 2 1 2 1 1 5 42 47	reedom	Sum of squares 0.191697 2.97619E-00 2.30208E-00 3.33333E-0 2.26875E-00 0.191720 0.00016200 0.191882	3 9 5 7 5 5 0	Mean 0.09 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 958483 7619E-05 9104E-05 9333E-07 9875E-05 983439 9714E-06 9408259	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (*) (*)
Source of Regression Intersection Non-linearity Standard Sample ' Treatments Residual erro Total	variation		rees of f 2 1 2 1 1 5 42 47	reedom	Sum of squares 0.191697 2.97619E-09 2.30208E-0 3.33335E-0 2.26875E-0 0.191720 0.00016200 0.191882	s 9 5 7 5 0	Mean 0.09 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 558483 7619E-05 5104E-05 3333E-07 3875E-05 383439 5714E-06 9408259	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (*) (***)
Source of Regression Intersection Non-linearity Standard Sample - Treatments Residual erro Total	variation	Degi	rees of f 2 1 2 1 1 5 42 47	reedom	Sum of squares 0.191697 2.97619E-09 2.30208E-0 3.33333E-0 2.26875E-0 0.191720 0.00016200 0.191882	5 9 5 7 5 0	Mean 0.09 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 558483 619E-05 5104E-05 3333E-07 5875E-05 5875E-05 583439 5714E-06 1408259	9 5 7 5 3	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (*) (*)
Source of Regression Intersection Non-linearity Standarc Sample Treatments Residual erro Total	variation	Degi Degi nple 1 Batch	rees of f 2 1 2 1 1 5 42 47 1999	reedom	Sum of squares 0.191697 2.97619E-09 2.30208E-00 3.33333E-00 2.26875E-00 0.191720 0.00016200 0.191882	S	Mean 0.05 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 558483 619E-05 5104E-05 3333E-07 875E-05 883439 5714E-06 1408259	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (***)
Source of Regression Intersection Non-linearity Standard Sample Treatments Residual erro Total Sample (IU/vial) Potency	variation	Degi Degi nple 1 Batch t Estin 411	rees of f 2 1 2 1 1 5 42 47 1 999 mate 1 573	Upper limit	Sum of squares 0.191697 2.97619E-09 2.30208E-09 3.33333E-07 2.26875E-09 0.191720 0.00016200 0.191882	s	Mean 0.09 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 58483 619E-05 5104E-05 3333E-05 875E-05 883439 5714E-06 408259	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (*) (*)
Source of Regression Intersection Non-linearity Standarc Sample Treatments Residual errn Total Sample (IU/vial) Potency Rel: to Ass	variation	Degr nple 1 Batch t Estin 411 82	rees of f 2 1 2 1 5 42 47 1 999 nate 1 573 3%	reedom	Sum of squares 0.191697 2.97619E-02 2.30208E-02 3.33333E-0 2.26875E-0 0.191720 0.00016200 0.191882	s 99 55 77 55 00 0	Mean 0.05 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 58483 619E-05 5104E-05 5333E-05 5875E-05 583439 5714E-06 5408259	9 5 7 5 3	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Proba 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (*) (*) (*) (*)
Source of Regression Intersection Non-linearity Standard Sample Treatments Residual error Total Sample (IU/vial) Potency Rel. to Ass. Rel. to Est.	Variation	Degi ple 1 Batcl t Estin 411 82. 100	rees of f 2 1 2 1 5 42 47 47 1999 mate 1 .573 3% .0%	Upper limit 414.607 82.9% 100.7%	Sum of squares 0.191697 2.97619E-00 2.30208E-00 3.33333E-00 2.26875E-00 0.191720 0.00016200 0.191882	s 9 5 7 5 0 0 1	Mean 0.05 2.97 1.15 3.33 2.26 0.03 3.85 0.00	square 958483 7619E-05 6104E-05 3333E-07 8875E-05 883439 6714E-06 9408259	9 5 7 5 6	F-ratio >1000 0.001 2.984 0.086 5.882 >1000	Prob/ 0.000 0.978 0.061 0.770 0.020 0.000	ability (***) (***) (*) (*) (**)

A.3.9 Heparin sodium, clotting

A.3.10 Hepatitis A vaccine, immunogenicity (in vivo)

Гуре								
	A							*
Assay	Immunogeni	ity						* ;
	Standard			Sample 1				
Sample	Ph. Eur. BRP E	atch 1	Sample	Batch 345999				
Ass. pot.	37 IU / ml		Ass. pot.	40 IU / ml				
Doses	(1)		Doses	(1)				
1/24	7/10		1/24	6/10				
1/48	7/10		1/48	5/10				
1/96	3/10		1/96	1/10				
1/192	1/10		1/192	0/10				
1/384	1/10		1/384	0/10				
Andal: Our	antal responses				Common slope	(factor) = 0.024026	(0.627595 to 1.242	27)
Design: Co	mpletely rando	nised			Correlation I r	: 0.930566 (Weights	(0.02700010 1.242 ad)	
Fransform	tion: v' = probit	v)				. 5.555556 (Weighte	,	
Theoretica	variance: 1	<i></i> /						
Source	of variation	Degrees of	of freedom	Sum of squares	Mean square	Chi-square	Probability]
Preparatio	าร		1	1.05446	1.05446	1.05446	0.304	
Regression	ı		1	25.0362	25.0362	25.0362	0.000 (***)	1
Non-parall	elism		1	0.966516	0.966516	0.966516	0.326	1
Non-linear	ty	6	6	3.07224	0.512041	3.07224	0.800	1
Standa	rd		3	1.88308	0.627693	1.88308	0.597	
Sample	e 1		3	1.18917	0.396389	1.18917	0.756	
Freatments	3	9	9	30.1294	3.34771	30.1294	0.000 (***)	
Theoretica	l variance				1.00000			
Total		ę	9	30.1294	3.34771]
				-				
	Sam	le 1		4				
Sample	E	atch 34599	99	-				
IU/ml)	Lower limit	Estimate	Upper limit	4				
otency	9.01185	19.6497	37.9049	4				
≺el. to Ass	. 22.5%	49.1%	94.8%	-				
rei. 10 Est	45.9%	100.0%	192.9%					
All sam	ples	Standard	d	Sample 1				
	Pr	. Eur. BRP E	Batch 1	Batch 345999				
	./.		/					
	///	/	/	/				
	/ /	/		. /				
/	'/							
-		-						
_ / /	/	/						
.].].		.].						
\sim		~		<u>~</u>				
	,		∟					
xecuted b	y:	Ca	alculated by:		Approved by:			

A.3.11 Hepatitis B vaccine, antigen content by ELISA

A.3.12 Hepatitis A immunoglobulin, ELISA

Substance	luman Hepa	atitis A immur	oglobulir	Remark	s:						*
Method I	Elisa										*_
											*
	Otavada i				01- 4						
Sample	Standard Ph Fur	BRP Batch 1		ample	Sample 1	K00755					
Ass. pot	10.2 IUA	rial		ss. pot.	600 II I/a	mpoule					
Reconstitution	1 vial / m	 I		econstitution	1 ampol	ile / ml					
Doses	(1)	(2) (3)		oses	(1)	(2)	(3)				
0.080 IU	0.077	0.079 0.08	0	0.080 IU	0.040	0.042	0.035				
0.040 IU	0.206	0.204 0.21		0.040 IU	0.136	0.128	0.136				
0.020 IU	0.401	0.409 0.41		0.020 IU	0.297	0.29	0.302				
0.010 IU	0.633	0.629 0.64	9	0.010 IU	0.502	0.508	0.518				
lodel: Paralle Design: Comp Transformatio Transce: Obs	el lines eletely rando n: y' = sqrt(y erved reside	mised /) uals				Corr Corr	imon slo elation	pe(factor) r : 0.9995	= -0.249882 (-(514).252565 to	-0.247200
Source of	variation	Degrees of	freedom	Sum of s	quares		Mean sq	uare	F-ratio	Prob	ability
Preparations		1		0.046	2082		0.0462	082	>1000	0.000	(***)
Regression		1		0.900	001		0.9000	01	>1000	0.000	(***)
Non-parallelis	m	1		4.460	96E-06		4.4609	6E-06	0.131	0.722	
Non-linearity		4		0.000	372149	_	9.3037	2E-05	2.734	0.066	
Standard		2		0.000	301770		0.0001	50885	4.433	0.029	(*)
Sample 1		2		7.037	91E-05		3.5189	6E-05	1.034	0.378	
ack of quadr	valure atic fit	1		0.146	310687	+	0.1401	02562	1.806	0.198	
Freatments	440 m	7		0.946	586		0.1352	27	>1000	0.000	(***)
Residual erro	r	, 16		0.000	544535		3.4033	5E-05	1.000	5.000	· /
Total		23		0.947	131		0.0411	796			
Sample IU/ampoule)	San Lower lim	nple 1 Batch 35K09 it Estimate	755 Upper	limit							
Potency	835.028	852.459	870.3	357							
Rel. to Ass.	139.2%	142.1%	145.	1%							
Rel. to Est.	98.0%	100.0%	102.	1%							
	PI	Standard	tch 1	Sample 1 Batch 35K09	755						
xecuted by:		Cal	ulated by	<i>r</i> :	,	Approve	d by:				

م المتلخ Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1 * \star * Remarks: Substance Human rabies immunoglobulin Method RFFIT Assay date 31/12/1999 Standard Sample 1 Sample Ph. Eur. BRP Batch 1 Sample Batch 9999999 91 IU/vial 150 IU/ml Ass. pot. Ass. pot. Reconstiturion 1 vial / 1 ml Pre-dil. 1 1 ml / 80 ml 1 ml / 50 ml Pre-dil. 2 Doses (1) (2) Doses (1) (2) 1/8 3/20 1/10 1/20 3/20 1/10 4/20 1/20 7/20 11/20 1/16 7/20 1/40 16/20 16/20 1/20 7/20 1/80 20/20 20/20 16/20 1/32 1/40 15/20 1/64 20/20 1/80 20/20 Model: Quantal responses Common slope(factor) = -1.53264 (-1.76609 to -1.29919) Design: Completely randomised Correlation | r |: 0.957788 (Weighted) Transformation: y' = probit(y) Theoretical variance: 1 Source of variation Degrees of freedom Sum of squares Mean square Chi-square Probability Preparations 1 0.00292547 0.00292547 0.00292547 0.957 Regression 1 116.611 116.611 116.611 0.000 (***) Non-parallelism 1 0.659508 0.659508 0.659508 0.417 Non-linearity 8 7.23974 0.904967 7.23974 0.511 6.38514 1.06419 6.38514 0.381 Standard 6 0.854600 0.427300 0.854600 Sample 1 2 0.652 Treatments 11 124.514 11.3194 124.514 0.000 (***) Residual error 4 2.60625 0.651563 2.60625 0.626 Theoretical variance 1.00000 Total 15 127.120 8.47466 Sample 1 Sample Batch 9999999 (IU/ml) Lower limit Estimate Upper limit Potency 126.054 158.663 199.623 Rel. to Ass. 84.0% 105.8% 133.1% Rel. to Est. 79.4% 100.0% 125.8% All samples Standard Ph. Eur. BRP Batch 1 Sample 1 Batch 9999999 Executed by: Calculated by: Approved by: Filename: ...\A313 Rabies Ig Content Quantal Probit.epa. ID: EDQM/DBO/FRA

A.3.13 Rabies immunoglobulin, RFFIT

A.3.14 Tetanus vaccine, lethal challenge

Method Test in guinee.pigs Sample Ph. Eur. BRP Batch 1 Ass. pot. Sample 1 Batch 055509a Ass. pot. Sample 1 Conversion Reconstitution 1 ampoule (2 rml 11/1 Sample 1 (1) 11/1 Sample 1 Conversion Sample 1 Conversion Doese (1) 11/1 12/12 11/2 11/1 12/12 11/2 11/1 Node: Countal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Correlation r : 0.952888 (Weighted) Design: Completely randomised Correlation r : 0.952888 (Weighted) Transformation: = probit(y) Correlation r : 0.952888 (Weighted) Non-inearity 4 1.17164 0.282909 Non-inearity 4 1.175964 1.75964 Non-inearity 4 1.17164 0.822909 Sample 1 0.000117213 0.000117213 Sample 2 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 Sample 1 2 0.0377184 0.981 Sample 1 10.0000 1 1	stance T	etanus vaco	cine (adsorbe	d) Re	emarks:						*	
Standard Sample Ph. Eur. BRP Batch 1 Ass. pot. 250 IU/ampoule Reconstitution 1 ampoule 1 2 ml Sample Doese (1) 11 12/12 12 81/2 14 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 31/2 1/4 0/12 1/8 0/12 1/8 0/12 Mode: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Transformation: P archity: Transformation: P archity: Design: Completely andomised Tearsformation: P archity: Design: Completely andomised Regression 1 28.7961 28.7961 0.000117213 0.000117213 0.000117213 0.000117213 Non-Inearity 4 1.17164 0.292909 1.17164 0.885 Sample 1	hod T	est in quine	a-pigs								*	
Standard As: pol. Standard 250 U/ampoule Sample 1 Barble 55K99a As: pol. 250 U/ampoule II Pre-dilution 2 mi / 32 mi II Deses (1) II / 100 µ II 11/2 8 / 12 II II II 11/2 8 / 12 II III IIII IIII III IIII IIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		3210	1.0								* ;	* *
Sample 1SamplePh. Eur. BRP Batch 1Ass. pot.250 [U/ampouleReconstitution1 ampoule / 2 miPre-ditution2 mi / 32 mi111 21/211/28/1211/43/1211/80/12 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
Sample Ph. Eur. BRP Batch 1 Ass. pot. 250 IU/ampoule Reconstitution 1 ampoule / 2 ml 7 lU / ml Doses 1 ml 11 12/12 11/1 12/12 11/2 8/12 11/4 3/12 11/4 3/12 11/4 3/12 11/4 3/12 11/4 3/12 11/4 3/12 11/4 3/12 11/4 0/12 11/8 0/12 Model: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Correlation r : 0.952688 (Weighted) Transformation: ' = probity) Theoretical variance: 1 Source of variation Degrees of freedom Sum of squares Mean square Chi-square Probity Regression 1 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213		Standard			:	Sample 1						
Ass. pot. 220 IU/ampoule Reconstitution 1 ampoule / 2 ml Reconstitution 2 ml / 32 ml Doses (1) 1/1 12/12 1/1 12/12 1/1 12/12 1/1 1/1 1/2 8/12 1/1 1/1 1/2 8/12 1/1 1/1 1/2 8/12 1/1 1/1 1/2 8/12 1/1 1/2 1/1 0/12 1/1 1/2 1/1 1/2 1/1 1/2 1/1 0/12 Mode: Countal responses Correation r 0.952688 (Weighted) Design: Completely randomised Correlation r 0.952688 (Weighted) Transformation: y = probit(y) Theoretical variance: 1 Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Non-inearity 4 1.7164 0.282200 1.7174 0.800 Non-inearity 4 0.0185224 <td< td=""><td>nple</td><td>Ph. Eur. I</td><td>BRP Batch 1</td><td>San</td><td>nple</td><td>Batch G5</td><td>5K99a</td><td></td><td></td><td></td><td></td><td></td></td<>	nple	Ph. Eur. I	BRP Batch 1	San	nple	Batch G5	5K99a					
Reconstitution 1 ampuole / 2 ml Conversion 1 ml / 1000 µl Pre-diution 800 µl / 49. 8 ml Doses (1) 1/1 12/2 8/12 1/2 8/12 1/2 1/4 3/12 1/2 1/4 3/12 1/2 1/2 8/12 1/2 1/4 3/12 1/2 1/8 0/12 1/2 1/8 0/12 0/12 Mode: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Transformation: y = probit(y) Theoretical variance: 1 Correlation r : 0.952688 (Weighted) Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Preparations 1 2.87661 2.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000 Non-parallelism 1 1.75954 1.75954 0.1595 Non-parallelism 1.1382 0.66939 1.13324 0.567 Sample 1 2 0.0377164 0.0188592 <td>. pot.</td> <td>250 IU/ar</td> <td>mpoule</td> <td>Ass</td> <td>pot.</td> <td>? IU / ml</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	. pot.	250 IU/ar	mpoule	Ass	pot.	? IU / ml						
Pre-dilution 2 ml / 32 ml Doses (1) 1/1 12/12 1/2 8/12 1/4 3/12 1/8 0/12 1/1 12/12 1/2 8/12 1/4 3/12 1/4 3/12 1/8 0/12 Model: Quantal responses Cormon slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Correlation r : 0.952888 (Weighted) Transformation: y' = probit(y) Theoretical variance: 1 Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Preparations 1 0.000117213 0.000117213 0.000117213 0.000117213 0.991 Regression 1 2.87961 2.8.7961 0.803 Non-linearity 4 1.17164 0.292909 1.17332 0.5667 Sample 1 2 0.0377184 0.0185592 0.0377184 0.981 Treadments 7 31.7274 4.53248 31.7274 0.000 Treadments 7 <td>constitution</td> <td>1 ampou</td> <td>le / 2 ml</td> <td>Con</td> <td>version</td> <td>1 ml / 100</td> <td>14 O(</td> <td></td> <td></td> <td></td> <td></td> <td></td>	constitution	1 ampou	le / 2 ml	Con	version	1 ml / 100	14 O(
Doses (1) (1) (1) 11/1 12/12 1/1 12/12 11/8 0/12 1/1 12/12 11/8 0/12 1/1 12/12 11/8 0/12 1/1 0/12 Model: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Correlation r : 0.952688 (Weighted) Transformation: y' = probit(y) Threetical variance: 1 Common slope(factor) = 2.63125 (1.82472 to 3.43779) Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Regression 1 0.000117213 0.000117213 0.000117213 0.991 Non-inearity 4 1.175954 1.75954 0.185 Standard 2 1.03392 0.5667 1.3392 0.567 Sample 1 2 0.0377184 0.0185592 0.0377184 0.981 Treatments 7 31.7274 4.53248 1.7274 0.000 Treatments 7 2 ? ? ?	-dilution	2 ml / 32	ml	Pre-	dilution	800 µl / 4	9.8 ml					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	es		(1)	Dos	es		(1)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/1		12/12		1/1		12/12					
In4 012 1/8 0/12 1/8 0/12 1/8 0/12 1/8 0/12 1/8 0/12 1/8 0/12 1/8 0/12 Mode: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Correlation [r]: 0.952688 (Weighted) Transformation: y = probit(y) Theoretical variance: 1 Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Non-parallelism 1 28.7961 28.7961 0.000117213 0.00017213 0.00017213 0.00017213 0.00017213 0.00017213 0.	1/2		8/12		1/2		0/12					
Ind Onz Ind Onz Model: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Transformation: y' = probit(y) Theoretical variance :1 Correlation r : 0.952688 (Weighted) Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Preparations 1 0.000117213 0.000117213 0.000117213 0.000117213 0.0001 Non-inearity 4 1.7164 0.292909 1.7164 0.883 Standard 2 0.0377184 0.018552 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Treatments 7 31.7274 4.53248 1 1 Sample 1 2 0.0377184 0.018552 0.0377184 0.000 Total 7 31.7274 4.53248 1 1 1 Sample 1 Estimate Upper limit 1 1 1 1 1	1/4		0/12	\dashv	1/4		0/12					
Model: Quantal responses Common slope(factor) = 2.63125 (1.82472 to 3.43779) Design: Completely randomised Correlation r : 0.952688 (Weighted) Transformation: y = probit(y) Degrees of freedom Sum of squares Mean square Chi-square Prob Preparations 1 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.000117213 0.0001 Regression 1 28.7961 28.7961 28.7961 0.859 Non-linearity 4 1.176954 1.75954 1.75954 0.000 Non-linearity 4 1.17164 0.292909 1.17164 0.883 Standard 2 1.3392 0.566959 0.0377184 0.0000 Treatments 7 31.7274 4.53248 31.7274 0.000 Total 7 31.7274 4.53248 1 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Sa	1/0		0/12		1/0		0/12					
Source of variation Degrees of freedom Sum of squares Mean square Chi-square Prob Preparations 1 0.000117213 0.000117213 0.000117213 0.991 Regression 1 28.7961 28.7961 28.7961 0.000 Non-parallelism 1 1.75954 1.75954 0.185 Non-inearity 4 1.17164 0.292909 1.17164 0.883 Standard 2 1.13392 0.566959 1.13392 0.567 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Total 7 31.7274 4.53248 1 0.000 Sample 1 Estimate Upper limit 100000 1 1 Sample 2 253.53 382.451 553.963 1 1 VI/ml Lower limit Estimate Upper limit 1 1 Pheteur 275.335 382	ign: Compl Isformation	letely rando n: y' = probit riance: 1	mised (y)				Correlation	r : 0.9526	88 (Weighted)		,	
Preparations 1 0.000117213 0.000117213 0.000117213 0.991 Regression 1 28.7961 28.7961 28.7961 0.00 Non-parallelism 1 1.75954 1.75954 1.75954 0.185 Non-linearity 4 1.17164 0.292909 1.17164 0.883 Standard 2 1.13392 0.566959 1.13392 0.6575 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Theoretical variance 1 1.00000 1 1 Total 7 31.7274 4.53248 1 1 Sample 1 Batch 655K99a 1 1 0.000 1 Kul/Umil) Lower limit Estimate Upper limit 1 1 1 1 Phe.tor. BRP Batch 1 Ph.Eur. BRP Batch 1 Sample 1 Batch 655K99a 1 1 1	Source of v	ariation	Degrees of	freedom	Sum of s	quares	Mean so	luare	Chi-square	e	Probability	
Regression 1 28.7961 28.7961 28.7961 0.000 Non-parallelism 1 1.75954 1.75954 1.75954 0.185 Non-linearity 4 1.17164 0.292909 1.17164 0.883 Standard 2 1.13392 0.566959 1.13392 0.567 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Theoretical variance 1 1.00000 1 1 Total 7 31.7274 4.53248 1 1 Sample 1 Sample 1 1 0.0000 1 1 Sample 1 7 31.7274 4.53248 1 1 Sample 2 Batch G55K99a 1 1 1 1 1 Non-inset 72.0% 100.0% 138.8% 1 1 1 1	parations		1		0.000	117213	0.0001	17213	0.000117	213 0	.991	
Non-parallelism 1 1.75954 1.75954 1.75954 0.185 Non-inearity 4 1.17164 0.292009 1.17164 0.883 Standard 2 1.13392 0.566959 1.13392 0.567 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Theoretical variance 1 1.00000 1 1 Total 7 31.7274 4.53248 1 1 Sample 1 3 1.7274 4.53248 1 1 Sample 1 7 31.7274 4.53248 1 1 Sample 1 530.963 1 <td< td=""><td>ression</td><td></td><td>1</td><td></td><td>28.796</td><td>1</td><td>28.7961</td><td></td><td>28.7961</td><td>0</td><td>.000 (***</td><td>*)</td></td<>	ression		1		28.796	1	28.7961		28.7961	0	.000 (***	*)
Non-linearity 4 1.17164 0.292909 1.17164 0.883 Standard 2 1.13392 0.566959 1.13392 0.567 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Theoretical variance 1 1.00000 1 1 Total 7 31.7274 4.53248 1	1-parallelisr	n	1		1.759	54	1.7595	54	1.75954	0	185	
Standard 2 1.13392 0.666959 1.13392 0.667 Sample 1 2 0.0377184 0.0188592 0.0377184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.0000 Theoretical variance	1-linearity		4		1.171	64	0.2929	909	1.17164	0	.883	
Sample 1 2 0.037/184 0.0188592 0.037/184 0.981 Treatments 7 31.7274 4.53248 31.7274 0.000 Total 7 31.7274 4.53248 31.7274 0.000 Total 7 31.7274 4.53248 1 1 Sample 1 Sampl	Standard		2		1.133	92	0.5669	959	1.13392	0	.567	
Intermetints 7 31.7274 4.33248 31.7274 0.0000 Theoretical variance 7 31.7274 4.53248 31.7274 0.0000 Total 7 31.7274 4.53248 31.7274 0.0000 Sample 1 Sample 1 Sample 1 Sample 1 Sample 1 Otency 275.335 382.451 530.963 Rel. to Ass. 7 ? 7 ? ? ? All samples Phetrony 275.335 Standard Phetrony 275.335 Standard Ph. Eur. BRP Batch 1 Batch G55K99a Image: standard 2 Sample 1 Batch G55K99a Image: standard 2 Image: standard 2 Image: standard 2 Image: standard	Sample 1		2		0.037	7184	0.0188	3592	0.037718	4 0	.981	*)
Sample 1 1.0000 Sample 1 31.7274 4.53248 Sample Batch G55K99a (U/ml) Lower limit Estimate Upper limit Potency 275.335 382.451 530.963 Rel. to Ass. ? ? Rel. to Est. 72.0% 100.0% All samples Ph. Eur. BRP Batch 1 Batch G55K99a	atments	rianco	1		31.727	4	4.5324	18	31.7274	0	.000 (***)
Sample 1 Sint214 4.33248 Sample Batch G55K99a (U/m) Lower limit Estimate Upper limit Potency 275.335 382.451 530.963 Rel. to Ass. ? ? Rel. to Est. 72.0% 100.0% All samples Ph. Eur. BRP Batch 1 Batch G55K99a		nance	7		21 727	4	1.0000	10				
Sample 1 Sample Batch G55K99a (IU/ml) Lower limit Estimate Upper limit Potency 275.335 382.451 530.963 Rel. to Ass. ? ? ? Rel. to Est. 72.0% 100.0% 138.8% All samples Ph. Eur. BRP Batch 1 Batch G55K99a Batch G55K99a Image: Batch 1 Image: Batch 1 Volume Yes Yes All samples Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Image: Batch 1 Imag	A1		,		01.727	-	4.0024					
Sample Batch G55K99a (IU/ml) Lower limit Estimate Upper limit Potency 275.335 382.451 530.963 Rel. to Ass. ? ? ? Rel. to Est. 72.0% 100.0% 138.8% All samples Ph. Eur. BRP Batch 1 Batch G55K99a		Sami	ale 1		٦							
Stample Standard Potency 275.335 382.451 530.963 Rel. to Ass. ? ? ? Rel. to Est. 72.0% 100.0% 138.8%	nole	B	atch G55K99	a	1							
Potency 275.335 382.451 530.963 Rel. to Ass. ? ? ? Rel. to Est. 72.0% 100.0% 138.8%	ml)	Lower limit	Estimate	Upper limit	1							
Rel. to Ass. ? ? Rel. to Est. 72.0% 100.0% 138.8% All samples Standard Ph. Eur. BRP Batch 1 Batch G55K99a	ency	275.335	382.451	530.963	1							
Rel. to Est. 72.0% 100.0% 138.8% All samples Ph. Eur. BRP Batch 1 Batch G55K99a	to Ass.	?	?	?	1							
All samples Standard Ph. Eur. BRP Batch 1 Batch G55K99a	. to Est.	72.0%	100.0%	138.8%								
Executed by: Calculated by: Approved by:	All samples	S Pr	Standard b. Eur. BRP Ba	tch 1	Sample 1 Satch G55K	99a 	pproved by:					

A.3.15 Inactivated poliomyelitis vaccine, D-antigen content

A.3.16 Influenza vaccine, single radial immunodiffusion

Substance	Influenza	vaccine		Remarks	:					
Method	Single rad	dial immuno	diffusion							
Determination	Haemago	lutinin antig	en content							
				1						
S	andard			Sample 1		1 Г	5	Sample 2		
Sample	Reference	ce .	Sample	Batch	345	s	ample	Batch 34	6	
Ass. pot.	39 µg / d	ose	Ass. pot.	15 µg .	dose		ss. pot.	15 µg / do	ose	
Reconstitution	1 dose /	0.5 ml	Reconsti	tution 1 dose	/ 0.5 ml	R	econstitutio	n 1 dose / 0).5 ml	
Dilution	1 ml / 39	ml	Dilution	1 ml /	15 ml	D	vilution	1 ml /15 r	nl	
Doses	(1)	(2)	Doses	(1)	(2)		oses	(1)	(2)	
1/4	5.6/5.7	5.7/5.6	1/4	5.4/5.	2 5.5/5.6	\downarrow	1/4	5.3/5.4	5.4/5.3	
1/2	6.1/6.2	6.2/6.5	1/2	6.2/6.	2 6.2/6.5	┥┝	1/2	5.9/5.9	5.7/5.7	
3/4	6.8/7.0	6.9/6.9	3/4	6.7/6.	9 6.6/6.7	\downarrow \vdash	3/4	6.3/6.3	6.3/6.1	
1/1	7.4/7.4	7.3/7.6	1/1	7.1/7.	4 7.5/7.6		1/1	6.6/6.6	6.6/6.5	
Model: Slope ra Design: Comple Transformation Variance: Obse	atio etely rando : y' = ((y*z) erved residu	mised ⊢(3*3))*pi/4 uals				Commo Correla	on intercept ition r : 0.9	= 11.1160 (1) 89988	0.1173 to	12.1147)
Source of va	ariation	Degrees	of freedom	Sum of squ	ares	Mean s	quare	F-ratio	Prob	ability
Regression			3	1087.22		362.40	05	288.559	0.000	(***)
Intersection			2	2.4658	1	1.23	3291	0.982	0.403	
Non-linearity			3	4.5641	4	0.76	0691	0.606	0.722	
Standard			2	0.4091	1/	0.20	14558	0.163	0.852	
Sample 1			2	3.7650	27	1.88	1000	0.155	0.262	———
Treatments		1	<u>-</u> 1	1094 25	51	99.47	769	79 207	0.000	(***)
Residual error		1	2	15.0709		1.25	591	10.201	0.000	()
Total		2	3	1109.32		48.23	312			
Sample	Sam	ple 1 Batch 345	1	Sample		Samp	ble 2 Batch 346	1]	
(µg/dose) L	12 2402	Estimate	Upper lim	t (µg/dos	e) Lowe	er limit	Estimate	Upper limit	-	
Poleticy Rel to Ass	80.0%	95.7%	102.8%	Polency Rel. to /	0.0	5%	9.56347	70.3%	1	
Rel. to Est.	93.0%	100.0%	102.0%	Rel. to I	-st. 90	.0%	100.0%	110.0%	1	
101.10 201.	00.070	100.070	101.070				100.070	110.070	J	
All samples		Standar Reference	d ve	Sample 1 Batch 345	. /	Samp Batch	ole 2 346			
Executed by: Filename:\A3	16 Flu SRI	Ca ID Slope Ra	liculated by: tio YZ Area.e	epa. ID: EDQN	App I/DBO/FRA	roved b	yy:			

A.3.17 Inverted ED50 units

Example In	verted ED	50 units	Rei	marks:] *
												**
						Sample	1					
Ass. pot. 61	1700 IU/m	0.5001	0.0000	5 0000		0.00		10 5000	07.0000	00.0701		
Joses	010	2.5910	3.6310	5.0810	7.1110	9.9610	13.9510	19.5210	27.3310	38.2710	53.5710	J 75IU
(1)	0.799	0.786	0.877	0.644	0.696	0.497	0.395	0.291	0.233	0.214	0.209	0.217
(2)	0.942	0.853	0.801	0.762	0.675	0.561	0.415	0.289	0.235	0.222	0.225	0.208
(3)	0.965	0.795	0.891	0.70	0.682	0.504	0.429	0.31	0.234	0.212	0.222	0.200
(-)	0.000	0.010	0.100	0.142	0.002	0.01	0.410	0.000	0.200	0.212	0.210	0.212
						Sample	2					
Ass. pot. 56	6700000	J/ml	0.0			0.000		10 5-11	07.000		F0	
Joses	UIU	2.5910	3.63IU	5.08IU	7.11IU	9.96IU	13.95IU	19.52IU	27.33IU	38.27IU	53.57IL	J 75IU
(1)	0.983	0.847	0.795	0.708	0.673	0.516	0.414	0.32	0.253	0.214	0.209	0.204
(2)	0.987	0.777	0.843	0.708	0.643	0.506	0.386	0.295	0.241	0.216	0.212	0.21
(3)	0.946	0.784	0.768	0.701	0.606	0.514	0.390	0.277	0.235	0.215	0.23	0.21
/ariance: Ob Source of	served res	siduals Deor	rees of fr	eedom	Sum of s	quares	Mea	n square		Chi-square	e	Probability
Dreperations		- Dogi	1		9 738	49F-08		720405 00		5quar	-	
Preparations	5				0.1			13049E-00		5.221/hF	:-05 I	0.994
Regression	i		1		3.651	48	3.	73649⊑-06 65148	19	57.92	-05	0.994
Regression Non-paralleli	ism		1		3.651	48 27755	3.0	65148 00727755	19	57.92 3.90221	:-05	0.994 0.000 (*** 0.048 (*)
Regression Non-paralleli Non-linearity	ism		1 1 18		3.651 0.007 0.048	48 27755 4655	3. 0. 0.	73849E-06 65148 00727755 00269253	19	5.22176E 57.92 3.90221 25.9871	:-05	0.994 0.000 (*** 0.048 (*) 0.100
Regression Non-paralleli Non-linearity Sample 1	ism 1		1 1 18 9		3.651 0.007 0.048 0.030	48 27755 4655 7804	0. 3. 0. 0.	73849E-08 65148 00727755 00269253 00342005	19	5.22176E 57.92 3.90221 25.9871 16.5044	-05	0.994 0.000 (*** 0.048 (*) 0.100 0.057
Regression Non-paralleli Non-linearity Sample 1 Sample 2	ism 1 2		1 1 18 9 9		3.651 0.007 0.048 0.030 0.017	48 27755 4655 7804 6851	3. 3. 0. 0. 0.	73849E-08 65148 00727755 00269253 00342005 00196501	19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271	-05	0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394
Regression Non-paralleli Non-linearity Sample 1 Sample 2 Treatments	ism 1 2		1 1 18 9 9 21		3.651 0.007 0.048 0.030 0.017 3.707	48 27755 44655 7804 76851 222	0. 3. 0. 0. 0. 0. 0.	73649E-08 65148 00727755 00269253 00342005 00196501 176534	19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81	-05	0.994 0.000 (*** 0.048 (*) 0.100 (*) 0.057 (*) 0.394 (***
Regression Non-parallelii Non-linearity Sample 1 Sample 2 Treatments Residual erro	ism 1 2 pr		1 1 18 9 9 21 66		3.651 0.007 0.048 0.030 0.017 3.707 0.123	48 (27755) (4655) (7804) (6851) (22) (089) (21)	3. 0.1	00269253 00269253 00342005 00196501 176534 00186498	19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81		0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394 0.000 (***
Regression Non-parallelii Non-linearity Sample 1 Sample 2 Treatments Residual erro Total	ism 1 2 or		1 1 18 9 9 21 66 87		3.651 0.007 0.048 0.030 0.017 3.707 0.123 3.830	48 27755 4655 7804 6851 222 6089 31	3. 3. 0.1	73649E-00 65148 00727755 00269253 00342005 00196501 176534 00186498 0440266	19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81	-05	0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394 0.000 (***
Regression Non-paralleli: Non-linearity Sample 1 Sample 2 Treatments Residual erro Total	sism 1 2 pr Sa	ample 1	1 1 18 9 9 21 66 87		3.651 0.007 0.048 0.030 0.017 3.707 0.123 3.830	48 227755 44655 17804 6851 722 1089 131	3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. Samp	00727755 00269253 00342005 00196501 176534 00186498 0440266	19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81		0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394 0.000 (*** 0.000 (***
Regression Non-paralleli: Non-linearity Sample 1 Sample 2 Treatments Residual erro Total	s 1 2 or Sa Lower lin	ample 1 nit Estir	1 1 18 9 9 21 66 87 mate L	Jpper limit	3.651 3.651 0.007 0.048 0.030 0.017 3.707 0.123 3.830 (IU/m	48 (27755) (4655) (7804) (6851) (7804) (6851) (7804	3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	73849E-08 65148 00727755 00269253 00342005 00196501 176534 00186498 0440266 le 2 Estimate	19 19 19	5.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81		0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.0394 0.000 (***
Non-paralleli: Non-jaralleli: Non-linearity Sample 1 Sample 2 Treatments Residual error Total (IU/mI) U/ED50	s ism 1 2 Dor Sa Lower lin 10.374.	ample 1 nit Estir 2 10.6	1 1 18 9 9 21 66 87 87 mate L 3804	Jpper limit 10.9848	3.651 0.007 0.048 0.030 0.017 3.707 0.123 3.830 (IU/m IU/ED	48 (27755) (4655) (7804) (6851) (22) (089) (31) (1) (50)	3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	13849E-00 65148 000727755 00269253 00342005 00196501 176534 00186498 0040266 le 2 Estimate 10.0245	19 19 19 Upper I 10.310	3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81 imit 13.3		0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394 0.000 (***
Regression Non-paralleli: Non-paralleli: Sample 1 Sample 2 Treatments Residual error Total (IU/ml) IU/ED50 Rel. to Ass.	s ism 1 2 or Si Lower lin 10.374 9.1%	ample 1 nit Estir 2 10.6 9.4	1 1 18 9 9 21 66 87 87 87 87	Jpper limit 10.9848 9.6%	3.651 3.651 0.007 0.048 0.030 0.017 3.707 0.123 3.830 (IU/m IU/ED Rel. tt	48 (27755) (4655) (7804) (6851) (22) (089) (31) (1) (50) (50) (50) (50) (50) (50) (50) (50	3.1 3.1 0.1	3848E-06 65148 00727755 00269253 00342005 00196501 176534 00186498 00440266 le 2 Estimate 10.0245 10.0245 10.0245	19 19 19 Upper I 10.310 10.39	3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81 mit 13 6 6 6		0.994 0.000 (*** 0.048 (*) 0.100 0.057 0.394 0.000 (***
Preparations Regression Non-parallelin Sample 1 Sample 2 Treatments Residual error Total (U/ml) U/ED50 Rel. to Ass. Rel. to Est.	sm 1 2 or Lower lin 10.374 9.1% 97.2%	ample 1 Estim 2 10.6 9.4 100	1 1 18 9 9 21 66 87 87 87 87 804 4%	Jpper limit 10.9848 9.6% 103.0%		48 (27755) (4655) (7804	3. 3. 0.1 0.2 0.3 0.1 0.1 0.1 0.2 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.5 <t< td=""><td>13043E-00 65148 00727755 00269253 00342005 00196501 176534 00186498 0440266 le 2 Estimate 10.0245 10.0%</td><td>19 19 19 19 19 10 10 10 10 30 10 3.0</td><td>3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81 imit 03 6 %</td><td></td><td>0.994 0.000 (*** 0.048 (*) 0.048 (*) 0.057 0.394 0.000 (***</td></t<>	13043E-00 65148 00727755 00269253 00342005 00196501 176534 00186498 0440266 le 2 Estimate 10.0245 10.0%	19 19 19 19 19 10 10 10 10 30 10 3.0	3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81 imit 03 6 %		0.994 0.000 (*** 0.048 (*) 0.048 (*) 0.057 0.394 0.000 (***
Preparations Regression Non-paralleli Non-linearity Sample 2 Treatments Residual error Total (IU/ml) IU/ED50 Rel. to Ass. Rel. to Est.	s ism 1 2 or Lower lir 10.374 9.1% 97.2% les	ample 1 nit Estin 2 10.6 9.4 100	mate L 5804 1 0% 1 1 1 1 1 1 9 9 21 66 87 1 5804 4% 1,0% 1 1 1 1 1 1 1 1 1 1 1 1 1	Jpper limit 10.9848 9.6% 103.0%		48 27755 44655 77804 6851 22 0089 031 0 550 0 Ass. 0 Est.	3.3. 3.1. 0.1.	13649E-00 1365148 00727755 00269253 00342005 00196501 176534 00186498 00440266 le 2 Estimate 10.0245 10.0%	19 19 19 19 10.311 10.31 10.39 103.0	3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81 imit 33 6 %		0.994 0.000 (*** 0.048 (*) 0.048 (*) 0.057 0.394 0.000 (***
Preparations Regression Non-paralleli Non-paralleli Sample 2 Treatments Residual error Total (IU/mi) IU/ED50 Rel. to Ass. Rel. to Est.	sm 1 2 or Lower lin 10.374 97.2%	ample 1 Init Estir 2 10.6 9.4 100	1 1 1 8 9 9 21 66 87 87 8804 4% 0.0%	Jpper limit 10.9848 9.6% 103.0%	0.101 3.661 0.007 0.048 0.030 0.017 3.707 0.123 3.830 (IU/m) IU/ED Rel. tr Rel. tr Sample 2	10 10 127755 14655 17804 166651 122 10089 131 11 150 0 Ass. 0 Est. 12	3. 3. 0.	73649E-00 65148 00727755 00269253 00342005 00196501 176534 0040266 176534 00186498 0440266 10.0186498 10.0245 10.00%	19 19 19 19 10.310 10.320 103.0	3.22176E 57.92 3.90221 25.9871 16.5044 9.48271 87.81		0.994 0.000 (*** 0.048 (*) 0.048 (*) 0.057 0.394 0.000 (***

Jubalance	Ren	narks [.]					★
		nanka.					★
							**
Sam	ple 1	7					
Ass. pot. ?	IU/dose						
Pre-dil. 1 1	dose/0.5ml						
Pre-dil. 2 0	.1ml/well						
Doses	(1)						
-2.4 log	10/10						
-3.0 log	8/10	_					
-3.6 log	2/10	_					
-4.2 log	0/10						
Model: r/n=(l	gt(x)) where	x=c.+b*ln(dose)			Common slope(factor): b = 2.26625 (1.1403	38 to 3.39211)
Design: Com	pletely rando	omised			Correlation r : 0.987	224 (Weighted)	
weight funct	ion: w=n/(m*	(1-m))					
I neoretical v	ariance: 1						
Source of	variation	Degrees of freed	m Sum of	squaree	Mean square	Chi-square	Probability
Regression	anadon	1	10 94	322	10.9622	10,9622	0.001 (***)
Non-linearity	,	2	0.28	5566	0.142783	0.285566	0.867
Treatments		3	11.24	77	3.74924	11.2477	0.010 (*)
Theoretical v	variance				1.00000		
Total		3	11.24	77	3.74924		
dose/ED50	5.41622E-	05 0.000100237	0.000185508 2				
1 (01. 107 (00.							
Rel. to Est.	54.0%	100.0%	. 185.1%				
Rel. to Est. Sample	54.0%	100.0%	185.1%				
Rel. to Est.	54.0%	100.0%	185.1%				
Rel. to Est. Sample	54.0%	Calculated	185.1%	٩	pproved by:		
Rel. to Est. Sample	54.0%	Calculated	185.1%	٩	pproved by:		

A.3.18 Inverted ED50 volumes

A.3.19 MMR vaccine / Measles, ED50 using ratios

A.3.20 MMR vaccine / Mumps, ED50 using +/- per well

Jubatance Innini	vaccir	ie	F	Rema	rks: S	See th	ne other	r MN	IR examples	for alt	ernat	ive w	ays o	of pres	sentin	g the data.		<u> </u>
Component Mump	os																	*.
																		*
	Stand	lard					_			Samp	ole 1				_			
Preparation	Ph. I	Eur. E	BRP E	Batch	n 1		Pr	epar	ation	Bato	h 12	3A45	6					
Ass. pot.	4.61	og10	10/1	vial			As	s. po	ot.	? log	10 II	J/vial						
Reconstitution vol.	1 Via	1/50					Re	econ	stitution vol.	1 VI2	al / 70	10 µl			_			
Pre-dilution 1	100	µI / 10	000	ul.			Pr	e-dil	ution 1	100	μ I/1	000	u.		_			
Pre-dilution 2	100		000 1	ul.			Pr	e-all	ution 2	100	µ1/2	000	JI		-			
negulation volume	100	µ1/20		μı			Inc	JCuia	ation volume	100	µ17w	leli			_			
	C1	µ / ۱۷ د ع	611 62	64	65	22	De			T1	Т2	Т2	Тл	TE	те			
(1)	+	+	+		- 35	- 30		1969	(1)	+	+		+	- 15	-			
(2)	+	+	+	-	H				(2)	+	+	+	-		_			
(3)	+	+	-	-	-	-			(3)	+	-	-	-		_			
(4)	+	+	-	+	-	-	\vdash		(4)	+	-	+	-	-	-			
(5)	+	+	+	-	-	-			(5)	+	+	-	-	-	-			
(6)	+	+	+	-	-	-			(6)	+	+	-	-	-	-			
(7)	+	-	-	-	-	-			(7)	+	+	+	+	-	-			
(0)	+	+	+	+	-	-			(8)	+	+	-	-	-	-			
(8)		+	+	-	-	-			(9)	+	+	-	-	-	-			
(8)	- T								(10)	+	+	+	-		-			
(8) (9) (10) Model: Determinatic Design: Completely fransformation: y' = Theoretical variance Dilution step (Decre	+ + rando probit e: 1 asing)	+ 60 mised (y) : 4	+	+	-	-			(10)	Comn Corre	non s lation	lope(facto 0.58	or) = 0.	.7853 (Weig	19 (0.57904 hted)	2 to 0.99	1596)
(8) (9) (10) Model: Determinatic Design: Completely Transformation: y' = Theoretical variance Dilution step (Decre	rando probit e: 1 asing)	+ 50 mised (y) : 4	+	+	-		Sum	of st		Comn Corre	non s lation	lope(r :	facto 0.58	or) = 0.	.7853 (Weig	19 (0.57904 hted)	2 to 0.99	1596) bility
(8) (9) (10) Model: Determinatic Design: Completely Transformation: y' = Theoretical variance Dilution step (Decre Source of variati Preparations	rando probit e: 1 asing)	+ mised (y) : 4 Deg	+ d	+	- eedo		Sum	of so	quares 93295	Comn Corre	non s lation	lope(r : uare	(facto 0.58	or) = 0. 8428 (.7853 (Weig <u>Chi-so</u> 0.00	19 (0.57904 hted) quare	2 to 0.99	1596) bility
(8) (9) (10) Model: Determination Design: Completely fransformation: y' = Theoretical variance Dilution step (Decre Source of variati Preparations Rearression	probit rando probit e: 1 easing)	+ mised (y) : 4 Deg	+ d	+ +	- eedo		Sum 39	of so 0.001	quares 93295 3	Comn Corre Mea 0 39	non s lation	lope(r : uare 93298	(facto 0.58	or) = 0. 8428 (.7853 (Weig <u>Chi-so</u> 0.00 39.21	19 (0.57904 hted) <u>quare</u> 193295 43	2 to 0.99	1596) bility
(8) (9) (10) Model: Determination Design: Completely Fransformation: y' = Theoretical varianco Dilution step (Decre Source of variati Preparations Regression Non-parallelism	on EDS rando probit e: 1 easing)	+ mised (y) : 4 Deg	+ d	s of fr 1 1 1	eedo	m	Sum 0 39 0	of so 1.001 1.214	quares 93295 3 3 3792	Comn Corre Mea 0 39 0	an sq .0019 .2143	lope(r : uare 33295 3	(facto 0.58	or) = 0. 8428 (.7853 (Weig <u>Chi-so</u> 0.00 39.21 0.05	19 (0.57904 hted) quare 193295 43 73792	2 to 0.99 Proba 0.965 0.000 0.811	1596) bility (***)
(8) (9) (10) Model: Determinatic Design: Completely Fransformation: y' = Theoretical varianco Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity	on ED5 rando probit e: 1 easing)	+ 50 mised (y) : 4 Deg	+ d	+ s of fr 1 1 1 8	eedo	m	Sum 0 39 0 2	of se 0.001 0.214 0.057	quares 93295 3 33792 14	Comn Corre Mea 0 39 0 0	an sq .0019 .2143 .2533	uare 03298 3792	(facto 0.58	or) = 0. 8428 (.7853 (Weig Chi-so 0.00 39.21 0.05 2.02	19 (0.57904 hted) 193295 43 73792 714	2 to 0.99 Proba 0.965 0.000 0.811 0.980	1596) bility (***)
(8) (9) (10) Model: Determinatic Design: Completely Transformation: y' = Theoretical varianco Dilution step (Decree Source of variati Preparations Regression Non-parallelism Non-linearity Standard	on ED5 rando probit e: 1 assing)	+ 50 (y) : 4 Deg	+ J	+ s of fr 1 1 1 8 4	-	m	Sum 0 39 0 2 0	of so 0.001 0.214 0.057 0.027 0.831	quares 93295 3 3792 14 190 100	Comn Corre Mea 0 39 0 0 0	non s lation .0019 .2143 .2533 .2077	uare 93299 33792 392 798	5 5	or) = 0. 8428 (.7853 (Weig Chi-se 0.00 39.21 0.05 2.02 0.83	19 (0.57904 hted) 193295 43 73792 714 1190	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934	bility (***)
(8) (9) (10) Model: Determinatio Design: Completely fransformation: y' = Theoretical varianco Dilution step (Decre Source of variati Preparations Regression Non-parallelism Von-linearity Standard Sample 1	on ED5 rando probit e: 1 assing)	+ 50 (y) : 4 Dec	+ d	+ s of fr 1 1 1 1 8 4 4	eedo	m	Sum 0 39 0 2 0 1	of so 0.001 0.214 0.057 0.831 0.831 0.195	quares 93295 3 3 3792 14 190 995	Comn Correi 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation .0019 .2143 .0573 .2533 .2077 .2985	uare 33792 392 798 986	(facto 0.58	or) = 0. 8428 (Chi-sc (Weig 0.00 39.21 0.05 2.02 0.83 1.19	19 (0.57904 htted) 193295 43 73792 714 1190 595	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.879	1596) bility
(8) (9) (10) Model: Determinatio Design: Completely fransformation: y' = Theoretical variance Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Treatments	probit rando probit e: 1 asing)	+ + 50 mised (y) : 4 Deg	+ d	+ s of fr 1 1 1 8 4 4 4 11	eedo	m	Sum 0 39 0 2 0 1 41	of se .001 .214 .057 .027 .831 .195 .300	quares 93295 3 3792 14 190 95 8	Comn Corre Mea 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation .0019 .2143 .2533 .2077 .2988 .7546	uare 33299 33792 3986 32	(facto 0.58	or) = 0. 8428 (Chi-se (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30	19 (0.57904 hted) 193295 43 73792 714 1190 595 08	Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000	1596) bility (***)
(8) (9) (10) Aodel: Determination Design: Completely rransformation: y' = Theoretical variance Dilution step (Decre Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Freatments Residual error	rando probiti	+ 50 mised (y) : 4 Deç	+ d	+ s of fr 1 1 1 1 8 4 4 4 11 108	eedo	m	Sum 0 39 0 2 0 1 1 41 71	of sc 0.001 0.214 0.057 0.027 0.831 0.195 0.300 0.960	quares 93295 3 3792 14 190 995 8 8 22	Comn Corre 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation an sq .0019 .2143 .2533 .2077 .2988 .7546	uare 33295 33792 3927 798 986 622 298	5 5) = 0. 8428 ((Chi-sa (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02	Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	1596) bility (***) (***)
(8) (9) (10) lodel: Determination esign: Completely ransformation: y' = heoretical variance ilution step (Decre Source of variation reparations egression lon-parallelism lon-parallelism lon-linearity Standard Sample 1 reatments esidual error heoretical variance	e	+ + 50 mised (y) : 4 Dec	+ dd	+ s of fr 1 1 1 1 8 4 4 11 108	eedo	m	Sum 0 39 0 2 0 1 41 71	of so 0.001 0.214 0.057 0.831 .195 .300 .960	quares 93295 3 3 3792 14 14 90 95 8 8 2	Mez 0 39 0 0 0 0 0 1	non s lation an sq .0019 .2143 .2533 .2077 .2989 .7546 .6662 .0000	uare 33299 33792 3992 798 398 398 398 398 398 398 398 398 398 3	5 5)r) = 0. 8428 (((Chi-ss (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96	19 (0.57904 htted) 193295 43 73792 714 1190 595 08 02	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.934 0.879 0.000 0.997	bility (***)
(8) (9) (10) Addel: Determination Design: Completely fransformation: y' = Theoretical variance Dilution step (Decree Dilution step (Decree Source of variation Preparations Preparations Regression Von-parallelism Von-linearity Standard Sample 1 Freatments Residual error Theoretical variance Total	e	+ 50 miseo (y) : 4 Deç	+ d	+ s of fr 1 1 1 8 4 11 108 119	eedo	m	Sum 0 399 0 2 0 0 1 1 411 711 113	of sc 0.001 0.214 0.057 0.027 0.831 0.195 0.300 0.960	quares 93295 3 3792 14 190 995 8 8 2 2	Comn Correl 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation .0019 .2143 .0573 .2988 .6662 .0000 .9517	uare 03299 33792 3992 798 086 32 298 00 772	5	((((Chi-sa (Weig Chi-sa 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.934 0.879 0.000 0.997	bility (***)
(8) (9) (10) Addel: Determination Design: Completely fransformation: y' = Theoretical variance Dilution step (Decre Dilution step (Decre Source of variati Preparations Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Treatments Residual error Theoretical variance Total	e S	+ +	+ d grees	+ s of fr 1 1 1 8 4 4 11 108 119	eedo	m	Sum 0 39 0 2 1 1 1 113	of so 0.001 0.214 0.057 0.027 0.831 0.195 0.300 0.960 0.261	quares 93295 3 3792 14 190 995 8 2 2	Mea 0 39 0 0 0 0 1 0 0 0 0 0 0 0	non s lation an sq .0019 .2143 .2077 .2988 .6662 .0000 .9517	uare 33299 33792 798 986 986 986 986 986 986 772 Sam	5 5 5	((((Chi-sa (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02	Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	bility (***) (***)
(8) (9) (10) Model: Determinatic Design: Completely Fransformation: y' = Theoretical variance Dilution step (Decre Dilution step (Decre Dilution step (Decre Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Treatments Residual error Theoretical variance Total	e S	+ +	+ d grees	+ s of fr 1 1 1 1 8 4 4 11 108 119 BRP	eedo	m	Sum 0 39 0 2 0 0 1 1 411 711 113	of se 0.001 0.214 0.057 0.027 0.831 0.960 0.960 0.261	quares 93295 3 93295 3 1 14 190 95 8 2 1 12 1 12 1 12 1 12 1 12 1 12 1 12	Mea 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	an sq an sq .0019 .2143 .0573 .2533 .2077 .2988 .6662 .0000 .9517	uare 33298 33792 398 386 52 298 300 7772 Sam	facto 0.58	(((((((((((((((((((Chi-sc (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02	Proba 0.965 0.000 0.811 0.980 0.934 0.934 0.097	bility (***) (***)
(8) (9) (10) Addel: Determinatic Design: Completely Fransformation: y' = Theoretical variance Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Treatments Residual error Theoretical variance Total	e Lower	+ i0 mised (y) : 4 Dec Dec tanda	rtd Eur.	+ s of fr 1 1 1 1 8 4 11 108 119 BRP stima	eedo	m	Sum 0 399 0 2 2 0 0 1 1 411 711 1133 : : :	of so 0.001 0.214 0.057 0.831 0.27 0.831 0.960 0.960	quares 93295 3 3 3792 14 190 95 8 2 9 19 19 19 19 19 19 19 19 19 19 19 19 1	Meze 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	an sq an sq .0019 .2143 .0573 .2533 .2077 .2989 .7546 .6662 .0000 .9517	uare 03298 33792 392 798 986 52 298 986 52 298 900 772 Sam	facto 0.58	(((((((((((((((((((Chi-sa (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33A45(ate	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02 02 3 Upper limit	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	bility (***)
(8) (9) (10) Addel: Determinatic Design: Completely Fransformation: y' = Theoretical variance Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation Ineoretical variance Total	e Lower 4.600	+ 50 mised (y) : 4 Dec tanda Ph. limit 000	rd Eur. 1 Est	+ s of fr 1 1 1 1 8 4 11 108 119 BRP stima 6000	eedo Batcl	m h 1 Uppee 4.60	Sum 0 399 0 0 0 1 1 113 113 	of se 0.001 0.214 0.057 0.831 .195 .300 .960 .261	quares 93295 3 3792 14 190 195 8 2 2 Preparation (log10) IU/via Potency Potency	Mez 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	an sq an sq .0019 .2143 .2077 .2989 .6662 .0000 .9517 	uare 33292 33792 3986 3298 3986 32 2988 300 7722 Sam er lin 66661	facto 0.58	cch 12:2 Estim 3.464	Chi-se 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33A456 ate 446	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02 02 02 02 02 02 02 03 02 02 03 02 02 03 02 04 03 02 04 03 04 03 04 04 03 04 04 04 04 04 04 04 04 04 04 04 04 04	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	bility (***) (***)
(8) (9) (10) (10) Model: Determinatic Design: Completely iransformation: y' = 'heoretical variance Source of variati Preparations Regression Non-inearity Standard Sample 1 Freatments Residual error Theoretical variance Total Preparation Ideo 10 U/vial) Potency El: to Ass.	e S Lower 4.600 +0.00	+ 50 mised (y) : 4 Dec tanda Ph. limit 000 000	rrd Eur. 4. +0	+ s of fr 1 1 1 8 4 4 11 108 119 BRP stima 6000 0.0000	eedo Batcl		Sum 0 39 0 2 0 0 1 1 113 113 113 113	of sc .001 .214 .057 .027 .027 300 960	quares 93295 3 3792 14 100 995 8 2 1 Preparation (log10 IU/via Potency Potency Rel. to Ass.	Comn Correi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	an sq .0019 .2143 .0573 .2988 .2077 .2988 .6662 .0000 .9517 	uare 33292 33792 3986 32 298 300 7772 Sam er lin 66661 ?	facto 0.58	cch 12:3 Estim 3.464 ?	Chi-sa (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33445(ate	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02 02 02 03 02 02 02 03 02 02 03 02 02 03 02 02 03 02 02 03 03 02 03 03 04 04 03 04 04 04 04 04 04 04 04 04 04 04 04 04	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	bility (***) (***)
(8) (9) (10) Aodel: Determination pesign: Completely iransformation: y' = heoretical variance bilution step (Decre Source of variati Preparations kon-parallelism kon-linearity Standard Sample 1 Freatments Residual error Theoretical variance Theoretical variance Theoretical variance Theoretical variance Theoretical variance Theoretical variance Automatic variance Preparation log10 IU/vial) Patel. to Ass. Rel. to Ass.		+ 50 miseo (y) : 4 Dec tanda Ph. limit 000 000	+ d grees rrd Eur. 4. +0 0.	+ s of fr 1 1 1 8 4 4 4 11 108 BRP stima 6000 0000	eedo Batcl te 0 0 0	m h 1 Uppe 4.66 +0.0 +0.0	Sum 0 399 0 2 0 0 1 1 113 113 113 113 113 113	of sc .001 .214 .057 .027 .300 .960 .261	quares 93295 93792 14 190 95 985 2 9792 14 190 10 985 2 995 10 97 10 98 2 99 10 90<	Comn Correi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation .0019 .2143 .0573 .2253 .2077 .2988 .6662 .0000 .9517 Low 3.0	uare 33296 33792 3986 3298 3986 32 298 300 772 Sam er lin 66661 ? 99785	facto 0.58	br) = 0. 8428 (((: : : : : : : : : : : : : : : : :	Chi-sa (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33445(ate 146 000	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02 02 02 02 02 02 02 03 02 02 02 02 02 02 02 02 02 02 02 02 02	Proba 0.965 0.000 0.811 0.980 0.934 0.034 0.997	bility (***) (***)
(8) (9) (10) (10) Aodel: Determination Design: Completely rransformation: y' = Theoretical variance Dilution step (Decree Source of variati Preparations Von-parallelism Von-p		+ 50 miseo (y) : 4 Deç 20 20 20 20 20 20 20 20 20 20	+ grees frd Eur. Eur. 4. +0 0. 4.	+ s of fr 1 1 1 8 4 4 11 108 119 BRP stima 6000 0000 7337	eedo	m h 1 Uppe 4.66 +0.0 +0.0 5.0 ⁺	Sum 0 39 0 1 41 71 113 	of so .001 .214 .057 .027 .831 .195 .300 .960	quares 93295 3 3 3792 14 190 96 8 2 2 1 Preparation (log10 IU/via Potency Rel. to Ass. Rel. to Ass. Rel. to Est. log10 ED50' Rel. to Est.	Meze 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	non s lation .0019 .2143 .0573 .22533 .2077 .2988 .6662 .0000 .9517 .2989 .6662 .0000 .9517 .2989 .0000 .9517 .2000 .0000 .9517 .2000 .0000 .0019 .2143 .2007 .2253 .2077 .2988 .6662 .0000 .9517 .2000 .0000 .0019 .2143 .2007 .2253 .2077 .2988 .6662 .0000 .0019 .2143 .2077 .2988 .0000 .2143 .2077 .2988 .6662 .0000 .0019 .2143 .2077 .2988 .0000 .2143 .2077 .2988 .0000 .2143 .2077 .2988 .0000 .2143 .2077 .2988 .0000 .0000 .2143 .2077 .2988 .0000 .0000 .2077 .2000 .0000 .2143 .0000 .2000 .2077 .2988 .0000 .2000 .2077 .2988 .0000 .2077 .2988 .0000 .0000 .2077 .2088 .0000 .0000 .2077 .2088 .0000 .2077 .2083 .0000 .2077 .2083 .0000 .2077 .2083 .0000 .0000 .2077 .2083 .0000 .0000 .2077 .2083 .00000 .0000 .0000 .00000 .00000 .00000 .00000 .00000 .000000	uare 33294 33792 398 386 52 298 300 772 Sam er lin 96661 ? 9785 11617	facto 0.58	cch 122 Estim 3.464 ? 0.000 3.598	Chi-ss (Weig 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33A450 33A50 33A50 33A50 33A50 33 33 33 33 33 33 33 33 33 33 33 33 33	19 (0.57904 hted) 193295 43 73792 714 1190 555 08 02 02 02 02 02 02 02 03 02 02 02 02 03 02 02 02 02 02 02 02 03 03 02 02 03 03 02 03 03 02 03 03 03 03 03 03 03 03 03 03 03 03 03	2 to 0.99 Proba 0.965 0.000 0.934 0.879 0.000 0.997	bility (***)
(8) (9) (10) (10) Model: Determinatic Design: Completely Fransformation: y' = Theoretical variance Dilution step (Decre Dilution step (Decre Source of variati Preparations Regression Non-parallelism Non-linearity Standard Sample 1 Standard Sample 1 Freatments Residual error Theoretical variance Total Preparation log10 IU/vial) Potency Rel. to Ass. Rel. to Sts.	+ + + + + + + + + + + + + + + + + + +	+ 50 mised (y) : 4 Deg Deg Page Pa	+ d grees Eur. Eur. Eur. 4. +0 0. 4. +0.	+ s of fr 1 1 1 8 4 4 11 108 119 BRP stima 6000 0000 7337 1337	eedo	m h 1 Uppe 4.60 +0.0 5.0 [°]	Sum 0 39 0 0 1 1 411 711 113 113 113 113 113 113 113 113 1	of so .001 .214 .057 .831 .195 .300 .960	quares 93295 3 3792 14 190 95 8 2 1 90 1 91 1 92 1 93 1 94 1 95 1 8 1 2 1 93 1 94 1 95 1 96 1 97 1 98 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 90 1 91 1 91 1 92 1 93 1 94 1 95 1 <	Mea 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	an sq an sq .0019 .2143 .2533 .2077 .2988 .6662 .0000 .9517 .6662 .0000 .9517 	uare 93299 33792 798 986 52 298 900 772 Sam er lin 66661 ? 9785 51617 ?	facto 0.58 5 5 9 9 9 1 8 4 1 8 4 1 7 7 7	r) = 0. () () () () () () () () () ()	Chi-ss (Weig Chi-ss 0.00 39.21 0.05 2.02 0.83 1.19 41.30 71.96 33A450 ate 000 321	19 (0.57904 hted) 193295 43 73792 714 1190 595 08 02 02 02 02 03 8 Upper limit 3.86048 ? +0.396020 3.87813 ?	2 to 0.99 Proba 0.965 0.000 0.811 0.980 0.934 0.879 0.000 0.997	bility (***)

Filename: ... VA320 ED50 Mumps Quantal Probit raw data.epa. ID: EDQM/DBO/FRA

A.3. MISCELLANEOUS OTHER EXAMPLES

A.3.21 Oral poliomyelitis vaccine, ELISA

Substance .	Oral polyom	elitis vaccine	Re	marks:				*
Method I	Elisa							*
								× * '
Si Si	ample 1							
Ass. pot.	6.5 log ED5	D / ml						
Conversion	1 ml / 1000	μΙ						
noculation	50 µl / well							
Joses 2.5.log	(1)							
-3.5 log	8/8							
-4.5 log	7/8							
-5.0 log	6/8							
-5.5 log	2/8							
-6.0 log	1/8							
-6.5 log	1/8							
-7.0 log	0/8							
-7.5 log	0/8							
-8.0 log	0/8							
Nodel: Detern	mination ED	50			Common slope	(factor) = 0.646230	(0.426197 to 0.866	6263)
Design: Comp	pletely rando	mised			Correlation r	: 0.946529 (Weighte	ed)	
Fransformatio	n: y' = probi	:(y)						
Theoretical va	ariance: 1							
							-	_
Source of	variation	Degrees of fr	edom	Sum of squares	Mean square	Chi-square	Probability	
Regression		1		23.3374	23.3374	23.3374	0.000 (***)	
Non-linearity		8		2.71119	0.338899	2.71119	0.951	
Treatments		9		26.0486	2.89429	26.0486	0.002 (**)	4
Theoretical va	ariance				1.00000			-
Total		9		26.0486	2.89429			
	S	ample 1						
(log10 ED50/i	ml) Lower	limit Estima	e Up	per limit				
(log10 ED50/r og10 ED50/m	ml) Lower	limit Estima 328 6.6312	e Up 3 6	per limit .95780				
(log10 ED50/r log10 ED50/m Rel. to Ass.	ml) Lower nl 6.30 -0.196	limit Estima 328 6.6312 3725 +0.1312	e Up 3 6 76 +0	per limit .95780 .457795				
log10 ED50/r og10 ED50/m Rel. to Ass. Rel. to Est.	ml) Lower nl 6.303 -0.196 -0.328	limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0) +0	per limit .95780 .457795 .326519				
(log10 ED50/n og10 ED50/n Rel. to Ass. Rel. to Est.	ml) Lower nl 6.303 -0.196 -0.328	limit Estima 328 6.6312 5725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50/n og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.303 -0.196 -0.328	limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50/n og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.328	limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/n og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	mi) Lower nl 6.30 -0.196 -0.328	limit Estima 328 6.6312 5725 +0.1312 5001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/n og10 ED50/m Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.328	limit Estima 328 6.6312 3725 +0.1312 0001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/n og10 ED50/m Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.328	limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/r og10 ED50/r Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.328	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/r) og10 ED50/rn Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.328	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/r) og10 ED50/rn Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.303 -0.196 -0.328	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50/n og10 ED50/m Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19(-0.328	iimit Estima 328 6.6312 7725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
(log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19(-0.32)	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19 -0.328	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.196 -0.326	iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 6 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30: -0.19(-0.32)	iimit Estima 328 6.6312 3725 +0.1312 1001 0.0000	e Up 3 6 76 +0 0 +0	per limit .95780 .457795 .326519				
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.302 -0.199 -0.328	Limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0 10 10 10 10 10 10 10 10 10 1	per limit .95780 .457795 .326519	Approved by:			
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19 -0.328	Iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0 +0	per limit .95780 .457795 .326519	Approved by:			
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19(-0.32)	Iimit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0 +0	per limit .95780 .457795 .326519	Approved by:			
log10 ED50// og10 ED50/n Rel. to Ass. Rel. to Est. Sample 1	ml) Lower nl 6.30 -0.19(-0.32)	Limit Estima 328 6.6312 3725 +0.1312 3001 0.0000	e Up 3 6 76 +0 0 +0 10 +0	per limit .95780 .457795 .326519	Approved by:			

Γ

A.3.22 Acellular pertussis, limit test with quantitative data

A.3.23 Yellow fever vaccine, plaque forming units

Substance Yel Method A	low feve	r vaccir	Rema This e Unfort not th mean confid For th and 3 identic assum Anoth weigh mean	rks: xample is bas unately, the V is based. Wit ence limits. e purpose of i random coun al to the mea uption that the r possibility v t function of w is based).	ted on a /HO doc sults. It a nout this his exan ts were ' n in the counts vould ha =3/m. (th	n example given in W ument only gives the also does not specify knowledge it is not p recreated' in such a 1 document. The weigt follow a Poisson dist ve been to use the m ne number 3 is the nu	(HO/BS/03.1985 R mean counts per on how many repli- possible to calculate that 3 replicates we way that the mean to f 1/m is based or ribution. nean values, and sy unber of replicates	ev. 1 dilution and cates the the ere perform is (almost) in the becify a on which	d led the	* * * *
Ass. pot. ? log: Pre-dil. 1 0.2 m Doses (1) -5log10 86 -6log10 9 -7log10 3	e 1 10 PFU/ I/well (2) 80 12 3	(3) 90 11 2								
Model: y=100*(e Design: Complet Weight function: Theoretical varia	xp(x)) w ely rand w=1/m nce: 1	here x= omised	c.+b*ln(dose)			Common slop Correlation r Multiplication:	e(factor): b = 1.000 : 0.972745 (Weigł a = 100.000, Addit	100 (fixed, inted) ion: d = 0.1	p = 0.006)
Source of var	iation	Deg	rees of freedom	Sum of s	quares	Mean square	Chi-square	Proba	bility	
Regression			1	113.47	'1	113.471	113.471	0.000	(***)	
Non-linearity			1	4.6	0255	4.60255	4.60255	0.032	(*)	
Ireatments			2	118.0	3	59.0366	118.073	0.000	(***)	
Residual error			6	1.84	1500	0.307500	1.84500	0.933		
Total	ince		8	110 0	8	14 9898				
		-	-		-					
		Sample	e 1							
(log10 PFU/ml)	Lowe	r limit	Estimate	Upper limit						
log10 ED(1)/ml	7.59	834	7.64782	7.69729						
Rel. to Ass.	?	,	?	?						
Rel. to Est.	-0.049	4751	0.00000	+0.0494751						
Sample 1	!									
:xecuted by: Calculated by:						Approved by:				

م Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 2 * \star \star * * * Substance Human Tetanus Immunoglobulins Remarks * * Method Toxoid binding Inhibition Assay (TIA) Standard Sample 1 Sample 2 Sample 3 ld. BRP ld. Sample A ld. Sample B ld. Sample C Ass. pot. 120IU/ml Ass. pot. ?IU/ml Ass. pot. ?IU/ml Ass. pot. ?IU/ml Pre-dil. 1 1ml/100ml Pre-dil. 1 1ml/100ml Pre-dil. 1 1ml/100ml Pre-dil. 1 1ml/100ml Pre-dil. 2 1ml/3ml Pre-dil. 2 1ml/7.5ml Pre-dil. 2 1ml/7.5ml Pre-dil. 2 1ml/3.6ml (1) (2) 0.524 0.516 (1) (2) 0.515 0.497 (1) (1) (2) 0.514 0.534 Doses (2) Doses Doses Doses 0.592 0.505 20/20 20/20 20/20 20/20 0.637 0.599 10/20 0.652 0.656 10/20 0.625 0.632 10/20 0.561 0.616 10/20 9/20 0.719 0.704 9/20 0.788 0.803 9/20 0.790 0.719 9/20 0.631 0.767 8/20 1.003 0.843 8/20 1.193 1.150 8/20 1.211 0.962 8/20 0.835 0.900 7/20 1.373 1.386 7/20 1.509 1.765 7/20 1.864 1.327 7/20 1.120 1.365 6/20 1.875 2.024 6/20 2.307 2.175 6/20 2.221 2.029 6/20 1.620 2.091 5/20 2.711 2.572 5/20 2.530 2.686 5/20 2.977 2.673 5/20 2.334 2.834 2/20 3.206 2.885 2/20 2.907 3.031 2/20 2.529 2.995 2/20 3.009 3.208 (3) (4) (5) (6) (7) Design (1) (2) (8) (9) (10) (11) (12) Neg 1|1|1 2|1|1 3|1|1 4|1|1 1|1|2 2|1|2 3|1|2 4|1|2 (A) Pos (B) Neg 1|2|1 2|2|1 3|2|1 4|2|1 1|2|2 2|2|2 3|2|2 4|2|2 Pos Neg 1|3|1 2|3|1 3|3|1 4|3|1 1|3|2 2|3|2 3|3|2 4|3|2 Pos (C) (D) Neg 1|4|1 2|4|1 3|4|1 4|4|1 1|4|2 2|4|2 3|4|2 4|4|2 Pos (E) Neg 1|5|1 2|5|1 3|5|1 4|5|1 1|5|2 2|5|2 3|5|2 4|5|2 Pos (F) Neg 1|6|1 2|6|1 3|6|1 4|6|1 1|6|2 2|6|2 3|6|2 4|6|2 Pos (G) Neg 1|7|1 2|7|1 3|7|1 4|7|1 1|7|2 2|7|2 3|7|2 4|7|2 Pos 1|8|1 2|8|1 3|8|1 4|8|1 1|8|2 2|8|2 3|8|2 4|8|2 (H) Neg Pos Observ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (A) 0.197 0.592 0.524 0.515 0.514 0.505 0.516 0.497 0.534 1.293 (B) 0.183 0.637 0.652 0.625 0.561 0.599 0.656 0.632 0.616 1.063 (C) 0.192 0.719 0.788 0.790 0.631 0.704 0.803 0.719 0.767 1.482 (D) 0.194 1.003 1.193 1.211 0.835 0.843 1.150 0.962 0.900 1.372 (E) 0.199 1.373 1.509 1.864 1.120 1.386 1.765 1.327 1.365 1.419 1.875 2.307 2.221 1.620 2.024 2.175 2.029 2.091 0.203 1.471 (F) 2.711 2.530 2.977 2.334 2.572 2.686 2.673 2.834 1.543 0.211 (G) 3.206 2.907 2.529 3.009 2.885 3.031 2.995 3.208 0.206 1.678 (H) Model: y=d+a*(lqt(x)) where x=c.+b*ln(dose) Common slope(factor): b = -7.20313 (-7.71172 to -6.69453) Correlation | r |: 0.966216 (Weighted) Design: Completely randomised Weight function: w=1/m^2 Asymptotes: 0.519808 and 2.96044 Variance: Observed residuals

A.3.24 Tetanus immunoglobulins, toxoid binding inhibition

Source of variation Degrees of freedom Sum of squares Mean square Chi-square Probability Preparations 0.00147166 0.517661 3 0.00441498 0.915 (***) 4.62846 Regression 4.62846 542.692 0.000 0.000976119 Non-parallelism 3 0.00292836 0.343353 0.952 Non-linearity 24 0.0537980 0.00224158 6.30788 1.000 Standard 6 0.0104158 0.00173597 1.22127 0.976 Sample 1 0.0115397 0.00192328 1.35304 0.969 6 Sample 2 6 0.0232965 0.00388275 2.73154 0.842 Sample 3 6 0.00854606 0.00142434 1.00203 0.986 Treatments 31 4.68960 0.151277 549.860 0.000 (***) Residual error 32 0.272919 0.00852871 Total 63 4.96252 0.0787701

Filename: ...\A324 Tetanus Ig Inhibition 4PL Weighted Sigmoid.epa. ID: EDQM/DBO/FRA

A.3.25 Inactivated rabies (veterinary), challenge assay

A.3.26 MMR vaccine / Rubella, ED50 by pooling of ratios

Component Rubel Si Si Preparation Ass. pot. Reconstitution vol. Inoculation vol. Inoculation vol. Doses -1.0 log10 -1.6 log10 -2.8 log10 -3.4 log10	tandard Ph. Eur. 3.6 log1 1 vial / 5 100 µl / (1) 8/8 8/8	BRP Ba 0 IU / via 300 μΙ	atch 1									
Si Preparation Ass. pot. Reconstitution vol. Inoculation vol. Doses -1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	tandard Ph. Eur. 3.6 log1 1 vial / 5 100 µl / (1) 8/8 8/8	. BRP Ba 0 IU / via 300 μΙ	atch 1 al								1	* 🛶 .
S Preparation Ass. pot. Reconstitution vol. Inoculation vol. Doses -1.0 log10 -2.2 log10 -2.8 log10 -3.4 log10	tandard Ph. Eur. 3.6 log1 1 vial / 5 100 μl / (1) 8/8 8/8	. BRP Ba 0 IU / via 300 µl	atch 1 al									^ *
S Preparation Ass. pot. Reconstitution vol. Inoculation vol. Doses -1.0 log10 -2.2 log10 -2.8 log10 -3.4 log10	tandard Ph. Eur. 3.6 log1 1 vial / 5 100 μl / (1) 8/8 8/8	BRP Ba 0 IU / via 300 µl	atch 1 al		~			1				
Preparation Ass. pot. Reconstitution vol. Inoculation vol. Doses -1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	Pn. Eur. 3.6 log1 1 vial / 5 100 µl / (1) 8/8 8/8	0 IU / via	atch 1 al	D 11	Sa	mple 1						
Ass. pot. Reconstitution vol. Inoculation vol. Doses -1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	3.6 log1 1 vial / 5 100 µl / (1) 8/8 8/8	500 µl	ai i	Preparation	1	Batch 1	23A456	5				
Reconstitution vol. Inoculation vol. Doses -1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	100 µl / (1) 8/8 8/8			Ass. pot.	No	? log10	IU/vial					
-1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	(1) 8/8 8/8			Reconstitu	tion vol.	1 viai / /						
-1.0 log10 -1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	8/8 8/8	(2)	(2)	Docor	V0I.	100 µ17	(2)	(2)				
-1.6 log10 -2.2 log10 -2.8 log10 -3.4 log10	8/8	(Z) 8/8	8/8	-1.0.10	og10	8/8	(2) 8/8	8/8				
-2.2 log10 -2.8 log10 -3.4 log10	0/0	8/8	8/8	-1.6 lc	g10 g10	8/8	8/8	8/8				
-2.8 log10 -3.4 log10	8/8	7/8	8/8	-1.010	/g10	8/8	8/8	8/8				
-3.4 log10	4/8	2/8	4/8	-2.210	a10	8/8	8/8	8/8				
0.1.09.0	2/8	1/8	1/8	-3.4 lc	a10	2/8	2/8	3/8				
-4.0 log10	0/8	0/8	0/8	-4.0 lc	a10	1/8	0/8	2/8				
-4.6 0010	0/8	0/8	0/8	-4.6 lo	a10	0/8	0/8	0/8				
-5.2 log10	0/8	0/8	0/8	-5.2 lc	ig10	0/8	0/8	0/8				
-5.8 log10	0/8	0/8	0/8	-5.8 lc	ig10	0/8	0/8	0/8				
-6.4 log10	0/8	0/8	0/8	-6.4 lc	g10	0/8	0/8	0/8				
Transformation: y' =	probit(y) :: 1											
Source of variation	on D	egrees o	of freedom	Sum of s	squares	Ν	lean sq	uare	Chi-squ	uare	Proba	ability
Preparations			1	1.557	722E-06		1.5572	2E-06	4 5534		0.000	
Regression			1						1.5572	22E-06	0.999	
Non-parallelism			<u>.</u>	74.073	37		74.0737	7	1.5572 74.0737	22E-06 7	0.999	(***)
Non-linearity		-	1	74.073	37 0169		74.0737 0.3901	7	1.5572 74.0737 0.3901	22E-06 7 169	0.999	(***)
•		1	1 6	74.073 0.390 9.857	37 0169 754		74.0737 0.3901 0.6160	7 169 096	1.5572 74.0737 0.3907 9.8575	22E-06 7 169 54	0.999 0.000 0.532 0.874	(***)
Standard		1	1 6 3	74.073 0.390 9.855 3.209	37 0169 754 092		74.0737 0.3901 0.6160 0.4012	7 169 096 240	1.5572 74.0737 0.3907 9.8575 3.2099	22E-06 7 169 54 92	0.999 0.000 0.532 0.874 0.921	(***)
Standard Sample 1		1 8 8	1 6 8 3	74.073 0.390 9.855 3.209 6.647	37 0169 754 992 762		74.0737 0.3901 0.6160 0.4012 0.8309	7 169 096 240 053	1.5572 74.0733 0.390 9.8575 3.2099 6.6476	22E-06 7 169 54 92 52	0.999 0.000 0.532 0.874 0.921 0.575	(***)
Standard Sample 1 Treatments		1 8 8 1	1 6 8 8 9	74.073 0.390 9.857 3.200 6.647 84.32	337 0169 754 992 762 14		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379	7 169 096 240 953 97	1.5572 74.0733 0.3907 9.8575 3.2099 6.6476 84.3214	22E-06 7 169 54 92 52 4	0.999 0.000 0.532 0.874 0.921 0.575 0.000	(***) (***)
Standard Sample 1 Treatments Residual error		1 8 8 1 4	1 6 8 8 9 0	74.073 0.390 9.855 3.209 6.647 84.32 ⁻ 8.069	37 0169 754 992 762 14 970		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017	7 169 096 240 953 97 743 00	1.5572 74.0737 0.390 9.8575 3.2099 6.6476 84.3214 8.0697	22E-06 7 169 54 52 62 4 70	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***) (***)
Standard Sample 1 Treatments Residual error Theoretical variance		1 8 1 4	1 16 8 8 9 50	74.073 0.390 9.857 3.209 6.647 84.32 84.32	37 0169 754 992 762 14 970		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000	7 169 096 240 053 07 743 00 055	1.5572 74.0733 0.390 ⁻ 9.8575 3.2099 6.6476 84.3214 8.0695	22E-06 7 169 54 02 02 52 4 70	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***) (***)
Standard Sample 1 Treatments Residual error Theoretical variance Total		1 8 1 4 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1	74.073 0.390 9.855 3.200 6.641 84.32 8.066 92.39	37 0169 754 992 762 14 970		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659	7 169 240 253 27 743 200 25	1.5572 74.0733 0.390 9.8575 3.2095 6.6476 84.3214 8.0697	22E-06 7 169 54 02 62 4 70	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total		1 8 1 4 5	1 1 8 8 9 10 19 19	74.07 0.39 9.85 3.200 6.64 84.32 8.069 92.39	37 0169 754 992 762 14 970 11		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659	7 169 096 240 953 97 743 00 95 00 95	1.5572 74.0733 0.390 9.8575 3.2095 6.6476 84.3214 8.0697	22E-06 7 169 54 92 62 4 70	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***) (***)
Standard Sample 1 Treatments Residual error Theoretical variance Total	Sta	1 8 1 4 5 indard	1 6 8 8 9 0 	74.07 0.39 9.85 3.200 6.64 84.32 8.069 92.39	754 754 762 14 14 11		74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659	7 7 169 296 240 953 97 743 00 95 Sample	1.557 74.0733 0.390 9.857 3.2099 6.647(84.3214 8.069)	22E-06 7 169 54 62 62 52 4 70	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***) (***)
Standard Sample 1 Treatments Residual error Theoretical variance Total	Sta	1 8 1 4 5 indard Ph. Eur.	1 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	74.07 0.390 9.85 3.200 6.64 84.32 8.069 92.39 11	37 1169 754 992 762 14 370 11 Prep. //oc1	aration	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659	7 7 7 169 199 195 195 195 197 7 7 43 100 195 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.557 74.0737 0.390 9.857 3.209 6.647(84.3214 8.0697	22E-06 7 169 54 92 52 4 4 70 6	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation (log10 IU/vial) Potency	Sta	1 4 1 4 	1 16 8 9 10 99 10 <t< td=""><td>74.07 0.390 9.85 3.200 6.64 84.32 92.39 1 Upper limit 3.6000</td><td>37 1169 754 1992 762 114 110 Prep. (log1 Prep.</td><td>aration 0 IU/vial</td><td>74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659) L</td><td>7 7 169 240 253 27 7 7 43 00 25 Sample B Sample B 00wer limit 4 06355</td><td>1.557 74.073 0.390 9.857 3.209 6.647 84.321 8.069 1 1 atch 123A45 Estimate 4.28037</td><td>22E-06 7 169 54 32 32 4 70 6 Upper lim 4 49710</td><td>0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000</td><td>(***)</td></t<>	74.07 0.390 9.85 3.200 6.64 84.32 92.39 1 Upper limit 3.6000	37 1169 754 1992 762 114 110 Prep. (log1 Prep.	aration 0 IU/vial	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659) L	7 7 169 240 253 27 7 7 43 00 25 Sample B Sample B 00wer limit 4 06355	1.557 74.073 0.390 9.857 3.209 6.647 84.321 8.069 1 1 atch 123A45 Estimate 4.28037	22E-06 7 169 54 32 32 4 70 6 Upper lim 4 49710	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation (log10 IU/vial) Potency Rel to Ass	Sta 3.60000	1 4 1 4 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 6 8 8 9 9 9 9 9 9 9 8 8 8 9 9 9 9 9 8 8 8 8 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8	74.073 0.390 9.855 3.200 6.647 84.32 92.39 92.39 92.39	37 0169 754 992 762 14 970 11 Prep. (log1) Potel Ref. 1	aration 0 IU/vial ncy	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659) L	7 7 169 240 240 253 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.557 74.073; 0.3900 9.8574 3.2099 6.6476 84.3214 8.0697 1 atch 123A45 Estimate 4.28037 2	22E-06 7 169 54 22 32 4 70 6 Upper lim 4.49710 2	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation (log10 IU/vial) Potency Rel. to Ass. Rel. to Est.	Sta Sta Lower lim 3.60000 +0.00000	1 4 1 4 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 6 8 8 9 9 9 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8	74.07 0.390 9.85 3.200 6.647 84.32 92.39 92.39 01 Upper limit 3.60000 +0.00000	37 0169 754 992 762 14 970 11 Prep. (log1 Pote Ref. 1 Ref. 1	aration 0 IU/vial ncy to Ass.	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659	7 7 169 196 240 153 7 7 43 10 0 55 Sample B Sample B Sower limit 4.06365 ? 0.216715	1.567 74.073; 0.3300 9.857; 3.2099 6.647(84.321, 8.069) 1 1 1 1 1 1 1 1 1 1 23A45 Estimate 4.28037 7 0,00000	22E-06 7 7 169 32 32 4 70 6 Upper lim 4.49710 ? +0.21673	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation (log10 IU/vial) Potency Rel. to Ass. Rel. to Est. log10 EDS0/vial	Sta Sta Lower lin 3.60000 +0.0000 0.00000 3.38516	1 4 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 6 8 8 9 9 10 5 8 8 9 9 10 5 8 8 9 9 10 10 10 10 10 10 10 10 10 10	1 74.07 0.390 9.85 3.200 6.647 84.32 8.069 92.39 1 Upper limit 3.60000 +0.00000 3.69165	37 0169 754 992 762 14 970 11 Prep. (log1 Pote: Rel.1 log1(0)	aration 0 IU/vial ncy to Ass. to Est. 0 ED50/v	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659) L 	Sample Sample Box Sample Box Sample Box Sample Constraint 4.06553	1.557 74.073; 0.3900 9.857; 3.2099 6.647(84.3214 8.069] 8.069] 1 1 atch 123A45 Estimate 4.28037 ? 0.00000 0.00000	22E-06 7 169 32 32 4 70 6 Upper lim 4.49710 ? +0.21673 4.37202	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)
Standard Sample 1 Treatments Residual error Theoretical variance Total Preparation (log10 IU/vial) Potency Rel. to Ass. Rel. to Est. log10 ED50/vial Rel. to Ass.	Sta Sta Lower lin 3.60000 +0.00000 0.00000 0.00000 0.338516 -0.21484	1 4 1 4 5 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 6 8 8 9 9 10 0 10 10 10 10 10 10 10 10	74.073 0.390 9.855 3.200 6.641 84.32 92.39 92.39 11 Upper limit 3.60000 +0.00000 +0.00000 +0.00000 +0.00000	37 0169 754 992 762 14 070 11 Prep. (log1 Rel. 1 log1(Rel. 2 Rel. 1	aration 0 IU/vial ncy to Ass. to Est. 0 ED50/v 0 Ass.	74.0737 0.3901 0.6160 0.4012 0.8309 4.4379 0.2017 1.0000 1.5659) L 	R 00 7 169 1996 240 953 37 743 00 95 35 Sample B sower limit 4.06365 ? 0.216715 4.06553 ?	1.557 74.073; 0.3900 9.857; 3.2099 6.647(84.3214 8.0697 8.0697 8.0697 9.254 9.2544 9.2547 9.25	22E-06 7 7 169 34 32 32 32 4 70 6 Upper lim 4.49710 ? +0.21673 4.37202 ?	0.999 0.000 0.532 0.874 0.921 0.575 0.000 1.000	(***)

A.3. MISCELLANEOUS OTHER EXAMPLES

A.3.27 MMR vaccine / Measles, ED50 with fixed slope

Substance MM Component Mea	R vaccine asles	Remarks: slope to for transform cases who example. limits.	In case orce a re ation wi ere less The cor	es where no s esult. To mimi ith fixed slope s than 2 non-e nfidence limits	lope can be calculated, ic Spearman/Kaerber c equal to 1/In(dilution fa extreme responses are s are a good approxima	it is possible to sp alculations specify actor). This should observed as showr tion to the Irwin/Ch	ecify a fixed a rectangular only be done in n in this ueeseman	* *
Sa	Imple 1			Sam	ple 2	5	Sample 3	
Preparation	Batch A		Prepar	ration	Batch B	Preparation	Batch C	
Ass. pot.	4.3 log10 IU	l/vial	Ass. p	ot.	4.0 log10 IU/vial	Ass. pot.	4.0 log10	IU/vial
Reconstitution vo	l. 1 vial / 500	μl	Recon	nstitution vol.	1 vial / 500 µl	Reconstitution v	ol. 1 vial / 50	0 µl
Inoculation vol.	100 µl / well	1	Inocula	ation vol.	100 µl / well	Inoculation vol.	100 µl / w	ell
Doses	(1)		Doses	3	(1)	Doses	(1)
-1.6 log10	8/8		-1.6 log10		8/8	-1.6 log10	8/	8
-2.2 log10	8/8		-2	2.2 log10	8/8	-2.2 log10	8/	8
-2.8 log10	8/8		-2.8 log10		8/8	-2.8 log10	8/	8
-3.4 log10	4/8		-3.4 log10		8/8	-3.4 log10	7/	8
-4.0 log10	0/8		-4.0 log10		0/8	-4.0 log10	0/	8
-4.6 log10	0/8		-4	4.6 log10	0/8	-4.6 log10	0/	8
-5.2 log10	0/8		-5	5.2 log10	0/8	-5.2 log10	0/	8
Preparation	Samp	ole 1 Batch	A		Preparation	Sample	e 2 Batch B	
Preparation (log10 IU/vial)	Samp Lower limit	ble 1 Batch Estima	A	Upper limit	Preparation (log10 IU/vial)	Sample Lower limit	e 2 Batch B Estimate	Upper limit
Preparation (log10 IU/vial) log10 ED50/vial	Samp Lower limit 3.89108	Batch Estima 4.0989	A ite 97	Upper limit 4.30686	Preparation (log10 IU/vial) log10 ED50/vial	Sample Lower limit 4.39888	Batch B Estimate 4.39897	Upper limit 4.39906
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass.	Samp Lower limit 3.89108 -0.408916 0.207896	Die 1 Batch Estima 4.0989 -0.2010	A ite 97 030 +	Upper limit 4.30686 +0.00685562	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass.	Sample Lower limit 4.39888 +0.398884 2.624415 05	e 2 Batch B Estimate 4.39897 +0.398970	Upper limit 4.39906 +0.399056
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Samp Lower limit 3.89108 -0.408916 -0.207886	De 1 Batch Estima 4.0989 -0.2010 0.0000	A ite 97 130 1 00	Upper limit 4.30686 +0.00685562 +0.207886	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Samp Lower limit 3.89108 -0.408916 -0.207886 Sample 3	Die 1 Batch Estima 4.0988 -0.2010 0.0000	A ite 97 930 4 00	Upper limit 4.30686 +0.00685562 +0.207886	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation	Samp Lower limit 3.89108 -0.408916 -0.207886 Sample 3	Die 1 Batch Estima 4.0985 -0.2010 0.0000	A tte 97 130 + 00	Upper limit 4.30686 +0.00685562 +0.207886	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial)	Samp Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit	Batch C Batch Estima 4.0985 -0.2010 0.0000	A tte 97 930 4 00 Upper	Upper limit 4.30686 +0.00685562 +0.207886	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial	Samp Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647	Batch Estima 4.0985 -0.2010 0.0000 Batch C Estimate 4.32397	A tte 97 130 4 00 Upper 4.46	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass.	Sample 3 Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647 +0.186467	Batch Estima 4.0985 -0.2010 0.0000 Batch C Estimate 4.32397 +0.323970	A tte 97 130 4 00 Upper 4.46 +0.46	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147 1473	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sam; Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647 +0.186467 -0.137503	Batch Estima 4.0985 -0.2010 0.0000 Batch C Estimate 4.32397 0.00000	A ite 07 030 4 00 Upper 4.46 +0.46 +0.13	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147 1473 7503	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample Lower limit 4.39888 +0.398884 -8.62441E-05	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sam; Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647 +0.186467 -0.137503	Batch Batch Lestima 4.0985 -0.2010 0.0000 Batch C Estimate 4.32397 0.323970	A ite 97 030 4 00 Upper 4.46 +0.13	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147 1473 7503	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. All samples	Sam; Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647 +0.186467 -0.137503 Sam Bat	Batch Estima 4.0985 -0.2010 0.0000 Batch C Estimate 4.32397 0.00000	A ite 97 130 4 00 Upper 4.46 +0.46 +0.13	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147 1473 7503 Sample 2 Batch B	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Sample 3 Batch C	Sample	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0
Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est. Preparation (log10 IU/vial) log10 ED50/vial Rel. to Est. All samples	Sam; Lower limit 3.89108 -0.408916 -0.207886 Sample 3 Lower limit 4.18647 -0.137503 Sam Bat	Batch Estima 4.0985 -0.2010 -0.2010 0.0000 Batch C Estimate 4.32397 -0.323970 0.00000 -0.00000	A tte 17 130 4 100 1 100 100 1 100 100 1 100 100 100 100 100 100 100 100 100 100	Upper limit 4.30686 +0.00685562 +0.207886 r limit 147 147 1473 7503 Sample 2 Batch B	Preparation (log10 IU/vial) log10 ED50/vial Rel. to Ass. Rel. to Est.	Sample	2 Batch B Estimate 4.39897 +0.398970 0.00000	Upper limit 4.39906 +0.399056 +8.62441E-0

A.3.28 Swine erysipelas, limit test with quantal data

A.3.29 Hepatitis B vaccine, weighted exponential regression

Method .	Hepatitis B v		Remarks: 1 Hepatitis B unweighted out uses a proportiona variation.	This exa .epa). I I linear weighte I to the	ample sh nstead c regressi ed expor varianc	nows an a of making ion, this a nential reg e which is	Iternative way a log transfori pproach does gression when assumed to	v of analys mation of t not make e the weig have a co	ing the data (see the data followed a log transforma hts are inversely nstant coefficient	e file * H by an * ation * t of
		r								
5	standard			Samp	le 1			Sample	2	
Sample S		<u> </u>	Sample	T			Sample	U		
Ass. pot. 20	µg protein /		Ass. pot.	20 µg r	protein /	mi	Ass. pot.	20 µg pro	otein / mi	
1/1000 0	1) (2) 514 0 521	(3)	Joses	(1)	(2)	(3)	Loses	(1)	(2) (3)	
1/2000 0	283 0.205	0.362	1/2000	0.501	0.665	0.576	1/2000	0.586	0.489 0.546	
1/4000 0	159 0 154	0.302	1/4000	0.327	0.355	0.345	1/2000	0.300	0.268 0.269	
1/8000 0	093 0.099	0.082	1/8000	0.167	0.157	0.178	1/8000	0.127	0.146 0.133	
1/16000 0	043 0.045	0.051	1/16000	0.097	0.097	0.094	1/16000	0.086	0.071 0.073	
Veight function Variance: Obs	on: w=1/m ² served residu	Ials	reedom	Sun	n of source	ares	Mean so	lare	Chi-square	Prohability
Prenaratione	ource of variation Degrees of		2 3 08103				1 99097		497 540	0.000 (***)
Regression		2		35 4405			35.4405		497.040	0.000 (***)
Non-paralleli	m	2		0.0153000		19	0 00769	9544	1 92308	0.382
Non-linearity				0,0632826		26	0.00703140		7.90711	0.544
Standard		3		0.0185983		33	0.00619944		2.32385	0.508
Sample 1		3		0.0266		59	0.00887529		3.32689	0.344
Sample 2		3		(0.018058	34	0.00601946		2.25638	0.521
Treatments		14		39	9.5011		2.82151		4935.64	0.000 (***)
Residual erro	r	30			0.240097	7	0.00800	0325		
Total		44		39	9.7412		0.90320	09		
	San	nple 1					Sample	a 2]	
Sample	Juli	T			Samp	le	Campio	U		
(µg protein/m	I) Lower lin	nit Estimate	Upper I	mit	(µg pr	otein/ml)	Lower limit	Estimate	e Upper limit	
Potency	40.4720	43.5676	46.963	35	Poten	cy ,	32.7673	35.2206	37.8948	
	202.4%	217.8%	234.8	%	Rel. to	Ass.	163.8%	176.1%	189.5%	
Rel. to Ass.		100.0%	107.8	%	Rel. to	Est.	93.0%	100.0%	107.6%	
Rel. to Ass. Rel. to Est.	92.9%									
Rel. to Ass. Rel. to Est. All sample	92.9%	Standard	ß	Sam	nple 1 T		Sample 2 U	Į		

A.3.30 Robust regression with Huber's weights

A.3.31 Automatic invocation of the Spearman/Kärber method

Study Rabi	es serology	Re nc In thi	emarks: The i ot allow for es that case Co is method wa	nodel sp imation mbiStats s used in	becifications i of the slope l is invokes the instead of the	n this example because there a Spearman/Kae probit model.	are for the pr are not enoug rber method	robit model I gh non-extre and issues	out the da eme respo a warning	ata do onses. g that	* * * *
Sta	andard		S	ample 1		Sar	nple 2		Sa	mple 3	
Designation	2nd IS (RAI		Serum	Mous	e 1	Serum	Mouse 2	Ser	um	Mouse 3	_
Ass not	2 II I/ml	<u></u>		2 11 1/1	ml		2 1/ml			2 1/ml	_
Predilution	1ml/5ml		Predilution	1ml/5	iml	Predilution	1ml/5ml	Pre	dilution	1ml/5ml	_
noculation	0.050ml/wel		Inoculation	0.050)ml/well	Inoculation	0.050ml/wel	II Ino	culation	0.050ml/well	-
Doses	(1)	-	Doses	0.000	(1)	Doses	(1)		ses	(1)	-
1/1	0/6		1/1		0/4	1/1	0/4		1/1	0/4	_
1/1	0/6	-	1/2		0/4	1/2	0/4		1/2	0/4	_
1/2	0/6	-	1/4	-	1/4	1/2	0/4		1/2	0/4	_
1/4	0/0	_	1/4		4/4	1/4	0/4		1/4	0/4	_
1/16	4/0	-	1/10		4/4	1/16	0/4	\dashv	1/16	0/4	-
1/10	0/0	-	1/10		4/4	1/10	0/4	\dashv	1/10	4/4	-
1/32	0/0	-	1/32	+	4/4	1/32	2/4	\dashv \vdash	1/32	4/4	-
1/04	0/0	_	1/04	-	4/4	1/04	4/4	\dashv \vdash	1/04	4/4	-
1/320	6/6		1/320		4/4	1/320	4/4		1/320	4/4	
Sa	mple 4		s	ample 5		Sar	nple 6				
Serum	Mouse 4	-	Serum	Mous	e 5	Serum	Mouse 6				
Ass not	2 II J/ml		Ass not	2 11/1	ml	Ass not	2 II J/ml				
Predilution	1ml/5ml	_	Predilution	1 ml/5	iml	Predilution	1ml/5ml				
noculation	0.050ml/wel	_	Inoculation	0.050)ml/well	Inoculation	0.050ml/wel				
Dococ	(1)	<u> </u>	Docos	0.000	(1)	Decos	(1)				
1/1	2/4	-	1/1		0/4	1/1	0/4				
1/1	3/4	_	1/1	-	0/4	1/1	0/4				
1/2	4/4	_	1/2	-	0/4	1/2	0/4				
1/4	4/4	_	1/4		0/4	1/4	0/4				
1/8	4/4	_	1/8	_	0/4	1/8	0/4				
1/16	4/4	_	1/16		1/4	1/16	4/4				
1/32	4/4	_	1/32	-	4/4	1/32	4/4				
1/64	4/4	_	1/64		4/4	1/64	4/4				
Model: Quan Design: Com Transformati Theoretical v	tal responses pletely randor on: y' = probite variance: 1	nised (y)									
						Spear	nan-Kaerber	method use	ed		
	Samp	le 1				Sam	ple 2				
Serum		Mou	se 1		Serum		Mouse 2				
(IU/ml)	Lower limit	Estir	nate Upper	limit	(IU/ml)	Lower limit	Estimate	Upper limi	t		
Potency	0.900571	1.33	484 1.97	352	Potency	5.84948	8.97970	13.7850			
Rel. to Ass.	?	?	????		Rel. to Ass	. ?	?	?			
Rel. to Est.	67.5%	100	.0% 148.	2%	Rel. to Est	. 65.1%	100.0%	153.5%			
	0	10.0				0.	alo 4		٦		
	Samp	ie 3				Sam	pie 4		4		
	<u> </u>	Mou	se 3		Serum		Mouse 4		-		
Serum	Lower limit	Estin	nate Upper	limit	(IU/ml)	Lower limit	Estimate	Upper limi	4		
Serum (IU/ml)		3.17	480 4.12	348	Potency	0.159200	0.235969	0.349756	4		
Serum (IU/ml) Potency	2.44438										
Serum (IU/ml) Potency Rel. to Ass.	2.44438	?	???		Rel. to Ass	. ?	?	?	4		

A.3. MISCELLANEOUS OTHER EXAMPLES

143
A.3.32 Five-parameter logistic curve regression

Non-linearity 16 0.0120056 0.000750349 8.40154 0.936 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 (***) (***) Total 39 9.64502 0.247308 (***) (***) Sample 1 (U/mi) Lower limit Estimate Upper limit Upper limit (***) Potency 0.556676 0.58385 0.61191 (***) (***) (***) Rel. to Ass. ? ? ? ? (**) (**) All samples Standard Sample 1 (**) (**) (**) (**)	Non-linearity 16 0.0120056 0.000750349 8.40154 0.936 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.00070373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.0000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 (IU/mi) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.611391 Rel. to Est. 95.4% 100.0% 104.8%	Non-linearity 16 0.0120056 0.000750349 8.40154 0.936 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 (IU/ml) Lower limit Estimate Upper limit </th
Informitterity Ib 0.012005e 0.0003039 8.40154 0.336 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (**) Residual error 20 0.0285795 0.00142897	Indiminantly 10 0.01/2005 0.000/20349 8.40154 0.936 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00660299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308	Indiminentity In 0.0120050 0.000703349 8.40154 0.936 Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.32098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897
Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897	Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.00070373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (**) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 (U/ml) Lower limit Estimate Upper limit Rel. to Ass. ? ? ? ? ? <td< td=""><td>Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/m)) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.61191 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%</td></td<>	Standard 8 0.00640260 0.000800325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/m)) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.61191 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%
Standard 8 0.00640260 0.00080325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.32098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (I///milit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Standard 8 0.00640260 0.00080325 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.0000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? All samples Standard Sample 1	Standard 8 0.00640260 0.0008025 4.48055 0.811 Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897
Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 0.00142897 Total 39 9.64502 0.247308 0.000 (***) Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (U/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 <td>Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 </td>	Sample 1 8 0.00560299 0.000700373 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897
Sample 1 8 0.00560299 0.000737 3.32098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.0000 (***) Residual error 20 0.0285795 0.00142897 0.00142897 0.001 Total 39 9.64502 0.247308 0.00142897 0.0000 (***) Control Operation of the second seco	Sample 1 8 0.00560299 0.000737 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/mi) Lower limit Estimate Upper limit </td <td>Sample 1 8 0.00560299 0.000/03/3 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 </td>	Sample 1 8 0.00560299 0.000/03/3 3.92098 0.864 Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897
Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/ml) Lower limit Estimate Upper limit	Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897	Treatments 19 9.61644 0.506128 6729.60 0.000 (***) Residual error 20 0.0285795 0.00142897
Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Residual error 20 0.0285795 0.00142897 Total 39 9.64502 0.247308 Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Sample 1 0.0285795 0.00142897 Image: Constraint of the standard o
Total 39 9.64502 0.247308 Sample 1 (U/ml) Lower limit Potency 0.556676 0.683385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1	Total 39 9.64502 0.247308 Sample 1	Sample 1 0.247308 Image: Sample 1 Upper limit Dotency 0.566676 0.566676 0.583385 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%
Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1	Sample 1 0.247305 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Sample 1 (IU/mi) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%
Sample 1 (IU/mi) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1	Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples	Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Image: standard Image: standard Image: standard Image: standard Standard Image: standard
Sample 1 (IU/ml) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1	Sample 1 (IU/mi) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.611391 Rel. to Est. 95.4% 100.0% 104.8% All samples Standard	Sample 1 (IU//mi) Lower limit Estimate Upper limit Potency 0.556676 0.58385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1
(IU/m) Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Lower limit Estimate Upper limit Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%
Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%	Potency 0.556676 0.583385 0.611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8%
Potency 0.38285 0 0.18131 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Image: standard Standard Sample 1	Potency 0.058078 0.0583385 0.011391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1 Image: Sample 1	Potency 0.0508/76 0.053335 0.0611391 Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard
Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Junction Standard Junction Junction Image: Standard Standard Sample 1 Junction Standard Junction Junction Junction Standard Junction Junction	Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1 Image: Standard Image: Standard Image: Standard Image: Standard	Rel. to Ass. ? ? ? Rel. to Est. 95.4% 100.0% 104.8% All samples Standard Sample 1
All samples Standard Sample 1	All samples Standard Image: Standard Sample 1	All samples Standard Image: Standard Image: Standard
All samples Standard Standard Sample 1	All samples Standard Sample 1	All samples Standard Image: Standard Sample 1
All samples Standard Sample 1	All samples Standard Sample 1	All samples Standard Sample 1
All samples Standard Sample 1	All samples Standard Sample 1	All samples Standard Sample 1
All samples Standard Sample 1	All samples Standard Sample 1	All samples Standard Sample 1
Executed by Approved by	Executed by Approved by	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
······································	, photodoj,	Executed by: Calculated by: Approved by:
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Calculated by: Approved by:	Executed by: Calculated by: Approved by:	
Executed by: Approved by:	Executed by: Approved by:	Vegeted by Coloulated by Assessed by
		Executed by: Calculated by: Approved by:
		Executed by: Calculated by: Approved by:

A.3.33 Five-parameter logistic curve regression

A.3.34 Equivalence testing

متارخ Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 2

 Project
 Validation CombiStats version 7.0

 Assay
 Example 5.1.1 from the Ph. Eur.

Remarks: This is example 5.1.1 from the European Pharmacopoeia with additional table for equivalence testing. The extra table shows clearly that the slope of Sample 2 is significantly different from the standard because 0 is not included in the difference interval and 1 is not included in the ratio interval. Whether or not this non-parallelism is acceptable depends on the goal-posts defined for this assay (currently unavailable).

U

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Sample 2

250

268

273

240

307

270

317

312

320

265

0.25 unit 1.0 unit

236

213

283

269

251

294

223

250

216

265

	Standard	
ld.	S	
Ass. pot.	1 unit/mg	
Doses	0.25 unit	1.0 unit
(1)	300	289
(2)	310	221
(3)	330	267
(4)	290	236
(5)	364	250
(6)	328	231
(7)	390	229
(8)	360	269
(9)	342	233
(10)	306	259

Sample 1 ld. Т ld. Ass. pot. 1 unit/mg Ass. pot. 1 unit/mg 1.0 unit Doses 0.25 unit Doses (1) 310 230 290 210 (2) (3) 360 280 (4) 341 261 (5) 321 241 (6) 370 290 (7) 303 223 334 254 (8) 216 295 (9) 315 235 (10)

> Common slope(factor) = -47.0559 (-55.6804 to -38.4314) Correlation | r |: 0.765367

Model: Parallel lines Design: Completely randomised

Transformation: y' = y Variance: Observed residuals

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	2	6256.63	3128.32	4.086	0.022 (*)
Regression	1	63830.8	63830.8	83.377	0.000 (***)
Non-parallelism	2	8218.23	4109.12	5.367	0.007 (**)
Treatments	5	78305.7	15661.1	20.457	0.000 (***)
Residual error	54	41340.9	765.572		
Total	59	119647	2027.91		

	Slope per Sample	Difference with Standard	Ratio with Standard
Standard	-60.3047 (-75.2427 to -45.3666)	0	1
Sample 1	-57.6357 (-72.5738 to -42.6976)	2.66899 (-18.4567 to 23.7946)	0.955742 (0.659070 to 1.37737)
Sample 2	-23.2274 (-38.1655 to -8.28930)	37.0773 (15.9516 to 58.2029)	0.385167 (0.135203 to 0.685490)

Sample 1				Sample 2				
ld.	Т			ld.	U			
(unit/mg)	Lower limit	Estimate	Upper limit	(unit/mg)	Lower limit	Estimate	Upper limit	
Potency	0.783648	1.14205	1.68690	Potency	1.14813	1.66889	2.55503	
Rel. to Ass.	78.4%	114.2%	168.7%	Rel. to Ass.	114.8%	166.9%	255.5%	
Rel. to Est.	68.6%	100.0%	147.7%	Rel. to Est.	68.8%	100.0%	153.1%	

Filename: ...\A334 PhEur Ex 511 EquivalenceTesting.epa. ID: EDQM/DBO/FRA

A.3. MISCELLANEOUS OTHER EXAMPLES

٦

A.3.35 Single dose assay with quantal responses

id. R Ass. pot. 8 Doses 1 1/300 id. Limit tested Probability All sampl	Standard teference IJ/ml (1) 20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	Id. Ass. pot. Doses 1/30 Id. Limit tested Probability	Sample 1 average potent batch 2.5 IU/ml (1) 10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	ld. Ass. pot. Doses 1/30	Sample 2 average sub-potent batch 2.5 IU/ml (1) 15/28	* * *
Id. R Ass. pot. 8 Doses 1 1/300 Id. Limit tested Probability All sampl	Standard teference IU/ml (1) 20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	Id. Ass. pot. Doses 1/30 Id. Limit tested Probability	Sample 1 average potent batch 2.5 IU/ml (1) 10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	ld. Ass. pot. Doses 1/30	Sample 2 average sub-potent batch 2.5 IU/ml (1) 15/28	
Id. RASS. pot. 8 Doses 1/300 Id. Limit tested Probability All sampl	teference IU/ml (1) 20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**)	Id. Ass. pot. Doses 1/30 Id. Limit tested Probability	average potent batch 2.5 IU/ml (1) 10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	Id. Ass. pot. Doses 1/30	average sub-potent batch 2.5 IU/ml (1) 15/28	
Ass. pot. 8 Doses 1/300 Id. Limit tested Probability All sampl	IU/ml (1) 20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	Ass. pot. Doses 1/30 Id. Limit tested Probability	2.5 IU/ml (1) 10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	Ass. pot. Doses 1/30	2.5 IU/ml (1) 15/28	
Id. Limit tested Probability All sampl	(1) 20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	Id. Limit tested Probability	(1) 10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	Doses 1/30	(1) 15/28	
I/300 Id. Limit tested Probability All sampl	20/28 Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	I/30 Id. Limit tested Probability	10/28 Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	1/30	15/28	
ld. Limit tested Probability All sampl	Sample 1 average potent batch 0.800000 IU / ml 0.008 (**) les Standard Reference	Id. Limit tested Probability	Sample 2 average sub-potent batch 0.800000 IU / ml 0.135	_		
ld. Limit tested Probability All sampi	les Standard Reference	Id. Limit tested Probability	average sub-potent batch 0.800000 IU / ml 0.135	_		
All sampl		Limit tested Probability	0.800000 IU / ml 0.135	-		
All sampl	0.008 (**)	Probability	0.135			
All sampl	les Standard Reference	Sa				
Executed by:	Calcu		Approved by			

Г

Appendix B

Tutorial

Introduction

This tutorial is intended to offer a quick and easy way to become familiar with the possibilities of CombiStats. It is assumed that you know how to use Windows and also that you have some basic knowledge of the statistical interpretation of biological assays. You should try to reproduce all examples, even though you may perhaps never perform this particular type of assay. The type of assay is not essential for understanding the possibilities of CombiStats. So, switch on your computer and take the time to work your way through this tutorial. In doing so, you will very soon be able to use the software as correctly and as efficiently as possible, even if the type of assay you perform is not described here.

Lesson 1: Creating a template

1.1 Getting started

Let us assume that you want to perform a parallel line analysis on data that you obtained from the micro-biological assay by diffusion of the antibiotic Tylosin. The Ph. Eur. CRS 1 (Chemical Reference Substance, Batch 1) has an assigned potency of 1035 IU/mg. You are interested in the potency of a test sample in IU/vial. Let us also assume that you know that the sample being tested contains approximately 25000 IU/vial. On the basis of this information, you want to create stock solutions containing approximately 500 IU/ml. To achieve this, you weigh 24.2 mg of the CRS and dissolve this in 50 ml solvent. The content of a complete vial of the test sample is also dissolved in 50 ml solvent. From each of these stock solutions, three serial dilutions are prepared using a dilution step of 1.5, and each of the resulting six treatments is applied once in eight Petri dishes with agar.

Make sure that CombiStats is installed on your computer. By default,

Figure B.1: The start screen of CombiStats

a shortcut **%** should appear on your desktop. It has the twelve European stars with two parallel lines crossing it. If the icon does not appear on your desktop, try to start it from the Start menu or try to find the file CombiStats.exe and create a shortcut. Your screen should now look like shown in figure B.1. We are now ready to create our first calculation sheet.

1.2 Size of tables

Click on the button with a blank sheet \Box in the toolbar or select File \triangleright New from the menu. You are now presented with the Options Wizard. Since the assay includes one standard and one test sample, we need 2 tables. As additional information, we want to include the batch number of our test sample and the name of the manufacturer. We therefore need 2 information lines. The stock solutions were prepared from 1 pre-dilution, from which we prepared 3 doses, and which we applied in 8 replicates (one per Petri dish). So, we modify the Options Wizard as shown in figure B.2. Click on Next to go to the next group of options, which is the orientation of the tables.

1.3 Orientation of tables

The orientation of the tables is purely a matter of page layout. In some cases, it is better to present the tables with the doses on top (doses horizontal), and, sometimes, it is better to present the doses on the left (doses vertical). In most cases, it will be chosen so as to save paper. Since we can easily change the orientation of the tables at a later stage, we will not worry about it right now. Just click on Next to go to the next group of options, which is the choice of models.

(a) Modify the size of the tables (b) Do not change the orientaas shown here.

🚺 Options wizard		Options wizard	×
Doses Transformation Variance Size Orientation Model	ANOVA Design	Doses Transformation Varian Size Orientation Model	ce ANOVA
Model Parallel lines (In dose) Sigmoid curves (In dose) Quantal responses (In dose) ED 50 determination (In dose) □ Use fixed slope:	с с с с	☐ Design — Completely randomised Randomised block. (Latin) square ☐ Show design	C C
<< Previous	xt >>	<< Previous	<u>N</u> ext >>

(c) The option 'Parallel lines' is (d) Each Petri dish contains all already selected by default. treatments, so they can be identified as blocks.

Figure B.2: The options wizard

1.4 Model

CombiStats can deal with 5 types of models. We want to analyse our data with the parallel line model, which is already selected by default. Click on Next to go to the next group of options, which is the choice of design. The design of our assay is Randomised blocks because each block (the Petri dishes) can be identified as a source of variation. Select this option and move to the next group of options.

1.5 Design

The design of our assay is Randomised blocks because each block (the Petri dishes) can be identified as a source of variation. Select this option and move to the next group of options.

1.6 Notation of doses

The next group of options are the doses (see figure B.3). Here we have the possibility to specify if the doses are given in symbolic notation (e.g. S1, S2, S3 or Low, Middle, High) or in explicit notation (e.g. 4 IU, 6 IU, 9 IU or 1/22.5, 1/15, 1/10). Symbolic notation can only be used for equal dilution steps, and, since this is the case in our assay, we decide to use symbolic notation. Click on Symbolic notation (Increasing), specify the dilution step of 1.5 and move to the next group of options.

1.7 Transformation

The next group is the group of transformations. Suppose that we have measured the diameter of the inhibition zones and that this is assumed to have a linear relationship with the log(dose). In that case, we need "No transformation" (y'=y). But, if the area of the inhibition zones is assumed to have a linear relationship instead of the diameter, we need to apply a "Square" transformation $(y'=y^2 \text{ or } y'=y*y)$. The square transformation does not exactly give the area of the zones but only differs by a constant factor $\frac{\pi}{4}$, which does not affect the results. However, if you prefer, you can select "Other" and then specify $y'=(y^2)*pi/4$. For our assay, we will select "No transformation".

1.8 Variance

The next group is the group of variances. This allows us to specify which residual error has to be used in the analysis of variance and for the calculation of the 95 per cent confidence limits. For parallel lines and slope ratio assays, you usually select "Observed residuals". The other options will be discussed later.

(a) We use a constant dilution (b) By default, 'No transforstep of a factor 1.5 and we want mation' is selected. Let's not to specify them in increasing or- change that for the moment. der using symbolic notation.

🚺 Options wizard	Options wizard	×
Size Orientation Model Design Doses Transformation Variance ANDVA	Size Orientation Model Doses Transformation Variance	Design ANOVA
Variance	Analysis of variance (ANOVA)	
	No ANOVA C	
Observed residuals	Reduced O	
Deviations from model C	Normal C	
Deviations from linearity C	Extended (•	
Theoretical variance	Complete C	
	Equivalence testing	
<< Previous Next >>	<< Previous Next >	>
<u>O</u> K <u>C</u> ancel <u>H</u> elp	<u>DK</u> <u>C</u> ancel	Help

(c) In assays with quantitative (d) The extended ANOVA will responses, the observed residu- allow us to check the quadratic als are normally used to esti- curvature in addition to the mate the residual variance. normal ANOVA.

Figure B.3: The options wizard

Figure B.4: Your screen should now look like this

1.9 Analysis of variance

The last group of options ANOVA allows you to specify which sources of variation you want to be included in the analysis of variance. By default, "Normal" is selected, which allows you to check for linearity and parallelism. The Extended ANOVA also includes the quadratic curvature and the lack of quadratic fit. The "Complete ANOVA" includes several more sources of variation and the "Reduced ANOVA" is restricted to the deviations from the model (with all sources combined except those which can be explained from the model assumptions). We select the Extended ANOVA.

Finished! All options are defined and the data sheet can be created with a click on the OK button.

1.10 The initial template

Your screen should now look like shown figure B.4. On top of the page, you can see the version number, the date, the time, and the page numbering. Then follows a table that contains five entries by default. These entries are only suggestions and we will modify them later. Next to this table is a remarks box, in which you can place any important remarks regarding your assay. Below this are the tables for the standard and the test sample, and a summary of the options we selected.

1.11 Further customising the template

The tables are not yet completely ready to be used as a template. Suppose that we do not want to specify the assay number and the technician, but instead we want to specify the study number. We can do this as follows (see figure B.5): Select with the mouse the cells from Assay number to Date of assay and press DELETE on the keyboard. The last two rows disappear and one empty row stays selected. Type "Study number" followed by ENTER. One line is added. You can also use the arrow keys to move down and add new rows. Type "Date of assay" followed by ENTER.

Figure B.5: You can customize the standard entries of your template if desired

Figure B.6: The template is now ready to be added to the library

The two tables for the standard and the sample also need to be further customised. Since we included two additional information lines for the manufacturer and the batch number, we complete the tables accordingly. The doses can be given in symbolic notation, since that is what we specified in the options wizard. Symbolic notation always starts with a letter (A to Z or a to z, but no accents or special characters). It does not matter what you fill in exactly, because CombiStats calculates the doses on the basis of the dilution step that you have specified. You can even leave the cells empty, but this is not recommended because it makes the tables more difficult to understand for a human reader. If you enter something that can be interpreted as an explicit notation (for example 100 IU), this overrules the dose that would be calculated by CombiStats. Complete the tables as shown in figure B.6. The template is now ready for use.

1.12 Adding the template to the library

We can save this template to a file so that we can use it each time we need it. In this way, we do not have to specify all the options each time we want to analyse new data, but simply open the template and immediately start entering the observed data.

Click on 🖶 or select File > Save from the menu and go to the directory

Save file as	ies\Documents\Templates	•
File name: Save as type:	Tylosin Diffusion - Template (*.epm) -	
💌 Browse Folders	Save	

Figure B.7: Be sure to save the file with the extension EPM

Library of templates	×
Search for:	
Tylosin Diffusion	
<u>R</u> emove <u>A</u> dd <u>?</u> <u>C</u> ancel	<u>0</u> K

Figure B.8: The library contains the template we just created

where you want to save this template. Choose an appropriate name, for example "Antibiotics Diffusion" or "Tylosin Diffusion" and save the form as an *.epm file. It is important that you do not save it as an *.epm file, because CombiStats will then not recognize the form as a template (see figure B.7). Click on Save and CombiStats will ask you if you want to add this template to the library. Click on Yes and we are finished. Close the form by selecting File \triangleright Close from the menu or click on the cross in the upper right corner (be careful not to close the application, but only the form). This ends the first lesson. In the next lesson, you will use this template to enter some data and get familiar with the output.

Lesson 2: Completing a data sheet

2.1 Entering data into a template

We will now use the template that we created in Lesson 1 to enter some assay data. Click on the button showing a template \mathbb{E} or select File > Library of templates from the menu. The library of templates as shown in figure B.8 appears.

It contains the template that we just created. Select it and click on OK. You can also open the form by double clicking on it. We can now start entering the data. Complete the data sheet as shown in figure B.9. Tip: Use the lnsert key on your keyboard if you want to modify the contents of a cell. Use the 'Undo' button \clubsuit if you have accidentally deleted something and want to revert back.

When you have finished entering the data, save the sheet by clicking on the save button \blacksquare or by selecting File \triangleright Save from the menu. Go to the

Figure B.9: Enter data into the tables as shown here

directory where you want to save the file, choose an appropriate name, for example "Tylosine Assay 1" and save the file with the extension *.epa.

2.2 Calculate and print

Click on the pocket calculator \blacksquare or select Tools \triangleright Calculate from the menu. CombiStats will now perform the necessary calculations. Click on the print button or select File \triangleright Print from the menu. If your printer is correctly installed, a printout should be made that looks like shown in figure B.10. The large table in the middle of the page is the analysis of variance. We can see that there are no significant deviations from linearity or parallelism (Probability>0.05) and that there is a highly significant regression (Probability<0.001). The small table shows the potency estimate with the 95 per cent confidence limits expressed in IU/vial, relative to the assumed potency (in percentage), and relative to the estimated potency (also in percentage). At the bottom of the page are shown 3 small graphics, the first being a superposition of standard and test sample, and the others being separate representations of each preparation. These graphics show the observed responses (the little dots) and the fitted parallel lines.

The information you have given in the first information line of the sample tables is repeated in the table of the potency estimate and in the graphics. It is therefore a good idea to put information in that first line that uniquely identifies² the preparation in the context of the assay. For example, if we had different batches from the same manufacturer, it would have been better to use the batch number as identification instead of the name of the manufacturer.

م Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Remarks:

Substance	Tylosin
Method	Diffusion
Study number	T112-a
Date of assay	21/03/2020

Standard									
Origin	Ph. E	Ph. Eur. CRS							
Batch number	Batch	Batch 1							
Ass. pot.	1035	IU/mg	1						
Pre-dil. 1	24.2	24.2 mg/50 mL							
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
S1	162	164	178	162	168	168	170	168	
S2	184	194	192	186	196	186	190	185	
S3	208	208	208	214	206	206	202	206	

Sample 1												
Manufacturer	Fanta	isy Ph	arm L	d.								
Batch number	34G5	6										
Ass. pot.	2500) IU/vi	al									
Pre-dil. 1	1 vial	/50 ml	_									
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
T1	168	174	162	175	172	168	164	174				
T2	194	194 192 190 194 186 192 188 194										
Т3	204	210	206	204	212	208	210	206				

Model: Parallel lines

Design: Randomised block Transformation: y' = y Variance: Observed residuals Dilution step (Increasing): 1.5 Common slope(factor) = 47.8617 (44.7195 to 51.0039) Correlation | r |: 0.972424

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probabili	ity
Preparations	1	27.0000	27.0000	1.484	0.231	
Regression	1	12051.3	12051.3	662.332	0.000 (*	***)
Non-parallelism	1	7.03125	7.03125	0.386	0.538	
Non-linearity	2	54.8542	27.4271	1.507	0.236	
Standard	1	16.3333	16.3333	0.898	0.350	-
Sample 1	1	38.5208	38.5208	2.117	0.155	
Treatments	5	12140.2	2428.03	133.443	0.000 (*	***)
Blocks	7	68.9167	9.84524	0.541	0.797	
Residual error	35	636.833	18.1952			
Total	47	12845.9	273.317			-

Sample 1									
Manufacturer	Fantasy Pharm Ltd.								
(IU/vial)	Lower limit	Lower limit Estimate Upper limit							
Potency	24528.6	25844.4	27241.5						
Rel. to Ass.	98.1%	103.4%	109.0%						
Rel. to Est.	94.9%	100.0%	105.4%						

Approved by:

Filename: ...\Tylosin.epa. ID: EDQM/DBO/FRA

Figure B.10: A printed data sheet with the calculated results

2.3 Detailed graphics

The graphics on the calculation sheet are intended to spot irregularities in the assay, such as outliers, typing errors in the data entry, or a specific curvature of the responses. In some cases, you might want to have a more detailed graphic. Click on the graph button \mathcal{U} and you will get a full size graphic that looks like shown in figure B.11.

Click on the portrait button \mathbb{Z} to change the graph to a portrait layout. Click on the coloured \mathbb{Z} or black-white button \mathbb{Z} to choose between a colour representation or a black and white representation. Click on \mathbb{Z} to obtain a graph that connects the mean of the observed responses per doses. The doses are shown on a logarithmic scale with labels at the dose levels of the standard as indicated in the calculation sheet (S1, S2 ans S3). In some cases, you might prefer to see the doses expressed in units rather than (or in addition to) the dose labels. You can do this by clicking on the menu Options \triangleright Show Doses. You will now get the units of the standard, calculated on the basis of the information provided in the calculation sheet. You will see that the doses are 222.64 IU, 333.96 IU and 500.94 IU respectively. CombiStats has calculated this as $1035 \cdot \frac{24.2}{50} \cdot (\text{working dilution})$, where the working dilution is assumed to be 1/1 for the highest dose. In this case, the highest dose is S3 because we have specified that the doses would increase with steps of 1.5.

It is your own responsibility to provide enough details for CombiStats to be able to calculate the dose in units correctly. If you have only provided relative doses (e.g by omitting pre-dilution steps), the scale in units will not necessarily match the actual doses administered to the experimental units, although the calculated potency might still be correct (e.g. if the omitted predilution steps were the same for the standard and all test preparations).

Lesson 3: What else is possible...

3.1 Introduction

Now that we have created an example, we can use it to explore some of the other features of CombiStats. This lesson is not intended to show a typical way of exploring data or performing the analysis. They are merely intended to show some additional functionalities of the software. Close the example that we just created. Select the menu File and you will find the name of the example at the bottom of the menu as shown in figure B.12. This enables you to quickly open the most recently used files. CombiStats keeps record of the 9 last files. Alternatively you can click on the appropriate button and search for the file yourself.

Figure B.11: A printed sheet of the detailed graph

cuit roois options window :		
New	Ctrl+N	
Library of templates	Ctrl+L	
Open	Ctrl+O	
Close		
Save	Ctrl+S	
Save As		
Print	Ctrl+P	
Print All		
Hash RIPEMD-160	Ctrl+H	
1. C:\CombiStats Files\Tylosine Assay 1.epa		
Quit	Ctrl+Q	

Figure B.12: Recent files can be accessed more rapidly from the File menu

Standard				S	ample 1			
Origin	Ph. Eu	ır. CRS		Manufacturer	Fantas	Fantasy Pharm Ltd.		
Batch number	Batch	1		Batch number	34G56)		
Ass. pot.	10351	U/mg		Ass. pot.	25000	IU / via	۲ ۱	
Pre-dil. 1	24.2 m	ng / 50 i	n	Pre-dil. 1	1 vial /	/ 50 ml		
Doses	S1	S2	S3	Doses	T1	T2	T3	
(1)	162	184	208	(1)	168	194	204	
(2)	164	194	208	(2)	174	192	210	
(3)	178	192	208	(3)	162	190	206	
(4)	162	186	214	(4)	175	194	204	
(5)	168	196	206	(5)	172	186	212	
(6)	168	186	206	(6)	168	192	208	
(7)	170	170 190 202		(7)	164	188	210	
(8)	168	185	206	(8)	174	194	206	

Figure B.13: The orientation of the doses is now horizontal

3.2 Changing the orientation

Click on the wizard button \mathbb{B} or select Tools > Options Wizard from the menu. Go to Orientation and select Doses horizontal. Click on OK and the presentation of the tables will be modified in the way you would expect (see figure B.13).

3.3 Inspecting the mean response

Select Options \triangleright Mean response from the menu. This allows you to do a quick on-screen inspection of the mean response per dose (see figure B.14). The means disappear automatically when you perform your next action or when you select the same menu option again. The number of decimals shown is equal to the number of decimals used for the first response in the table. So, if you want CombiStats to show more decimals, it suffices to add some non-significant zeros to the first observation as shown in figure B.15.

Standard									
Origin	Ph. Eu	ır. CRS							
Batch number	Batch	1							
Ass. pot.	10351	U/mg							
Pre-dil. 1	24.2 m	ig / 50 r	nl						
Doses	S1	S2	S3						
(1)	162 184 208								
(2)	164 194 208								
(3)	178	192	208						
(4)	162	186	214						
(5)	168	196	206						
(6)	168	186	206						
(7)	170 190 202								
(8)	168	185	206						
	168	189	207						

Sample 1											
Manufacturer	acturer Fantasy Pharm Ltd.										
Batch number	34G56	i									
Ass. pot.	25000	IU / via	al								
Pre-dil. 1	1 vial /	/ 50 ml									
Doses	T1	T2	T3								
(1)	168	194	204								
(2)	174	192	210								
(3)	162	190	206								
(4)	175	194	204								
(5)	172	186	212								
(6)	168	192	208								
(7)	164	188	210								
(8)	174	194	206								
	170	191	208								

Figure B.14: An extra row with the average responses is added at the bottom

Standard				9	Sample 1		
Origin	Ph. Eu	r. CRS		Manufacturer	Fantasy Pharm Ltd.		
Batch number	Batch 1	1		Batch number	34G56		
Ass. pot.	1035 IU	J/mg		Ass. pot.	25000	IU / vial	
Pre-dil. 1	24.2 m	g / 50 m	ป	Pre-dil. 1	1 vial /	50 ml	
Doses	S1	S2	S3	Doses	T1	T2	T3
(1)	162.0	184	208	(1)	168.0	194	204
(2)	164	194	208	(2)	174	192	210
(3)	178	192	208	(3)	162	190	206
(4)	162	186	214	(4)	175	194	204
(5)	168	196	206	(5)	172	186	212
(6)	168	186	206	(6)	168	192	208
(7)	170	190	202	(7)	164	188	210
(8)	168	185	206	(8)	174	194	206
	167.5	189.1	207.3		169.6	191.3	207.5

Figure B.15: Add extra zero's to the first observation to obtain more decimals for the average response

3.4 Excluding observations

Double click on S1 in the table of the standard. All observations of the first dose are barred out (see figure B.16).

3.5 Selecting the table for the standard

Double click on the word Sample 1 in the top row of the table. It changes into "Standard" and the other table is automatically renumbered to contain the word "Sample 1" (see figure B.17).

This enables you to put the standard in a different table than the first, which is the table by default to contain the Standard. This can also be useful if you have included two different standards (e.g. an in-house standard and an international standard) and want to compare the outcome for both. When you double click on the header of the Standard itself, none of the tables is assigned to the standard anymore. This may occasionally happen in assays that do not strictly require a standard, such as ED50 determinations. Click on the first table to make it the standard again.

Although you can still see them, they will no longer be taken into account in the calculations. Double click again on S1 and the values are again included. Double click on (2) to exclude the second block. Double click on Doses to exclude all observations. Do this again to include all observations.

3.6 Notation of the doses

We have arrived at a very important part of this lesson: The notation of the doses. Basically, there are 4 types of notation and it is *very important* that you understand how CombiStats interprets each of the notations in order to make the correct choice when creating a data sheet. The 4 types of notation are listed below followed by a few examples:

- Symbolic notation: S1, High, Blahblah, etc.
- Content units: 30 IU, 1000 AU, 1.25 units, etc.
- Volume units: 0.5 ml, 500 µl, 0.5 vial, etc.
- Dilutions: 1/10, 5/100, -2log10, etc.

The manual gives more detailed information about the syntax of each of these notations.

In our example, we have used symbolic notation (S1, S2, S3 and T1, T2, T3). CombiStats interprets anything that starts with a character of the alphabet (A to Z or a to z) as symbolic notation. It is just a label you attribute to the dose and it has no special meaning to CombiStats. Only its position in the table is of importance. The first or last dose in a table (depending on whether the doses increase or decrease) is interpreted

Standard									
Origin	Ph. Eu	ır. CRS							
Batch number	Batch	1							
Ass. pot.	10351	U/mg							
Pre-dil. 1	24.2 m	ig / 50 r	nl						
Doses	S1	S2	S3						
(1)	1 62 184 208								
(2)	164	194	208						
(3)	178	192	208						
(4)	162	186	214						
(5)	168	196	206						
(6)	168 186 206								
(7)	170 190 202								
(8)	168	185	206						

Sample 1										
Manufacturer Fantasy Pharm Ltd.										
Batch number	34G56	;								
Ass. pot.	25000	IU / via	a I							
Pre-dil. 1	1 vial /	/ 50 ml								
Doses	T1	T2	T3							
(1)	168	194	204							
(2)	174	192	210							
(3)	162	190	206							
(4)	175	194	204							
(5)	172	186	212							
(6)	168	192	208							
(7)	164	188	210							
(8)	174	194	206							

Figure B.16: Double click on S1 to exclude observations

				-				
Sample 1					S	tandaro	<u>1</u>]	
Origin	Ph. Eu	ır. CRS			Manufacturer	FantasyPha		n Ltd.
Batch number	Batch	1			Batch number	34G56	ì	
Ass. pot.	10351	U/mg			Ass. pot.	25000	IU / via	al
Pre-dil. 1	24.2 m	ng / 50 i	ml		Pre-dil. 1	1 vial /	/ 50 ml	
Doses	S1	S2	S3]	Doses	T1	T2	T3
(1)	162	184	208]	(1)	168	194	204
(2)	164	194	208]	(2)	174	192	210
(3)	178	192	208]	(3)	162	190	206
(4)	162	186	214]	(4)	175	194	204
(5)	168	196	206]	(5)	172	186	212
(6)	168	186	206]	(6)	168	192	208
(7)	170	190	202		(7)	164	188	210
(8)	168	185	206]	(8)	174	194	206

Figure B.17: Double click on the header of a table to define it as the standard

as "undiluted" or "1/1" with respect to the working solution. So, S3 in our example is interpreted as 500.95 IU since the working solution for the standard is $\frac{1035}{1} \times \frac{24.2}{50} = 500.94$ IU/ml, and S3 is positioned in the last column of the table. We had already seen this when we were viewing the axis of the detailed graph. With this in mind, it is not difficult to see that T3 is interpreted as 500 IU and T1 as 222.222 IU, which are of course only temporarily assigned values, based on the assumed potency of the test preparation. The horizontal distance between the parallel lines will be a measure of how much this temporarily assigned value has to be adjusted.

Modify the doses as shown in figure B.18 so as to represent volumes. Note that the last pre-dilution in the example is specified in ml, so only doses in ml can be interpreted as volume units. The dose with 0.6 ml of the standard is interpreted by CombiStats as $\frac{1035}{1} \times \frac{24.2}{50} \times 0.6 = 300.564$ IU. The doses are now interpreted as if you applied the specified volumes of the stock solution to the experimental units, thus taking into account the pre-dilution steps. Check this in the detailed graph if you want to convince yourself about this. Perform the calculations and compare the outcome with the printout we made earlier. There should be no difference. Although the doses are not the same in the calculations, they still lead to the same outcome because they have changed by the same proportion for both preparations.

Now modify the doses to represent ratios as shown in figure B.19. Ratios are dimensionless and are interpreted relative to the stock solutions. So, a dose of 1/45 of the standard is interpreted as $\frac{1035}{1} \times \frac{24.2}{50} \times \frac{1}{45} = 11.132$ IU. Perform the calculations and compare the results with the previous results. Again there should be no difference because proportionally nothing has changed, although the doses are not at all the same in the calculations as you can see by viewing the doses in the detailed graph. Dilutions can also be given as logarithm, e.g. a series of 1/1, 1/10, 1/100 is equivalent with 0log10, -1log10,-2log10 or with 0log, -1log, -2log. A series of 1/4, 1/8, 1/16 is equivalent with -2log2, -3log2, -4log2. Refer to the manual for more details.

Modify the doses once again as shown in figure B.20. They are now written as content units because IU is the unit used for the Standard. This time, you will notice a difference in the calculation of the potency estimate. Why? In the previous examples, CombiStats had to calculate the contents in IU on the basis of the assumed potency, the pre-dilution steps and the notation used for the doses. The doses for the sample under test were not exactly equipotent to the doses of the standard. In this case, however, CombiStats will use the doses "as is" (in IU) and we pretend that the contents are the same for both preparations. The software will assume that we prepared the doses in such a manner that the units are correct on the basis of the assigned or assumed potencies, ignoring any pre-dilution step that we might have specified. So, be careful when you specify doses in content units because you have to calculate them accurately on the basis of the assigned

Standard					Sample 1	1		
Origin	Ph. Eur. CRS			Manufacturer	Fantas	Fantasy Pharm Ltd.		
Batch number	Batch 1			Batch number	34G56			
Ass. pot.	1035 IU	J/mg		Ass. pot.	25000	IU / vial		
Pre-dil. 1	24.2 m	g / 50 m	1	Pre-dil. 1	1 vial /	50 ml		
Doses	0.4 ml	0.6 ml	0.9 ml	Doses	0.4 ml	0.6 ml	0.9 ml	
(1)	162	184	208	(1)	168	194	204	
(2)	164	194	208	(2)	174	192	210	
(3)	178	192	208	(3)	162	190	206	
(4)	162	186	214	(4)	175	194	204	
(5)	168	196	206	(5)	172	186	212	
(6)	168	186	206	(6)	168	192	208	
(7)	170	190	202	(7)	164	188	210	
(8)	168	185	206	(8)	174	194	206	

Figure B.18: The notation of the doses is now in volume units

Standard					S	ample 1			
Origin	Ph. Eur. CRS				Manufacturer	Fantas	n Ltd.		
Batch number	Batch	1			Batch number	34G56	34G56		
Ass. pot.	10351	U/mg			Ass. pot.	25000	IU 7 via	al	
Pre-dil. 1	24.2 m	ig / 50 i	<u>n</u>		Pre-dil. 1	1 vial /	/ 50 ml		
Doses	1/45	1/30	1/20		Doses	1/45	1/30	1/20	
(1)	162	184	208		(1)	168	194	204	
(2)	164	194	208		(2)	174	192	210	
(3)	178	192	208		(3)	162	190	206	
(4)	162	186	214		(4)	175	194	204	
(5)	168	196	206		(5)	172	186	212	
(6)	168	186	206		(6)	168	192	208	
(7)	170	190	202		(7)	164	188	210	
(8)	168	185	206		(8)	174	194	206	

Figure B.19: The notation of the doses is now in dilution ratios

9	itandaro	ł		Sample 1			
Origin	Ph. Eur. CRS			Manufacturer	Fantasy Pharm Ltd.		
Batch number	Batch	1		Batch number	34G56		
Ass. pot.	10351	J/mg		Ass. pot.	25000	IU / via	ı
Pre-dil. 1	24.2 m	g / 50 r	nl	Pre-dil. 1	1 vial /	′ 50 ml	
Doses	40 IU	60 IU	90 I U	Doses	40 IU	60 IU	90 I U
(1)	162	184	208	(1)	168	194	204
(2)	164	194	208	(2)	174	192	210
(3)	178	192	208	(3)	162	190	206
(4)	162	186	214	(4)	175	194	204
(5)	168	196	206	(5)	172	186	212
(6)	168	186	206	(6)	168	192	208
(7)	170	190	202	(7)	164	188	210
(8)	168	185	206	(8)	174	194	206

Figure B.20: The notation of the doses is now in content units

and assumed potency. In practice, you will probably only specify doses as contents if the standard and test preparations are of equal composition and are in all respects treated identically.

3.7 Unknown assumed potency

But what if you don't know the assumed potency? Well, in that case you normally carry out a preliminary assay to get a rough idea of the potency. Or you might take a nominal potency or specified potency from relevant documentation. After all, how can you reasonably prepare dilutions if you have no idea about the potency? However, there is a way to perform the calculations without specifying an assumed potency. Although not recommended, you can use a question mark followed by the units in which you want the software to calculate the potency. Try it as shown in figure B.21.

Perform the calculations and look what happens. You get an error message. Of course: How would you know that this dilution contains 40 IU if you do not know the assumed potency? That would make no sense. But it would make sense to use the volume or dilutions of the stock solution applied. Modify the doses so as to express dilution ratios as shown in figure B.22. and try again to calculate. It works! The only difference with the other examples is that the estimated potency can no longer be expressed as a relative percentage of the assumed potency. If you give question marks, you get question marks in return. It is therefore recommended to specify the assumed potency whenever possible.

Here are some explanations to make you understand how CombiStats deals internally with unknown potencies. CombiStats calculates an implicitly assumed potency on the basis of the pre-dilutions you specify, on the assumption that the stock solutions of the standard and test preparations are prepared to be equipotent. So, in our example the implicitly assumed potency is $\frac{1035}{1} \times \frac{24.2}{50} \times \frac{50}{1} \times 1 = 25047$ IU/vial. Indeed, you can see in the detailed graph that the doses of the standard and test do now exactly coincide whereas they were slightly shifted in the earlier examples. Also note that if you had used an assumed potency of 25047 IU/vial in the example where we used contents for the doses, we would have found exactly the same potency estimate.

3.8 Which residual variance?

Restore all the options to their original settings or simply close the sheet and open the file that we saved earlier (provided that you have not overwritten it with the modifications). Exclude blocks 2 to 8 as shown in figure B.23. The quickest way to achieve this is to double click first on "Doses" and then on (1). Let CombiStats perform the calculations and look what happens. You get the following error message in red: "The residual error cannot be

9	itandaro	ł			Sample 1				
Origin	Ph. Eu	Ph. Eur. CRS			Manufacturer	Fantasy Pharm Ltd.			
Batch number	Batch	1			Batch number	34G56			
Ass. pot.	10351	U/mg			Ass. pot.	2107	vial		
Pre-dil. 1	24.2 m	ig / 50 r	nl		Pre-dil. 1	1 vial /	⁷ 50 ml		
Doses	40 IU	60 IU	90 I U	1	Doses	40 IU	60 I U	90 I U	
(1)	162	184	208	1	(1)	168	194	204	
(2)	164	194	208	1	(2)	174	192	210	
(3)	178	192	208	1	(3)	162	190	206	
(4)	162	186	214	1	(4)	175	194	204	
(5)	168	196	206]	(5)	172	186	212	
(6)	168	186	206]	(6)	168	192	208	
(7)	170	190	202]	(7)	164	188	210	
(8)	168	185	206		(8)	174	194	206	

Figure B.21: This will not work! You cannot use content notation if you don't specify an assumed potency

S	tandaro	1			S	ample 1			
Origin	Ph. Eu	Ph. Eur. CRS			Manufacturer	Fantas	Fantasy Pharm L		
Batch number	Batch	1			Batch number	34G56			
Ass. pot.	10351	U/mg			Ass. pot.	?IU7	vial		
Pre-dil. 1	24.2 m	ig / 50 r	nl		Pre-dil. 1	1 vial /	/ 50 ml		
Doses	1/45	1/30	1/20		Doses	1/45	1/30	1/20	
(1)	162	184	208		(1)	168	194	204	
(2)	164	194	208		(2)	174	192	210	
(3)	178	192	208		(3)	162	190	206	
(4)	162	186	214		(4)	175	194	204	
(5)	168	196	206		(5)	172	186	212	
(6)	168	186	206		(6)	168	192	208	
(7)	170	190	202		(7)	164	188	210	
(8)	168	185	206		(8)	174	194	206	

Figure B.22: This will work! We do not need to know an assumed potency to know which dilution ratios we have used

Origin	Ph. E	ur. CF		Manufactur					
Batch number	Batch	n1							Batch numb
Ass. pot.	1035	10 / r	ng						Ass. pot.
Pre-dil. 1	24.2	mg / 5		Pre-dil. 1					
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	Doses
S1	162	164	178	162	168	168	170	168	T1
S2	184	194	192	186	196	186	190	185	T2
S3	208	208	208	214	206	206	202	206	T3

Sample 1									
Manufacturer	Fanta	Fantasy Pharm Ltd.							
Batch number	34G5	i6							
Ass. pot.	2500	0 IU 7	vial						
^p re-dil. 1	1 via	1 vial / 50 ml							
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
T1	168	174	162	175	172	168	164	174	
T2	194	192	190	194	186	192	188	194	
T3	204	210	206	204	212	208	210	206	

Figure B.23: The residual error cannot be estimated with only 1 observation per dose

estimated from the observed data". Indeed, you need at least 2 replicates per dose in order to estimate the residual error from the observed data. The residual error is needed for the validity checks in the analysis of variance and the calculation of the confidence limits. However, let us suppose that you know from historical data that the residual error is on average 20. In this case, you might decide to substitute the estimated residual error by this theoretical residual error. Open the options wizard and go to Variance. Select Theoretical variance, enter 20, and click on OK. Perform the calculations and examine the analysis of variance and the width of the confidence limits. Note that the theoretical variance has no degrees of freedom. In fact, it has ∞ degrees of freedom. Note also that the confidence limits are much wider than when all data were included. That makes sense: The more data you have, the more precise the estimated potency will be.

There are two other ways to treat data with only one replicate per dose. Open the options wizard and go to Variance. Try both of the other possibilities. If you select deviations from model you can no longer do a validity check. It can therefore only be used for assays that are strictly controlled, and where no doubt about the validity exists. You will also notice that the confidence limits are even wider than in the last example. This is because the residual error had to be estimated from very few observations. If you select deviations from linearity you can check for non-parallelism, but the confidence limits will again become wider. These options are therefore only useful if you have a reasonable range of doses, say at least 6 doses per preparation.

For assays described in monographs, you usually only need to specify observed residuals and make sure that you include enough independent replicates in the assay for a reliable estimate of the residual variance.

Standard									
Origin	Ph. E	Eur. CF	RS						
Batch number	Batc	h1							
Ass. pot.	1035	i IU 7 r	ng						
Pre-dil. 1	24.2	24.2 mg / 50 ml							
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
S1	162	164	178	162	168	168	170	168	
S2	184	194	192	186	196	186	190	185	
S3	208	208	208	214	206	206	202	206	

		9	Sample	e1					
Manufacturer	Fanta	Fantasy Pharm Ltd.							
Batch number	34G5	56							
Ass. pot.	2500	25000 IU / vial							
Pre-dil. 1	1 via	1 vial / 50 ml							
Doses	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
T1	168	174	162	175	172	168	164	174	
T2	194	192	190	194	186	192	188	194	
T3	204	210	206	204	212	208	210	206	

Figure B.24: It is not possible to fit a line with only one dose per preparation. Instead, a limit test is performed

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	18.0625	18.0625	0.707	0.415
Treatments	1	18.0625	18.0625	0.707	0.415
Residual error	14	357.875	25.5625		
Total	15	375.938	25.0625		

Sample 1							
Manufacturer	Fantasy Pharm Ltd.						
Limit tested	25047.0 IU / vial						
Probability	0.197						

All samples	Standard Ph. Eur. CRS	Sample 1 Fantasy Pharm Ltd.
•	•	
:		:
	·	
	•	•
• •	•	•

Figure B.25: No significant difference between the preparations

3.9 Single dose model

Set the variance back to Observed residuals. Now exclude the middle and the high doses as shown in figure B.24. Let CombiStats calculate this. Since you have only one dose of each preparation, it is not possible to calculate parallel lines. However, it is still possible to perform a limit test. A limit test allows you to check if a sample contains significantly more than a specific potency. Unfortunately, it is not possible to perform a limit test on designs that are not completely randomised. For this example, however, we will assume that the effect of the individual Petri dishes is negligible and that we can treat the data as if they were obtained in a completely randomised design.

How should we interpret the output in figure B.25? The analysis of variance shows that there is no significant difference (p = 0.415) between

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	2256.25	2256.25	124.606	0.000 (***)
Treatments	1	2256.25	2256.25	124.606	0.000 (***)
Residual error	14	253,500	18.1071		
Total	15	2509.75	167.317		

Sample 1
Manufacturer Fantasy Pharm Ltd.
Limit tested 16698.0 IU / vial
Probability 0.000 (***)

All samples	Standard Ph. Eur. CRS	Sample 1 Fantasy Pharm Ltd.
•	•	
·	:	
:	:	

Figure B.26: A highly significant difference between the preparations

the preparations if the two-sided t-test is used. That would lead to the conclusion that the potency of Sample 1 is not significantly different from 25047 IU / vial. The probability of 0.197 is obtained with another statistical test often more powerful and therefore preferable (one-sided test of Wilcoxon-Mann-Whitney). In this case, the conclusion of both tests is the same, but, in particular cases, one test may be significant whereas the other is not. The test must be chosen before running the assay. In general, the Wilcoxon-Mann-Whitney test is preferred.

Now try to compare S1 with T2 in a limit test. This time you will find a highly significant difference (see figure B.26). This means that Sample 1 induces a significantly higher response than the standard. Since higher responses in the diffusion assay are related to higher potencies, we can conclude that Sample 1 contains significantly more than 16698 IU/vial. Be careful with the interpretation: some types of assay give lower responses with higher doses, leading to exactly the opposite conclusion. Knowledge of the dose-response behaviour (positive or negative slope) is necessary to draw the correct conclusion.

Figure B.27: The 3 data sheets appear next to each other

3.10 Combination of assays

CombiStats came with more examples of different types of assays. These files are automatically copied to the hard disk of your computer when installed. Close all data sheets and open the three files with the names "Erythromycin Assay x". As you will notice, they will appear in separate windows next to each other (see figure B.27). Click on \square , \blacksquare , and \square , and look what happens.

We will now try to combine the three assays into one single potency estimate. To achieve this, click on $\stackrel{\sim}{\bullet}$. A summary of the three assays is automatically generated and three types of combination are carried out:

- A weighted combination, which assumes homogeneous potency estimates (homogeneity increases with the overlapping of confidence intervals). Weights applied to individual estimates are then based on intra-assay variations only.
- A semi-weighted combination used in case of heterogeneous potency estimates (reflected by lower overlapping of confidence intervals). Weights applied to potency estimates are then based on intra-assay variations and inter-assay variation.
- An unweighted combination, which consists in calculating a simple mean and confidence interval (the quantile of the t-Student distribution is calculated for the number of assays minus one).

Assay	Sample	Info	Lower limit	Estimate	Upper limit	df
1	1		874.648	936.639	1003.23	25
2	1		<u> </u>	<u> </u>		25
3	1		888.590	923.102	958.767	25

Figure B.28: Double click on a result to exclude it from the combination

		— •—i	
•		•	
	-		

Figure B.29: The excluded result is shown with an empty dot

A test for homogeneity of the potency estimates is also performed. There are no strict rules as to which of the three should be used, but the following rule of thumb can be of use:

- If the *p*-value for homogeneity is more than 0.10, the potency estimates are sufficiently homogeneous to use the weighted combination.
- If the *p*-value is less than 0.10, the potency estimates tend to be heterogeneous and it would be better to use the semi-weighted combination.
- The unweighted combination should only be used if there are enough assays, say, at least 6.

It is not possible to edit the combination sheet. It is automatically generated from the open data sheets. However, you can exclude assays from the combination by double clicking on them. The assay will then still be visible, but barred out (see figure B.28). The assay is also still presented in the graphic, but with an empty dot (see figure B.29).You can hide a column by moving the cursor over the right part of the cells of the first interval and select Hide from the drop down box. In this example, the columns Sample and lnfo appear pretty useless, so hide them. This way you can also filter out samples that meet a certain criterion. To recover hidden columns, use Edit > Unhide from the menu. You can sort the table by double clicking on the top row of the column that you want to sort. Try to sort the assays by increasing estimates by double clicking on Estimate. Restore the original order by double clicking on Assay.

Click on \blacksquare to save the combined potencies. The file extension for combination sheets is *.epc. The printout should look like shown in figure B.30.

You have now seen most of the basics of CombiStats. More detailed information on other features can be found in the online help and in the user manual by clicking on ? or on the website clicking on \bigcirc . All examples included with CombiStats can be accessed by clicking on \bigcirc .

*

ر Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Project	Erythromycin	
Ass. pot.	1000.00 IU/mg	

Assay	Sample	Info	Lower limit	Estimate	Upper limit	df
1	1		874.648	936.639	1003.23	25
2	1		919.331	970.838	1026.05	25
3	1		888.590	923.102	958.767	25

Remarks:

Geometric combination Homogeneity: p = 0.298

Weighted combination							
(IU/mg)	Lower limit	Estimate	Upper limit				
Potency	912.564	938.014	964.174				
Rel. to Ass.	91.3%	93.8%	96.4%				
Rel. to Est.	97.3%	100.0%	102.8%				

Semi-weighted combination						
(IU/mg)	Lower limit	Estimate	Upper limit 964.279			
Potency	912.465	938.014				
Rel. to Ass.	91.2%	93.8%	96.4%			
Rel. to Est.	97.3%	100.0%	102.8%			

Unweighted combination						
(IU/mg) Lower limit Estimate Upper limi						
Potency	884.424	943.314	1006.12			
Rel. to Ass.	88.4%	94.3%	100.6%			
Rel. to Est.	93.8%	100.0%	106.7%			

Fi	gure	B.30:	А	printout	of	the	combi	nation	sheet
----	------	-------	---	----------	----	-----	-------	--------	-------

Index

/, 58<, 58<=, 58<>. 58 =.58>, 58 >=, 58+, 31, 58-, 31, 58 *, 58 21 CFR Part 11, 68 4-parameter model, 16, 57 5-parameter model, 16 0, 311, 31 a, 56 a priori transformation, 54 abs, 58 absolute value, 58 acs, 59 addition, 20 addition (non-linear), 53 advanced options, 53 analysis of variance, 23, 36, 63, 154 ang, 59angder, 59 anginv, 59 angular, 20 angular distribution, 59 ANOVA, 23 antilogarithm, 59 arc cosine, 59 arc sine, 59 arc tangent, 59

arithmetic combination, 42 arithmetic operators, 20, 58 asn, 59Ass. Pot., 28 assay related information, 26 assigned potency, 28 assumed potency, 28 asymmetry parameter, 16 asymptote, 57 atn, 59 binomial data, 55 binomial distribution, 16 bivariate data, 31 bivariate observations, 20 blanks, 19, 37 block effect, 61 calculations, 11 coefficient of variation, 56 colours. 32 combining assays, 41, 172 common intercept, 16, 39 common parameter, 62 common slope, 15, 39 comparison operators, 58 complementary log-log distribution, 21complete ANOVA, 23 completely randomised, 17, 61 confidence limits, 39 confounded effects, 18 content, 29 content unit notation, 163 control charts, 22, 37 correlation coefficient, 39

cos, 59 cosine, 59 covariance matrix, 50, 62 cross-over designs, 17 cross-product, 62 curvature, 36

d, 56 data sheet, 25 decimal separator, 28 design, 17, 18, 152 design matrix, 50, 61 deviations from linearity, 22, 169 deviations from model, 21, 169 digital signatures, 68 dilution, 30 dilution notation, 163 dilution step, 19 division, 20 doses, 14, 18

e, 56 ED10, 16 ED50, 17 ED90, 16 EDxx determination, 16 effective dose (ED), 57 electronic signatures, 68 epm, 13, 26 equipotent, 165 equivalence testing, 24, 40, 64 estimable parameter, 63 examples, 71 excluded observations, 61 excluding assays, 173 excluding intervals, 42, 173 excluding observations, 31, 163 $\exp, 59$ expected response, 55, 56 explicit notation, 18 exponentiation, 20 exporting data, 43 exporting matrices, 50 expressions, 58

extended ANOVA, 23 Fieller's theorem, 62 file name, 67 file size, 67 filter, 42 first derivative, 53, 55, 61 fixed intercept, 15, 17 fixed slope, 15, 17 flags of significance, 36 force percentages, 40, 42 frequency, 56 functions, 20, 58 general linear model, 62 generalized inverse, 62 generalized linear models, 53 geometric combination, 42 gmp, 59 gmpder, 59 gmpinv, 59 gompertz distribution, 59 gompit, 21, 59 graphics, 37, 159 group size, 56 h, 56 hash code, 67 hat-matrix, 50, 63 , 58 header, 27 help, 173 heterogeneity factor, 22 heterogeneous potency estimates, 172 hiding columns, 42, 173 historical data, 22, 37 homogeneity, 173 homogeneous potency estimates, 172 homoscedastic data, 55 hypothesis matrix, 63 i, 55, 56 implicitly assumed potency, 167 importing data, 43 information lines, 14, 27

input files (*.epa), 44 internet address, 66 interpretation, 35 intersection, 37 inverse link-function, 53, 55 iteration, 56 iterations, 58, 61 keying errors, 37 labrary of templates, 26 lack of quadratic fit, 23, 36 Latin square, 18, 61 level of significance, 36 leverage, 38 lgt. 59 lgtder, 59 lgtinv, 59 library, 24, 25, 65, 155, 156 licence authorisation file, 65 limit test, 170 limit testing, 40 linear hypothesis, 62 linear predictor, 55, 56 linear predictors, 50, 61 linear structure matrix, 50 linearised observations, 50 linearised weights, 50 linearity, 36, 37 linearized responses, 61 link-function, 53, 55, 61 ln, 59 $\log, 59$ logarithm, 59 logistic distribution, 59 logit, 20, 59 logit analysis, 16 logo, 7 m, 56 mean response, 35, 161 menu bar, 8 meta-axis, 38 missing observations, 61 model, 15, 152

 $\mu, 28$ multiplication, 20 multiplication (non-linear), 53 n, 54, 56 natural logarithm, 59 natural mortality, 57 no ANOVA, 23 non-linear addition, 56 non-linear multiplication, 56 non-linear parameters, 56, 61 non-linear predictors, 50 non-linearised weights, 50 non-linearity, 36, 37 non-parallelism, 36 normal ANOVA, 23 normal distribution, 59 normit, 20, 60 notation of doses, 152, 163 observation vector, 61 observations, 31, 50 observed residuals, 21, 169 OMCL, 7 online help, 173 operators, 20, 58 options wizard, 13, 150 orientation, 14, 150 outliers, 37 output files (*.txt), 50 parallel lines, 15 parallelism, 36 parameter estimates, 50, 62 passwords, 65 PFU calculations, 17 phi, 59 phider, 59 phiinv, 60 pi, 20 $\pi, 58$ plaque forming units, 17 plate layout, 18 point of inflexion, 57 Poisson-distribution, 55

potency estimate, 39 power-transformation, 53, 54 pre-dilutions, 14, 28 predicted observations, 50 predictors, 50 preferences, 65 printing, 11 priority rules, 20, 58 probit, 20, 60 probit analysis, 16 protecting data, 43, 51

quadratic curvature, 23, 36 quantal responses, 16 question mark, 28, 167

r, 54

randomised blocks, 17, 61 raw residuals, 38, 50 rec, 60 recder, 60 recinv, 60 reconstitution volume, 28 rectangular, 21 rectangular distribution, 60 reduced ANOVA, 23 regression, 36 relative potency, 62 remarks, 32 replicates, 14, 30 residual error, 37 residual plot, 38 residual variance, 167 RIPEMD-160, 67 routine assays, 10, 37, 39

s, 56

sample related information, 14, 27 scaling by dose, 38 scaling by notation, 38 scaling by x, 38 semi-weighted combination, 41, 172 sigmoid curves, 16 signatures, 33 significance, 36 $\sin, 60$ sine, 60single dose assay, 15, 17, 23, 40 single dose model, 170 size, 13 slope ratio, 16 slope-factor, 16 sorting intervals, 42, 173 Spearman-Kärber, 21 sqrt, 60square root, 60 standardised residuals, 38, 50 stars of significance, 36 stock solutions, 14 studentised residuals, 38 subtraction, 20 symbolic notation, 18, 19, 163 tan, 60 tangent, 60 template, 10, 13, 24, 25, 149 test of homogeneity, 173 theoretical variance, 21, 22, 37, 169 Title 21 CFR Part 11, 68 toolbar, 8 transformation, 19, 36, 61, 152 transformation doses, 54 transformation responses, 54 tutorial, 149 unbiased estimates, 55 unit conversion, 28 unknown potency, 167 unweighted combination, 41, 172 validity criteria, 36 variance, 21, 152 vertical location, 16 vertical scale, 16 volume, 29 volume unit notation, 163 w. 62 website, 66, 173

website, 66, 173 weight function, 53, 55, 62
CombiStats

User Manual Version 7.0

CombiStats is a user-friendly computer program for the statistical analysis of data from biological dilution or potency assays. It can perform calculations according to Chapter 5.3 of the European Pharmacopoeia (5th to 10th Edition) including the following models:

- parallel line models, •
- slope ratio models, •
- probit models, •
- ED50 calculations (and other percentiles),
- 4- and 5-parameter curve models, •
- single dose models,
- combination of assays, the missing value can b •

and many more of the family of generalised linear models.

www.combistats.eu

ed European Directorate for the

Quality of Medicines & HealthCare