

0mbiglats

User Manual Version 7.0

| COUNCIL |
| :--- | :--- |
| OFENSEL |
| OUROPE |
| DELEUROPE |

The CombiStats User Manual

EDQM - Council of Europe

October 2021

Contents

1 Introduction to CombiStats 7
1.1 The software 7
1.2 About the name 7
1.3 Running CombiStats 8
1.4 The interface 8
1.5 Creating a template 10
1.6 Entering assay data 10
1.7 The calculations 11
1.8 Printing 11
1.9 Combining assays 11
2 Creating a template 13
2.1 Introduction 13
2.2 Size 13
2.3 Orientation 14
2.4 Model 15
2.5 Design 17
2.6 Doses 18
2.7 Transformation 19
2.8 Variance 21
2.9 Analysis of variance 23
2.10 Customising the template 24
3 Entering assay data 25
3.1 Introduction 25
3.2 Using the library of templates 26
3.3 Assay related information 26
3.4 Sample related information 27
3.4.1 Header 27
3.4.2 Sample related information 27
3.4.3 Assigned or assumed potency 28
3.4.4 Predilutions 28
3.4.5 Doses 29
3.4.6 Replicates 30
3.4.7 Observations 31
3.5 Layout of the design 31
3.6 Remarks 32
3.7 Signatures 32
4 Interpretation of the output 35
4.1 Introduction 35
4.2 Inspecting the mean responses 35
4.3 Analysis of variance (ANOVA) 36
4.4 Graphs 37
4.5 Additional statistics 39
4.6 Potency estimates 39
4.7 Single dose assays 40
4.8 Equivalence testing 40
5 Combining assays 41
5.1 Introduction 41
5.2 Editing the combination sheet 41
5.3 Available options 42
6 Importing, exporting, protecting data 43
6.1 Introduction 43
6.2 Copy and paste 43
6.3 Creating input files 44
6.4 Creating output files 50
6.5 Exporting matrices 50
6.6 Protecting templates and data sheets 51
7 Advanced options 53
7.1 Introduction 53
7.2 Transformation doses 54
7.3 Transformation responses 54
7.4 Inverse link function 55
7.5 First derivative 55
7.6 Weight function 55
7.7 Start value for non-linear parameters 56
7.8 Effective dose 57
7.9 Minimum and maximum number of iterations 58
7.10 Expressions 58
8 Computational details 61
8.1 Computational details 61
9 Preferences 65
9.1 Introduction 65
9.2 Location of passwords 65
9.3 Location of library of templates 65
9.4 The official CombiStats website 66
9.5 Print file name on each page 67
9.6 Print file size on each page 67
9.7 Print hash code of the file on each page 67
9.8 Title 21 CFR Part 11 68
9.9 Use of colours in designs 68
9.10 Miscellaneous other preferences 69
9.11 Protection of version 4.0 and earlier files 69
A Examples 71
A. 1 Examples from the European Pharmacopoeia 72
A.1.1 Example 5.1.1. (Including all samples) 72
A.1.2 Example 5.1.1. (Excluding sample U) 73
A.1.3 Example 5.1.2. 74
A.1.4 Example 5.1.3. 76
A.1.5 Example 5.1.4. 77
A.1. 6 Example 5.2.1. 79
A.1.7 Example 5.2.2. 80
A.1.8 Example 5.3.1. (Probits) 81
A.1.9 Example 5.3.2. (Logits) 82
A.1.10 Example 5.3.2. (Gompits) 83
A.1.11 Example 5.3.2. (Angles) 84
A.1.12 Example 5.3.3. 85
A.1.13 Example 5.3.3. (Alternative) 86
A.1.14 Example 5.4.1. 87
A.1.15 Example 6.4. 88
A. 2 Examples from D.J. Finney 89
A.2.1 Example 3.9.1. (Without transformation) 89
A.2.2 Example 3.9.1. (With exact transformation) 90
A.2.3 Example 3.9.1. (With rounded transformation) 91
A.2.4 Example 4.2.1. 92
A.2.5 Example 4.15.1 94
A.2.6 Example 5.2.1. 95
A.2.7 Example 5.4.2. 96
A.2.8 Example 7.3.1. (Including blanks) 97
A.2.9 Example 7.3.1. (Excluding blanks) 98
A.2.10 Example 7.10.2 99
A.2.11 Example 9.5.1. 100
A.2.12 Example 9.5.1. (Alternative) 102
A.2.13 Example 11.2.1. 104
A.2.14 Example 11.3.1 105
A.2.15 Example 18.2.1 107
A. 3 Miscellaneous other examples 109
A.3.1 Diphtheria vaccine, intradermal challenge 109
A.3.2 Erythromycin, agar diffusion (assay 1) 110
A.3.3 Erythromycin, agar diffusion (assay 2) 111
A.3.4 Erythromycin, agar diffusion (assay 3) 112
A.3.5 Erythromycin, combination of assays 113
A.3.6 Erythropoetin rDNA, normocythaemic mice 114
A.3.7 Factor IX, coagulation 115
A.3.8 Factor VIII, chromogenic 116
A.3.9 Heparin sodium, clotting 117
A.3.10 Hepatitis A vaccine, immunogenicity (in vivo) 118
A.3.11 Hepatitis B vaccine, antigen content by ELISA 119
A.3.12 Hepatitis A immunoglobulin, ELISA 120
A.3.13 Rabies immunoglobulin, RFFIT 121
A.3.14 Tetanus vaccine, lethal challenge 122
A.3.15 Inactivated poliomyelitis vaccine, D-antigen content 123
A.3.16 Influenza vaccine, single radial immunodiffusion 124
A.3.17 Inverted ED50 units 125
A.3.18 Inverted ED50 volumes 126
A.3.19 MMR vaccine / Measles, ED50 using ratios 127
A.3.20 MMR vaccine / Mumps, ED50 using +/- per well 128
A.3.21 Oral poliomyelitis vaccine, ELISA 130
A.3.22 Acellular pertussis, limit test with quantitative data 131
A.3.23 Yellow fever vaccine, plaque forming units 132
A.3.24 Tetanus immunoglobulins, toxoid binding inhibition 133
A.3.25 Inactivated rabies (veterinary), challenge assay 135
A.3.26 MMR vaccine / Rubella, ED50 by pooling of ratios 136
A.3.27 MMR vaccine / Measles, ED50 with fixed slope 138
A.3.28 Swine erysipelas, limit test with quantal data 139
A.3.29 Hepatitis B vaccine, weighted exponential regression 140
A.3.30 Robust regression with Huber's weights 141
A.3.31 Automatic invocation of the Spearman/Kärber method 142
A.3.32 Five-parameter logistic curve regression 144
A.3.33 Five-parameter logistic curve regression 145
A.3.34 Equivalence testing 146
A.3.35 Single dose assay with quantal responses 148
B Tutorial 149

Chapter 1

Introduction to CombiStats

1.1 The software

CombiStats is a calculation program for the statistical analysis of data from biological dilution assays. It includes parallel line analysis, slope ratio analysis, probit analysis, ED50 determination, 4- and 5-parameter logistic curve fitting, limit testing of single dose assays and combination of assays. This chapter provides a brief introduction to the software. More detailed information can be found in chapters 2 to 8 . A large set of examples is given in appendix A . It is recommended to study these examples because they show most of the features available in the program. A tutorial is provided in appendix B. Before reading this manual, it is strongly recommended to get acquainted with the software by performing the exercises in the tutorial.

1.2 About the name

During the beta testing phase of CombiStats version 1.0, the software had been given the temporary working title OMCL BioStat. It appeared that the name BioStat was already in use by at least two other existing programs, so it was decided to rename the software. Additionally, the prefix OMCL was considered restrictive, since it could not be excluded that the software would also be made available outside the network of European Official Medicines Control Laboratories. The name CombiStats contains the letters OM as a reminder that it was initiated by the OMCLs, and the letters BI as a reference to the fact that it is intended for biological assays. The first part 'Combi' indicates that the software combines several types of analysis in one consistent interface and also that it offers the possibility to combine the results of several assays. The second part 'Stats' is self explanatory.

The concept for the CombiStats logo ((m mitatis) was to express somehow parallel lines or sigmoid curves in a legible representation of its name. The name is slanted to the right, so the two t's give an impression of two parallel

Figure 1.1: The menu bar and the toolbar
lines. The two s's are extended to the left and the right to give an impression of 2 sigmoid curves (admittedly, they don't have equal 'upper asymptotes'). The colour blue is the same shade of blue as the background of the European flag to express its relation with the European Pharmacopoeia.

1.3 Running CombiStats

Once the software is installed on your computer, you can run it from the Start menu of Windows. If you have created a shortcut on your desktop, you can click on the icon ${ }^{0}$ depicting the European stars with two parallel lines. An empty window will appear with on top the menus and the toolbar. You can either create a new template, open an existing template or open an existing data sheet. Although most operations can be performed from the keyboard, the software has primarily been designed to be used with a mouse.

1.4 The interface

The menu bar and the toolbar look as shown in figure 1.1. Most menu options can be accessed more quickly by using the icons on the toolbar. The meaning of each of the icons is as follows:

- \square Create a new template. You have to specify all definitions.

Open the library of templates. Templates contain all definitions necessary for a particular type of assay.

Open a data sheet. Data sheets contain all data of a particular assay.

- \square Save data sheet. You can save a completed data sheet (*.epa) or an empty template with definitions (*.epm).
- Print data sheet. Use File \triangleright Print all from the menu to print all open data sheets.
- $\sqrt{2}$
Undo last action. Use this when you have made a mistake and want to revert to the previous situation.
- 5 Redo last action. Use this to revert the effect of the undo actions.

Copy selection. Use this to copy a group of cells, so as to avoid retyping the same information.

Copy all. Use this to copy the complete contents of a data sheet to the clipboard.

Paste clipboard. The contents of the clipboard are pasted into the selected cells.

- \dagger Protect data sheet. You can specify 4 different levels of protection with passwords.
- 旦曷 Options wizard. Use the options wizard to modify the definitions of a template or data sheet.
- $\#$ Calculate. Click on this button to perform the calculations.

Show full page graph. Click on this button to view a full page representation of the graph.

Combine assays. Click on this button to combine results from independent assays.

- \square Data sheets are shown in cascade, i.e. one in front of another.
-Data sheets are shown in horizontal tiles.
 Data sheets are shown in vertical tiles.

Examples. Gives direct access to the folder with example data sheets.

6
$-\quad 0$ Access the user manual.

Click on this button to access the official CombiStats internet site.

1.5 Creating a template

For routine assays you will probably like to create an empty standard data sheet (template) in which all options are predefined, and in which you only have to enter the observed data. You can do this by clicking on the leftmost button \square depicting an empty data sheet. The options wizard dialogue box appears in which you can distinguish eight groups of options. You can walk through the groups by clicking on the NEXT button. Click on OK to confirm your choices after having selected an option in each of the groups. Otherwise click on CANCEL. You can also click on PREVIOUS to go back a group or on the tab strips to go directly to a specific group. It is recommended to use the NEXT button rather than the tab strips, because the selection of some options may modify the options in next groups, but never in previous groups. Refer to chapter 2 for more detailed information on the selection of options. When you have clicked on the OK button, an empty data sheet will be created. You can still modify the options by clicking on the Options wizard button depicting a magic wand in front of a data sheet. You can also enter the fields which you know to be always the same in routine, such as the assigned potency of the standard, the name of the substance, or the doses. When you have finished, you can save the template by clicking on the SAVE button 蒚 depicting a disk. Select the directory where you want to store it and select Template (*.epm) as the type of file. Choose an instructive name for your template and save it by clicking on the OK button. You may also add this template to a library of templates for easy access.

1.6 Entering assay data

If you want to enter assay data you can either open an existing template or use the options wizard to create an ad hoc data sheet. The first table contains assay related information, for example the date of assay, the name of the operator, the assay method. This information is automatically repeated on each page. The information in this table is not necessary for the calculations, but is intended to identify the assay and to provide additional information. The tables that follow contain sample related information, for example the batch number, the expiry date, the assumed or assigned potency and of course the observed data. In case you have enabled the option to show the design, the data are also presented in the layout of the design.

Finally, you can add any remarks in the text box at the top of the first page. You can save the data by clicking on the SAVE button depicting a disk. Select the directory where you want to store it and select Assay (*.epa) as the type of file. Choose an instructive name for your assay and save it by clicking on the OK button. Refer to chapter 3 for more detailed information on entering the data.

1.7 The calculations

You can start the calculations by clicking on the button 葍 depicting a pocket calculator. The following information is provided: the analysis of variance (ANOVA), some additional statistics which may be useful for quality control, the estimated potencies and the 95 per cent confidence intervals, and a graphical presentation of the observed data and the calculated regression. Redundant tables will be removed, provided they are not followed by non-redundant tables. Avoid empty tables because they slow down the calculation process. Refer to chapter 4 for some guidelines on the interpretation of the output.

1.8 Printing

You can make a printout of the data sheets by clicking on the button 桪 depicting a printer. As you may have noticed, the presentation on your screen is exactly as it would appear on paper (the software detects automatically the paper format of your current default printer. If no printer can be detected, an A4 format is assumed). On the top of each page, you will find the date and time of printing, which should avoid mixing up pages that were printed at different times.

1.9 Combining assays

You can combine the results of assays by opening all assays you want to combine and clicking on the button depicting a cauldron. The resulting combination can be saved as a file with the extension *.epc. More details can be found in chapter 5 .

Chapter 2

Creating a template

2.1 Introduction

A template is a standard data sheet with the extension *.epm in which all options are predefined. Templates are useful if you regularly perform similar assays. Instead of each time creating a new data sheet and specifying all options, you can simply open a template and start entering the data. The creation of a new template is not difficult, but it is important that you know exactly which options are appropriate for the type of assay concerned. It is anticipated that templates are only prepared by qualified staff, or on the basis of directives from qualified staff. To create a template you start by clicking on the leftmost button depicting an empty page \square. Alternatively you can select File \triangleright New from the menu or press CTRL +N . The options wizard will appear in which eight groups of options can be distinguished. This chapter explains which options are available for each of the groups and what their properties are.

2.2 Size

The group 'Size' (see figure 2.1) enables you to specify how many tables you need and how many rows and columns each table should have. The number of tables is normally equal to the number of samples included in the assay (including the Standard). However, it is possible to specify more tables than needed. When the calculations are performed, empty tables are considered to be redundant and automatically removed. You should avoid empty tables followed by non-empty tables because they cannot be removed and will slow down the calculations. A data sheet must contain at least one table. The maximum number of tables is 99 , but in practice this will only be limited by the memory and speed of your computer. In multiple assays, the inclusion or exclusion of test samples will generally affect the estimated potency of the other samples. This is because the software can make a more

Figure 2.1: The 'Size' group of the Options wizard
accurate estimate of the potency if more observations are included.

- The number of information lines is determined by the amount of sample related information you want to include in the tables. These lines are not necessary for the calculations, but are intended to provide additional information about the samples. For example, if you want to include the name, the batch number and the expiry date of each sample, you need 3 information lines. If you do not want to include sample related information, you can specify 0 information line.
- The number of pre-dilutions is almost self explanatory. You need a line for each step in the preparation of the stock solution. You can specify 0 if there is no pre-dilution. The reconstitution of a sample and the injection or inoculation volume are also counted as pre-dilutions.
- The number of doses is the number of doses included for each sample. If the samples have unequal numbers of doses, you will have to specify the maximum amount of doses needed and leave the superfluous cells empty when entering the data. It is not possible to specify different sizes for each table.
- The number of replicates indicates how many times each treatment is included in the assay. If unequal numbers of replicates are included for the different treatments, you will have to specify the maximum number of replicates needed and leave the superfluous cells empty when entering the data.

2.3 Orientation

The orientation of the tables depends on the most convenient presentation. For some assays, it may be more convenient to position the doses vertically

Standard		
Preparation	S	
Ass. pot.	$39 \mu \mathrm{~g} /$ dose	
Pre-dil. 1	$1 \mathrm{dose} / 0.5 \mathrm{ml}$	
Pre-dil. 2	$1 \mathrm{ml} / 39 \mathrm{ml}$	
Doses	$[1]$	$[2]$
S 1	18.0	18.0
S 2	22.8	24.5
S 3	30.4	30.4
S 4	35.7	36.6

Standard					
Preparation	S				
Ass. pot.	$39 \mu \mathrm{~g} /$ dose				
Pre-dil. 1	dose/0.5 ml				
Pre-dil. 2	$1 \mathrm{ml} / 39 \mathrm{ml}$				
Doses	$S 1$	S	S		
$[1]$	18.0	22.8	30.4	35.7	
$[2]$	18.0	24.5	30.4	36.6	

Figure 2.2: Same data with different orientations

Figure 2.3: The 'Model' group of the Options wizard
on the left side of the tables, and for other assays to place them horizontally on top of the tables. The choice is purely a matter of page layout and will usually be chosen so as to save paper. You can always change this option at a later stage if you change your mind. Figure 2.2 shows an example of the same data presented with the doses positioned vertically and horizontally, respectively.

2.4 Model

You can select five different models: Parallel lines, Slope ratio, Sigmoid curves, Quantal responses, and EDxx determination (see figure 2.3). For each model, it is possible to specify a fixed common parameter. For slope ratio models, this is the common intercept, and for other models, this is the common slope. If you want to analyse a single dose assay, you can select Parallel lines for quantitative responses and Quantal responses if the data are quantal.

- Parallel lines: This model assumes that response y depends on dose x according to the relationship $f(y)=c_{i}+b \cdot \log _{e}(x)+\varepsilon$ where f is some type of transformation (see section 2.7), c_{i} is the intercept of preparation i, b is the common slope and ε is a statistical error
following a normal distribution with expectation 0 . Since the exact dose of the test samples is not known, the intercepts are usually not the same for each sample. The horizontal distance between the parallel lines is the correction that has to be applied to the assumed potency to find an estimate of the true potency.
- Slope ratio: This model assumes that response y depends on dose x according to the relationship $f(y)=c+b_{i}(x)+\varepsilon$ where f is some type of transformation (see section 2.7), c is the common intercept, b_{i} is the slope of preparation i and ε is a statistical error following a normal distribution with expectation 0 . Since the exact dose of the test samples is not known, the slopes are usually not the same for each sample. The ratio between the slopes of the lines is the correction that has to be applied to the assumed potency to find an estimate of the true potency.
- Sigmoid curves: This model is often called a 4- or 5-parameter model because the sigmoid curves are characterised by 4 or 5 parameters. The model assumes that response y depends on dose x according to the relationship $f(y)=d+a \cdot h\left(c_{i}+b \cdot \log _{e}(x)\right)^{g}+\varepsilon$ where f is some type of transformation (see section 2.7), c_{i} is the intercept of sample i, b is the common slope factor, a is a factor of vertical scale, d is a term of vertical location, h is a function describing the general shape of the curve, g is the optional fifth parameter to model asymmetry, and ε is a statistical error following a normal distribution with expectation 0.
- Quantal responses: This model is similar to the model for sigmoid curves, with the exception that responses y do not follow a continuous scale, but are fractions of units that can either respond or not respond to a certain stimulus, e.g. dead or alive. For example, if a group of 10 mice have received a certain dose and you count the number of surviving animals, you may expect the fractions $0 / 10,1 / 10,2 / 10$, $\ldots, 9 / 10$ and $10 / 10$, but you cannot expect a fraction of 0.324 . The responses are said to be quantal following a binomial error distribution. This model includes probit analysis and logit analysis (see section 2.7).
- EDxx determination: This is also a model depending upon quantal responses, but instead of measuring the horizontal distance between test samples and a standard, the dose that induces a response in xx per cent of the units (usually 50 per cent) is estimated. If you specify this option, you will also have to specify xx . This value is 50 by default, but it can have any value between 0 and 100 (exclusive). However, in the extreme parts of the curve, the outcome becomes highly dependant on model assumptions. Estimates above the ED90 or below the ED10

Figure 2.4: The 'Design' group of the Options wizard
are therefore seldom very meaningful, unless you have large amounts of data. The ED50 is usually the most robust option.

- In slope ratio assays, the intercept can be kept fixed, typically to force the lines through the origin. In other assays, the slope can be kept fixed. On the computer output, the fixed parameter is shown on the right-hand side of the model specifications together with a p-value for the hypothesis that the fixed slope (or intercept) is identical to the estimated slope (or intercept). A fixed slope can be useful in the calculation of plaque forming units (PFU) where the slope is theoretically exactly 1 (i.e. a 10 -fold dilution is expected to give a factor 10 less plaques). Another situation in which a fixed slope can be useful is in ED50 calculations where not enough non-extreme responses are available to calculate a slope. In such cases, a slope based on historical data may be used.

In case of a single dose assay, you should specify Parallel lines if the data are quantitative and Quantal responses in other cases.

2.5 Design

You can choose between three different types of design (see figure 2.4). Data from cross-over designs cannot be analysed with CombiStats.

- Completely randomised: This design is appropriate if no experimental factor can be identified that could influence a specific group of treatments in the same way.
- Randomised blocks: If it is possible to identify an experimental factor that could influence the response of specific groups of units in the same way, the randomised block design may be appropriate. For example, a
group of different treatments in a Petri dish might, on average, give a lower response than an identical group of treatments in another Petri dish. Hence, it is important that the treatments be equally distributed over the Petri dishes (the blocks). Applying the same treatment in only one block should absolutely be avoided, as this would confound the effect of the treatment with the block effect, and thus lead to erroneous results. For example, if animals receiving the low dose of a sample are all kept in the same cage and animals receiving the high dose are kept in another cage, it is not possible to distinguish between the effect of the treatment and the effect of the position of the cage (should there be any).
- (Latin) square: If it is possible to identify two possible factors that could influence the response of specific groups of units in the same way, the (Latin) square design may be appropriate. For example, treatments that are positioned in the same row of a plate may give a higher average response than identical treatments in another row, and the same could be true for the columns. If rows and columns can be expected to affect the response, it is important to distribute the treatments equally over the rows and columns and to specify the (Latin) square option. The word Latin is put between parentheses because the software does not necessarily require a Latin square distribution of the treatments, but just some kind of rectangular distribution in which it is possible to distinguish between rows and columns or any other pair of experimental factors that are not confounded with the treatments or with each other.
- If the option 'Show design' is enabled, rectangular tables are shown in which you can specify the design (e.g. plate layout) and enter the responses as positioned in the design (e.g. from an automated plate reader). You can specify the number of rows and columns your design has and whether the rows should be labelled with letters or with numbers.

2.6 Doses

You can choose between explicit notation and symbolic notation (see figure 2.5).

- Explicit notation: In general, this option is recommended because it has the advantage that the tables are more instructive for later reference. It forces you to specify the doses explicitly in the tables. For more details see section 3.4.5.

Figure 2.5: The 'Doses' group of the Options wizard

- Symbolic notation: In some cases, it may be convenient to use symbolic notation. If this option is selected you do not have to indicate the doses explicitly in the tables but you can use symbolic notation instead. For example, you can specify S1, S2 and S3 for the low dose, middle dose, and high dose of the standard, respectively, or you can use descriptions like Low and High. It is even possible to specify nothing at all, but this is not recommended. The software calculates the doses on the basis of the pre-dilutions and the dilution step. Hence, it is necessary to indicate the dilution step and whether the doses are increasing or decreasing. If this option is selected and a dose is given explicitly, the explicit dose overrules the implicit dose. A dose is only recognised as implicit if it starts with a letter (A to Z or a to z , no special characters, no accents) or if it is empty. If the assay has unequal dilution steps, you have to use explicit notation.

Important: If symbolic notation is used for slope ratio assays, the number of non-zero doses has to be indicated. If blanks are included in the assay, they have to appear as the last dose, which should be explicitly indicated as the zero dose.

2.7 Transformation

The transformations that can be selected depend on the model. For parallel line and slope ratio assays, you can choose between four predefined transformations or you can specify any other transformation (see figure 2.6). For sigmoid curves, quantal responses and EDxx determination, five transformations are available (see figure 2.7).

- Parallel line and slope ratio assays: By default, no transformation is selected $\left(y^{\prime}=y\right)$. The other predefined options are the square root trans-

Figure 2.6: The 'Transformation' group for parallel lines and slope ratio models
formation $\left(y^{\prime}=\sqrt{y}\right)$, the logarithmic transformation $\left(y^{\prime}=\log (y)\right)$ and the square transformation $\left(y^{\prime}=y^{2}\right)$. It is also possible to specify any other transformation by simply selecting the last option and typing the required transformation. You can use the standard arithmetic operators such as multiplication (*), division (/), addition (+), subtraction (-) and exponentiation $\left(^{\wedge}\right)$. The normal priority rules apply, e.g. $3+4 * \mathrm{y}$ is interpreted as $3+(4 * y)$. Use parentheses to overrule the order of priority, e.g. $(3+4) * y$. Available functions are, amongst others: $\log (), \ln (), \operatorname{sqrt}()$ and $\exp ()$ which denote the common logarithm, the natural logarithm, the square root and the natural antilogarithm, respectively. See section 7.10 for a complete list of available functions. Use the keyword pi to indicate the constant π. The variable y has to be used to indicate the original observation that has to be transformed. In case the observations are bivariate, you have to use the variable z to indicate the second part of the observation. If the program encounters an invalid operation, e.g. division by 0 or logarithm of a negative number, an error message is displayed. Examples of valid transformations are:

```
\(y^{\prime}=\operatorname{sqrt}(\mathrm{y}-10)\)
\(y^{\prime}=\log ((y+2.75) * 1000)\)
\(y^{\prime}=(y+z) / 2\)
\(y^{\prime}=(y * z) / 4 * p i\)
```

- Quantal responses and EDxx determination: By default, the probit transformation is selected (also called the normit transformation after the normal distribution). The other options available are the logit transformation (named after the logistic distribution), the angular transformation (called after the angle distribution), the rectan-

Figure 2.7: The 'Transformation' group for quantal responses, EDxx determination and sigmoid curves
gular transformation (also called the linear transformation, after the uniform distribution) and the gompit transformation (called after the Gompertz distribution, also called the complementary log-log distribution). The choice should depend on experience or publications from research. Select the probit transformation if you have no idea what to choose. Tick the checkbox to include an asymmetry parameter in the model. CombiStats will automatically invoke the Spearman-Kärber method in cases where it is impossible to estimate the slope from the data. The output shows a message to inform the user of this fact. Note that the Spearman-Kärber method requires that the doses are equidistant. It is the responsibility of the user to make sure that this is indeed the case. If the doses are not equidistant, CombiStats will use the smallest distance d between adjacent doses giving unequal responses. The common slope of the rectangular curves is then fixed at $1 / \log _{e}(d)$.

2.8 Variance

For parallel lines, slope ratio assays and sigmoid curves, the observed residuals are selected by default. For quantal responses and EDxx determination, a theoretical variance of 1 is selected by default. Normally you should not change these default settings (see figure 2.8). However, in some cases it may be desirable to use another option.

- If there is only one observation per treatment, it is not possible to calculate the residual error in the usual way. However, if there are reasons to assume that all model assumptions such as linearity and parallelism are fulfilled, it is possible to use the deviations from model as an alternative residual error. Since this option excludes the possibility to check

Figure 2.8: The 'Variance' group of the Options wizard
for features like non-parallelism and non-linearity, it can only be used for routine assays that are very well controlled. This option can also be used if there are reasons to assume that the observed residual error systematically underestimates the true residual error and there is no possibility to remedy this with better randomisation of the treatments.

- In the same situations, another alternative could be to use the deviations from linearity. With this option, it is still possible to check for non-parallelism, or intersection and blanks. This option should also be selected if a heterogeneity factor is desired for quantal responses (see section 4.2.4 of chapter 5.3 of the European Pharmacopoeia).
- In some routine situations, there may be insufficient data to compute a meaningful variance from the observed residuals, but there may be sufficient historical data to assume a theoretical variance. The theoretical variance has the advantage that all validity tests like parallelism and linearity can still be carried out, and also that the observed residual error can be compared with the theoretical variance. A significant F-ratio for the observed residuals indicates a problem with the assay consistency. This should also be apparent from control charts. The number of degrees of freedom of the theoretical variance is set to ∞. For quantal responses and EDxx determinations, a theoretical variance of 1 is used. Do not change this value unless you know what you are doing.

Figure 2.9: The 'ANOVA' group of the Options wizard

2.9 Analysis of variance

ANOVA is an abbreviation of 'analysis of variance'. The option by default is the normal ANOVA (see figure 2.9).

- No ANOVA: If there is no need to check the validity of the assay, you may specify this option. The analysis of variance is then omitted. For single dose assays, this option is usually selected to avoid confusion with the Wilcoxon-Mann-Whitney test.
- Reduced ANOVA: With this option specified, the total sum of squares is subdivided in only three sources of variation: The variation that is explained from the model (which should be highly significant), the variation due to deviations from the model (which should not be significant) and the residual error.
- Normal ANOVA: This option allows you to check the usual statistics such as regression, non-parallelism and non-linearity (regression, intersection and blanks for slope ratio assays). The deviations from linearity are further partitioned for each sample individually.
- Extended ANOVA: In addition to the normal ANOVA, this option allows you to check for quadratic curvature and lack of quadratic fit. In some cases, a slight quadratic curvature does not necessarily mean that the assay is invalid. Provided that the lack of quadratic fit is not significant, a quadratic curvature may indicate that a transformation of the data is appropriate. In three-dose assays, the lack of quadratic fit is also known as the difference of quadratics.
- Complete ANOVA: In addition to the extended ANOVA, this option also displays the statistics of the reduced ANOVA.
- Equivalence testing: Tick the checkbox to include a table with statistics for equivalence testing.

2.10 Customising the template

Once you have defined all the options, you can still modify them by clicking on the Options wizard button 国 depicting a magic wand in front of a data sheet or from the Tools menu on the menu bar. When all options are set, you may wish to further customise the template. For example, the first column of the assay related information contains five entries by default: Substance, Method, Assay number, Technician and Date of assay. These are only suggestions and can be modified. You can reduce the table by deleting the last entry, or you can extend the table by moving down the cursor while the focus is on the last row. For many routine assays, you will always use the same dilution series and assumed potencies, so it is convenient if this information is already entered into the template. See chapter 3 for more detailed information on entering assay data. You can save a template by clicking on the button 葍 depicting a disk and save the data sheet as a model with the extension *.epm. CombiStats will ask you if you want to add this template to the library. This library offers quick access to all available templates you have created. See chapter 3 for more details on using the library.

Chapter 3

Entering assay data

3.1 Introduction

If you want to enter data from an assay, you can either create an ad hoc data sheet (see chapter 2) or use an existing template. To open an existing template, click on the button depicting a folder , select the extension *.epm and browse to the location where the template it stored. If the template was added to the library, you can access the template more quickly by clicking on the button 國 depicting an empty template. The software constructs data sheets according to a standard format. A data sheet can extend over several pages. Each page starts with information on the date and time of printing, which should avoid mixing up pages that are printed at different times. The assay related information is also repeated on each page, which should help identify the assay if you find a lost page. The subsequent sections are:

- Any remarks.
- The tables with sample related information, containing dilutions and observations.
- In case the option 'show design' is enabled, the design and the observations as positioned in the design.
- All necessary information on the model used.
- Additional statistics which are useful for control charts, such as the slope of the regression.
- The analysis of variance (ANOVA).
- In case the option 'equivalence testing' is enabled, a table with 90 per cent equivalence intervals.
- The estimated potencies and their 95 per cent confidence intervals.

Figure 3.1: The library of templates

- Graphical representations of the observed data and the calculated regression.
- Names of responsible persons.

This chapter describes in detail how to complete a data sheet.

3.2 Using the library of templates

The library of templates is an optional feature, which enables you to access the available templates more quickly. Instead of searching manually for the *.epm, files you can open the library by clicking on the button 鹭 depicting a template. The first time you use CombiStats, the library is empty. But once you have created a set of templates, it might look like shown in figure 3.1.

A template can be opened by double clicking on it, or by selecting it and clicking on OK. If a template does not appear in the library, but you are sure there is an *.epm file with the correct template, you can add it to the library by clicking on Add and searching for that file. You can delete a template from the library by selecting it and clicking Remove. Deleting a template from the library does not automatically delete the file from the disk. The library is in fact a collection of links to files which can be located in different directories. If such a file is moved or deleted, the link is lost. To restore a lost link, you have to remove the template from the library and add it in again as described above.

3.3 Assay related information

It is important to distinguish between assay related information and sample related information. For example, the date of assay is not specific for one sample, but for the whole assay. The assumed potency of a sample or a batch number is not assay related, but sample related. Assay related information is never necessary for the calculations. The 5 standard entries suggested by CombiStats are typical examples of assay related information. You can

Figure 3.2: The layout of sample tables
enter all assay related information that you consider to be relevant into the first table. Move down with the cursor keys to add more rows. Empty rows that are not followed by non-empty rows are automatically removed. This table is repeated on each page, which should help identify an assay, should you find a lost page. Use the INSERT or F2 key to modify parts of existing entries. You should never put sample related information in this table. Sample related information should be entered in the information lines of the specific sample to which it applies.

3.4 Sample related information

The tables consisting of sample related information can be subdivided into several parts (see figure 3.2). Each of the parts will be discussed in a separate paragraph.

3.4.1 Header

The header appears at the top of each table. It either contains the word "Standard" or the word "Sample x" where x runs from 1 to the number of samples included. The first table is the standard by default, but it is possible to select another standard by double clicking on the header of the table that you want to be the standard. In EDxx determinations, it is not always necessary to include a standard. You can toggle off the word "Standard" by double clicking on it.

3.4.2 Sample related information

Sample related information is optional and never necessary for the calculations. The information lines appear after the header and before the assigned or assumed potency. The number of information lines can be modified with the Options wizard. Examples of additional information are: Trademark, Manufacturer, Batch number, Expiry date.

3.4.3 Assigned or assumed potency

The abbreviation "Ass. Pot." means "assigned potency" in the case of the standard, and "assumed potency" in the case of the other preparations. An assumed potency is simply a temporarily assigned potency. The CombiStats software allows you to specify the potency in a variety of different formats. The syntax is Number1 [\log [Base]] Unit1 / [Number2] Unit2. The information between brackets is optional. Number1 can be replaced by a question mark (?) except for the standard for which always a real number is required. If the keyword \log is used, the potency is assumed to be specified in logarithms to the base Base. If Base is omitted, it is assumed to be to the base 10. Unit1 has to be the same for all samples, including the standard. If Number2 is omitted it is assumed to be 1 . Examples of valid potencies are:

```
5600 IU / vial
15 IU / dose
15 IU / 0.5 ml
20 \mug protein / ml
3.5 log CCID50 / ml
3.5 log10 CCID50 / ml
? AU / ampoule
```

In the above examples, spaces are used in the notation for readability, but they are not necessary. A full stop has to be used as the decimal separator even if your regional settings specify a comma. This is to guarantee a common format for all users of the software and to facilitate the exchange of data files between different users. If you type a comma, it is automatically converted to a decimal point. When you copy-paste from and to other software, numbers are automatically converted to the regional settings.

3.4.4 Predilutions

The number of lines for pre-dilutions can be modified with the Options wizard. If there are no pre-dilution steps, you can specify 0 line. The pre-dilutions appear after the assigned or assumed potency. The syntax is Number1 Unit1 / [Number2] Unit2. The information between brackets is optional and is assumed to be 1 if it is omitted. Furthermore, Unit1 must be equal to Unit2 of the preceding step. For example, an assigned potency of $5600 \mathrm{IU} / \mathrm{vial}$ can be followed by a dilution step of $0.5 \mathrm{vial} / 25 \mathrm{ml}$, but it cannot be followed by a dilution step of $10 \mathrm{mg} / 25 \mathrm{ml}$. Reconstitution of a sample and the volume administered per experimental unit are also counted as pre-dilutions as well as the conversion to other units. The example in figure 3.3, therefore, has 3 pre-dilution steps, even though none of them are real pre-dilutions. Use CTRL+m to type the Greek symbol μ. It is

Sample 1	
Ass. pot.	$? \log$ TCID50 / vial
Reconstitution	1 vial $/ 0.5 \mathrm{ml}$
Conversion	$0.5 \mathrm{ml} / 500 \mu \mathrm{l}$
Inoculation	$100 \mu \mathrm{l} /$ well
Doses	$[1]$
$-2.0 \log$	$8 / 8$
$-2.6 \log$	$8 / 8$
$-3.2 \log$	$7 / 8$
$-3.8 \log$	$6 / 8$
$-4.4 \log$	$2 / 8$
$-5.0 \log$	$1 / 8$
$-5.6 \log$	$1 / 8$
$-6.2 \log$	$0 / 8$

Figure 3.3: The reconstitution, conversion and inoculation are counted as pre-dilutions
highly recommended to express the last step in terms of the actual dose administered to the experimental units, e.g. 0.5 ml /animal or $100 \mu \mathrm{l} / \mathrm{well}$.

3.4.5 Doses

The doses appear either on top or to the left of the observations, depending on the option selected for the orientation of doses. You can modify this with the Options wizard. If you have specified symbolic notation in the options, you can use symbolic notation for the doses (see paragraph 2.6). The doses are then calculated by the software on the basis of the assigned or assumed potency, the pre-dilutions and the dilution steps, and their rank of appearance in the table. Otherwise, you must specify the doses explicitly. The word "Dose" is used for a variety of different concepts. It can mean "Content", "Volume", "Dilution" or even literally a "Dose". Each of these concepts has its own notational format.

- A content is a number followed by a unit. The unit has to be equal to Unit1 of the assigned or assumed potency. The pre-dilutions are ignored in this case. This format can also be regarded as literally meaning a dose, if you think of it as the number of units per volume administered. This notation is in general not recommended, because it is likely to be used incorrectly if standard and test samples are not prepared in exactly the same way. However, it can be useful in situations where samples are compared to a standard that is assumed to be identical.
- A volume is also a number followed by a unit, but in this case the unit has to be equal to Unit2 of the last pre-dilution step. Usually, this is a measure of volume, e.g. ml or $\mathrm{\mu l}$. This volume is considered to be expressed in terms of the stock solution. For example, consider the case of a preparation with assumed potency of $100 \mathrm{IU} / \mathrm{ml}$ and a predilution of $1 \mathrm{ml} / 10 \mathrm{ml}$. A dose of 0.5 ml will in this case be interpreted as 5 IU per experimental unit.

Figure 3.4: The working dilutions can be simplified by specifying a predilution

- A dilution can be given in two formats: as a ratio Number1 / Number2 or as a logarithm Number1 log [Number2]. The information between brackets is optional and is assumed to be 10 if omitted. Dilutions are assumed to be expressed in terms of the stock solution. Hence, the tables in figure 3.4 are equivalent. In this example, the dilution of $1 / 1000$ in the left table is interpreted as $0.02 \mu \mathrm{~g}$ per experimental unit and the dilution of $1 / 1$ in the right table is also interpreted as $0.02 \mu \mathrm{~g}$ per experimental unit.

Valid series of doses are

Symbolic notation:	S4	S3	S2	S1
Content:	0.1 IU	0.01 IU	0.001 IU	0.0001 IU
Volumes:	$100 \mathrm{\mu l}$	$10 \mathrm{\mu l}$	$1 \mathrm{\mu l}$	0.1 ll
Dilutions (ratios):	$1 / 10$	$1 / 100$	$1 / 1000$	$1 / 10000$
Dilutions (logs):	$-1 \log$	$-2 \log$	$-3 \log$	$-4 \log$

It is important to be aware that these series of doses do not necessarily have to be equivalent. The symbolic notation in this example is only equivalent to the explicit dilutions if a decreasing dilution step of 10 has been specified. The explicit contents are only equivalent to the explicit dilutions if the stock solution contains $1 \mathrm{IU} / \mathrm{unit}$. If this confuses you, it is recommended to examine the examples in appendix A and to compare the different notations.

3.4.6 Replicates

The replicates are indicated between parentheses. In case of randomised blocks, they indicate the blocks unless the design is shown. The blocks are numbered across the samples, i.e. (1) for the standard indicates the same block, row or column as (1) for the other samples. The numbers do not refer to blocks if 'show design' is enabled because, in that case, the numbers in the design take on that role.

Design	(A)	(B)	(C)	(D)	(E)	(F)
$(1]$	$1 \mid 1$	$2 \mid 1$	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$	$2 \mid 3$
$[2)$	$2 \mid 1$	$2 \mid 3$	$1 \mid 1$	$1 \mid 2$	$2 \mid 2$	$1 \mid 3$
$[3)$	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$	$1 \mid 1$	$2 \mid 3$	$2 \mid 1$
$[4]$	$1 \mid 3$	$1 \mid 2$	$2 \mid 3$	$2 \mid 1$	$1 \mid 1$	$2 \mid 2$
$[5]$	$1 \mid 2$	$2 \mid 2$	$1 \mid 3$	$2 \mid 3$	$2 \mid 1$	$1 \mid 1$
$[6]$	$2 \mid 3$	$1 \mid 1$	$2 \mid 1$	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$

Figure 3.5: An example of a Latin Square design

3.4.7 Observations

The syntax of the observations is Number1 [/ Number2]. In addition, you can specify + instead of $1 / 1$, and - instead of $0 / 1$. The information between brackets is optional and is in general only used to specify the size of a group for quantal observations, or bivariate data for quantitative observations. For example, some assays may require the measurement of the horizontal and the vertical diameter of the inhibition zones. You can use a transformation to compute the area of the zones, where y refers to Number1 and z refers to Number2. If you refer to z, but Number2 was omitted, it is assumed to be 1 . If you omit z for quantal observations, it is also assumed to be 1 , which allows you to use 0 or 1 as short notations for $0 / 1$ and $1 / 1$.

Observations can easily be excluded from the analysis by double clicking on them. They are still visible, but barred. Double click once more to include them again. Double click on the dose, or on the replicate number to exclude a whole row or column. Double click on the word 'Dose' to exclude all observations of one sample.

3.5 Layout of the design

The design is only visible in case this option is selected in the options wizard. The first table contains the positions of treatments, e.g. doses on a plate or animals in cages. The second table contains the observations as positioned on the template. When entering the data, you have to enter the design of the template first. The template is described with 2 or 3 numbers separated by a vertical line (the pipe symbol |). Instead of the pipe symbol, you can type the forward or backward slash (/ or \backslash) which will automatically be transformed to the pipe symbol. The first number refers to the preparation, the second number to the dose and the optional third number to the replicate. If the third number is omitted, it is assumed to be equal to the number between brackets to the left or top of the table. For example, consider the template in figure 3.5. The ' $1 \mid 1$ ' in row (1) and column (A) indicates that, on this position of the template, the first replicate of the first dose of the first sample is applied. The ' $2 \mid 3$ ' in row (5) and column (D) indicates that the fifth replicate of the third dose of the second sample is applied.

The design can be entered more conveniently by selecting a cell or a group

Design	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
(A)	Pos	1\|111	1\|211	1/311	11411	1\|511	51512	514\|2	$5\|3\| 2$	5\|2	2	5\|112	Neg
(B)	Pos	21111	21211	$2 \mid 311$	21411	$2\|5\| 1$	61512	6/4\|2	$6\|3\| 2$	$6 \mid 212$	61112	Neg	
(C)	Pos	31111	31211	$3 \mid 311$	31411	31511	71512	71412	71312	71212	71112	Neg	
(D)	Pos	41111	4\|211	$4 \mid 311$	41411	4\|5]1	$8\|5\| 2$	81412	$8\|3\| 2$	$8 \mid 212$	81112	Neg	
(E)	Pos	51111	51211	51311	51411	51511	$1\|5\| 2$	$1 / 4 \mid 2$	$1\|3\| 2$	$1\|2\| 2$	1/112	Neg	
(F)	Pos	61111	6\|211	61311	61411	61511	2\|5	2	$214 \mid 2$	$2\|3\| 2$	$2\|2\| 2$	21112	Neg
(G)	Pos	71111	71211	71311	71411	71511	$3\|5\| 2$	$3\|4\| 2$	$3\|3\| 2$	$3\|2\| 2$	31112	Neg	
(H)	Pos	81111	81211	$8 \mid 311$	81411	81511	$4\|5\| 2$	$414 \mid 2$	$4\|3\| 2$	41212	4\|112	Neg	

Figure 3.6: An example of a plate design with colour identification
of cells in a preparation table and then double-clicking on the position in the design where the observation(s) is (are) located. If you select a group of cells, the selection gets a blue background colour, except the active cell which stays white. A reference to the active cell is inserted on the place where you double-clicked. References to the blue cells are inserted to the left and bottom, possibly in reverse order if the active cell is not the top-left cell of the selection.

It is possible to use labels such as 'Neg' or 'Pos' in the design. Labels must not start with a number. Cells which are labelled this way, may have an observed value on the plate, but do not correspond with one of the tabled values included in the calculations. By default, the referenced cells are shaded in a colour (up to a maximum of 12 colours) as a visual aid in assessing the plate layout. The colour indicates the preparation. Labelled cells are shaded in grey. An example of a coloured plate design using references and labels is shown in figure 3.6. Use of colours can be enabled or disabled independently for screen and printer via the menu Options \triangleright Advanced \triangleright Preferences.

Observations can be entered directly into the tables, or they can be entered into the template. You cannot enter observations if the corresponding template is missing. If you enter the data into the tables, the observations will automatically be copied to their corresponding place on the template, and vice versa.

3.6 Remarks

You can enter any remarks into the box at the top of the first page. Remarks cannot contain double quotes ("). Double quotes are automatically replaced by single quotes (').

3.7 Signatures

At the end of each data sheet, three entries are provided for the names or initials of the persons who are responsible for the assay-results. Typed names in these fields are optional only and should not be regarded as replacement
of signatures. Depending on the procedures applicable in your organisation, handwritten signatures should nonetheless be applied to the paper printouts or certified digital signatures to digital renderings of the output. See section 9.8 for more details on digital signatures.

Chapter 4

Interpretation of the output

4.1 Introduction

This chapter attempts to give some guidelines for the interpretation of the output. Reference should also be made to chapter 5.3 of the European
 first step is to interpret the analysis of variance. The graphs should also be inspected. If the assay passes the validity criteria, the estimated potency can be taken into consideration.

4.2 Inspecting the mean responses

It is possible to inspect the mean responses by selecting Options \triangleright Mean responses from the menu or CTRL + R on the keyboard. This option adds a row or column to the tables with the arithmetic mean response for each dose, not taking into account a possible transformation. Barred observations are not included in the average. In the case of bivariate or binomial data, the part before the slash and the part behind the slash are averaged independently. The additional row can be removed with the same menu or by repeating CTRL+R on the keyboard.

The additional row or column is only intended for quick on-screen inspection and will disappear when further actions are performed. The mean is shown in the same format (i.e. with the same number of decimals) as the first observation in the table, which may result in a slight rounding. If you want the average to show more decimals, you have to add redundant zero's to the first observation in the table so as to represent the format in which the average will appear.

4.3 Analysis of variance (ANOVA)

The first step is to check the validity criteria in the analysis of variance, which depend on the statistical model and the option selected for the ANOVA. The probabilities (p-values) are flagged with stars to indicate the level of significance. They have the following meaning:

$$
\begin{equation*}
\text { probability less than } 0.05 \text { (i.e. significant) } \tag{*}
\end{equation*}
$$

(**) probability less than 0.01 (i.e. highly significant)
$\left({ }^{* * *}\right) \quad$ probability less than 0.001 (i.e. even more significant)
A p-value is not flagged if it is greater than or equal to 0.05 . The p-value is printed with 3 decimals, but the internal representation has a higher precision. Hence, a value of 0.0499 is rounded to 0.050 and flagged, whereas a value of 0.0501 is also rounded to 0.050 but not flagged. The stars are only shown for the levels of significance that are most commonly used. However, validity of an assay depends on the requirements specified for the type of assay and may involve other levels of significance.

The usual validity criteria for parallel line assays and assays with quantal responses are:

- The p-value for regression is significant (at least one star). If this criterion is not fulfilled, it is impossible to compute confidence limits. In most assays you will find two or three stars. In the case of only one star, the criterion is fulfilled but the confidence limits are usually too wide to be acceptable, depending on the type of assay.
- The p-value for non-parallelism is not significant (no stars).
- The p-value for non-linearity is not significant (no stars).

In the case of significant non-linearity, it may be instructive to examine the quadratic curvature (only available if the extended ANOVA has been selected). If the quadratic curvature is significant and the lack of quadratic fit is not significant, this could indicate that a transformation of the data is appropriate. The choice of transformation should never depend on only one assay, but should depend on a series of independent assays in which the same type of curvature has been observed.

The usual validity criteria for slope ratio assays are:

- The p-value for regression is significant (at least one star). If this criterion is not fulfilled, it is impossible to compute confidence limits. In most assays you will find two or three stars. In the case of only one star, the criterion is fulfilled but the confidence limits are usually too wide to be acceptable, depending on the type of assay.
- The p-value for blanks is not significant (no stars). This criterion is only applicable if blanks or zero doses have been included. In many assays, the dose response relationship is not linear down to zero dose, and it may be necessary to exclude the blanks from the calculations. Blanks should not be excluded only because the p-value is significant in a single assay. The decision should depend on a series of independent assays in which a similar deviation of the blanks has been observed.
- The p-value for intersection is not significant (no stars).
- The p-value for non-linearity is not significant (no stars).

In routine assays, the residual error should also be inspected and compared with historical data. It is recommended to keep control charts of the residual error. An exceptionally high residual error may indicate a problem with the assay procedure. In such a case, the assay should be rejected even if the criteria in the analysis of variance are fulfilled. An exceptionally low residual error may once in a while occur and cause the p-values to be significant. In such a case, it may be justified to replace the observed residual error by an average residual error based on historical data (select Theoretical variance).

4.4 Graphs

Unusual features are often more obvious in a graphical representation than from statistical parameters. Therefore, you should always inspect the graphs. They show for each sample the observed data (indicated with dots) and the calculated regression line. This has been demonstrated to be a very efficient way to detect experimental outliers and keying errors. Consider, for example, the following series of observations: $0.354 ; 0.369 ; 0341 ; 0.348$ (note the missing point in the third observation). This keying error would immediately be obvious in a plot, but would be less obvious in a table.

Remark: The figures do not have scaled axes, since they are not necessary for the purpose of detecting unusual features and were difficult to implement on such a small scale. If more detailed plots are required, with scaled axis, a page sized plot can be generated by clicking on the button depicting a graph LK.

The full size plot can be viewed (and printed) in colour (and white ($\| /[I)$. The samples in the plot can be identified by their colour and/or the shape of the symbols for the observations. There are 13 colours and 12 symbols which are recycled when the series is exhausted, thus making up for a large amount of combinations: $\circ \times \Delta \stackrel{\nabla}{ }$

The orientation of the plot can be changed from landscape (\triangle) to portrait (\mathbb{Z}) and back again. The fontsize in the figure can be increased $(\hat{\boldsymbol{A}})$ or decreased (\mathbf{A}^{*}). The Options menu provides several other ways to customize

Figure 4.1: An example of 3 different scalings shown simultaneously
the plot. The legend can be excluded, the scale of the y-axis can be hidden, and there are 3 types of scaling for the x-axis:

- Scaling by notation: The notation of the dose labels in the sample tables are shown above the x-axis.
- Scaling by dose: The dose levels (in potency units) are shown in small print below the x-axis (maximum 6 significant digits).
- Scaling by x : The transformed doses are shown in normal print below the x-axis.

By default the scaling by notation and by x are shown, but any combination of these 3 types of scaling can be selected in the options menu. Figure 4.1 is an example where all 3 types are shown simultaneously. The values on the axis are based on the standard. The test preparations necessarily have to be plotted on a meta-axis based on the (implicitly) assumed potency, which is only an approximation. It should also be noted that the scaling below the axis only has a meaning if you have fully specified all steps to prepare the doses.

It is possible to generate a plot of curves connecting the average response per dose group. First click on $\mathbb{K} \mathbb{K}$ to generate a page sized plot of the graph, then click on $\frac{1 k}{}$ to generate the plot of averages.

CombiStats can generate a residual plot as a visual aid for assessing model fit. To generate a residual plot, first click on to generate a page sized plot of the graph, then click on $\frac{1}{}$ to generate the residual plot. By default, the standardised residuals are plotted against the expected (fitted) response. The standardised residuals are corrected for leverage as obtained from the hat-matrix and the weighting function, so that the residuals should be equally distributed about 0 over the whole range of responses. If the scatter about 0 is not homogeneous over the whole range of responses, you may have to use a different weight function. A good example is 'PlateDesign.epa' where the residual plot can be seen to improve when a weighted regression is done with weights $\mathrm{w}=1 / \mathrm{m}^{\wedge} 2$ instead of an unweighted regression ($\mathrm{w}=1$). Note that the residuals are not studentised. You can choose from different quantities on both axes via the menu Options \triangleright Residual Plot. The raw residuals are the difference between the observed response and the fitted response without any correction for leverage.

4.5 Additional statistics

In routine assays, it is recommended to keep a record of the additional statistics, just as for the residual error as explained in section 4.2. For parallel lines and quantal responses, the common slope should be recorded. For slope ratio assays, the common intercept should be recorded. The 90 per cent confidence limits of the common slope or common intercept may also be recorded.

The correlation coefficient $|r|$ is a measure of quality of the assay. Its square is the proportion of the total variance that is explained by the model. The closer this value is to 1 , the better the model explains the observations. For a single sample to which a straight line is fitted, this value coincides with Pearson's product moment correlation coefficient. The unweighted correlation coefficient is only calculated for linear regressions with homogeneous error variance, because it has no meaningful interpretation in other cases. The weighted correlation coefficient is always calculated. If the weighted and unweighted correlation coefficients are identical, it is printed only once. For sigmoid response models with homogeneous error variance both are calculated. The weighted correlation is theoretically to be preferred, but unfortunately many protocols prescribe the unweighted correlation coefficient as validity criterion.

For sigmoid models, the estimated lower and upper asymptote are printed. For 4-parameter models, the lower asymptote is always printed before the upper asymptote. For 5-parameter models, the order depends on the sign of the multiplication factor a. For positive values of a, the lower asymptote is shown first, whereas, for negative values of a, the upper asymptote is shown first.

It is not possible to copy and paste these statistics directly to other software, but you can do it indirectly by copying and pasting the complete data sheet (Editゅ Copy All) or by simply typing them over.

4.6 Potency estimates

If an assay has passed the validity criteria, the estimated potency can be considered. The potency is expressed in the same units as the assumed potency. The lower and upper limits are the 95 per cent confidence limits. Some assays prescribe a maximal permitted width of the confidence interval, e.g. not wider than 80 per cent to 125 per cent of the estimated potency, and a maximal permitted deviation of the estimated potency from the assumed potency. For that reason, the potencies and confidence limits are also expressed as a percentage of the assumed potency (Rel. To Ass.) and the estimated potency (Rel. To Est.). Question marks are returned if the assumed potency was indicated with question marks.

Remark: The relative potencies are expressed by default on log-scale if the potencies are also expressed on a log-scale. However, the Options menu allows you to force percentages. If a standard is included in EDxx assays, the potency is expressed both as EDxx and relative to the standard.

4.7 Single dose assays

In the case of a single dose assay, CombiStats calculates the limit that you are testing and the probability that the test sample is equal to this limit. If the limit test is significant at the chosen significance level, it can be concluded that the test sample differs significantly from the limit tested. Whether the potency is higher or lower than the limit tested depends on the nature of the dose/response relationship. In order to draw the correct conclusion, you should therefore know this relationship. The probability is calculated with the Wilcoxon-Mann-Whitney test (pairwise, one-sided). The one-sided p-value is printed as the right-sided p-value when the statistic is greater than its mean. Otherwise it is printed as the left-sided p-value. The test is exact in principle, but for larger problems the calculations can take a very long time. An approximate p-value, based on a normal approximation with correction for ties, is shown in the status bar during the calculations. Press the BREAK key (or SHIFT + ESC) to stop the exact calculations, and use the approximation instead.

4.8 Equivalence testing

Some protocols may call for equivalence testing of slopes instead of the more traditional F-test for non-parallelism or intersection. If the checkbox for equivalence testing is selected in the options, an extra table with equivalence statistics is shown. The table shows the slopes (or intercepts in case of slope-ratio models) of the individual preparations together with 90 per cent confidence intervals. If a standard is included, the difference and ratio of the individual slopes with that of the standard is also shown, again with 90 per cent confidence intervals. For slope ratio assays, only the difference between intercepts is shown because ratios of intercepts have no meaningful interpretation. The assay protocol should specify 'goal-posts' within which the 90 per cent confidence intervals have to be entirely contained.

Chapter 5

Combining assays

5.1 Introduction

CombiStats offers the possibility to combine potency estimates from different assays. In order to combine a set of assays, you should open all the assays you want to be included and then click on the button depicting a cauldron or melting pot $\frac{\text { inc }}{5}$. The sheet will be constructed automatically. The table with assay related information contains all information that is common to all assays. The table with the confidence intervals will contain in addition the entries that are not common to all assays, but which have only the first column in common. For example: The first column may contain an entry 'Assay number' in each assay, but the second column may differ from assay to assay, e.g. the numbers 1 to 6 if you have performed 6 assays. CombiStats calculates three types of combinations. Which combination you should use depends on whether the potency estimates are homogeneous. There are no strict rules as to which of the three should be used, but the following rule of thumb can be of use.

- If the p-value for homogeneity is more than 0.10 , potency estimates are sufficiently homogeneous to use the weighted combination.
- If the p-value is less than 0.10 , potency estimates tend to be heterogeneous and it would be better to use the semi-weighted combination.
- The unweighted combination should only be used if there are enough assays, say, at least 6 .

5.2 Editing the combination sheet

The possibilities for editing the combination sheet are limited. It is not possible to enter data directly into the sheet. Basically, there are only four possibilities to edit the contents:

- Use a filter from the dropdown boxes at the top of each column. You can visualise the dropdown boxes by moving the cursor over the right part of the cells of the first assay. Only assays that correspond with the selected filter will be included in the table. If you specify No filter, all potency estimates from all samples in all assays are included.
- Excluding a particular assay by double clicking on it. The numbers are then barred, and the figure shows an empty dot for the excluded intervals.
- Changing the order of the assays by double clicking on the top row of the column that you wish to be sorted. Numbers are sorted in increasing order and text is sorted in alphabetical order. By default, the first column is sorted. Dates are also sorted in alphabetical order, which does not necessarily correspond with the chronological order. Use the format yyyy $/ \mathrm{mm} / \mathrm{dd}$ if you want dates to be sorted in chronological order.
- Hide an entire column. The dropdown boxes (see above) also include a possibility to Hide a column. Alternatively you can press CTRL+H while the column you want to hide is selected, or use the menu bar (Edit \triangleright Hide column). Use CTRL $+U$ or Edit \triangleright Unhide from the menu bar to unhide all hidden columns.

5.3 Available options

Potencies are combined on a \log-scale by default. This corresponds with a geometric combination if the potencies are not expressed on a log-scale and with an arithmetic combination if the potencies are already expressed on a \log-scale. However, the options menu allows you to force an arithmetic combination if potencies are not expressed on a log-scale. It is not possible to force a geometric combination of potencies that are expressed on a log-scale.

The relative potencies are expressed on log-scale by default if the potencies are also expressed on a log-scale. However, the options menu allows you to force percentages.

By default, the figures are presented with the option Zoom in selected. This means that the confidence intervals extend over the whole area of the figure. If you remove this option, the bottom of the figures will correspond with zero potency.

Chapter 6

Importing, exporting, protecting data

6.1 Introduction

The software is not intended to replace a database. It is anticipated that you have a database and that you may want to import or export data between CombiStats and this database or to other software for further manipulations. Because of the large diversity of existing databases and programs, it is practically impossible for CombiStats to recognise all these formats. If you want to import or export data, it is your responsibility to create a conversion program that serves as an interface between the programs. This chapter describes in detail the format of input and output files of CombiStats.

6.2 Copy and paste

This is the easiest and most straightforward way to import and export data between programs. For example, you can select a group of cells in a spreadsheet and copy it to the clipboard of Windows (EditゅCopy, or CTRL+C), after which you can select a group of cells in CombiStats and paste the data from the clipboard to the data sheet (Edit \triangleright Paste, or $C T R L+V$). Use the same method to copy data from CombiStats to, for example, a spreadsheet. It is possible to copy the complete contents of a data sheet to the clipboard (Edit \triangleright Copy All), but you can paste only one group of cells at a time into the tables. An exception are the sample tables: If the clipboard contains more data than can fit into the selected table, the remaining contents are pasted to the adjacent sample tables. This allows you to paste assay data to all tables in one single action.

6.3 Creating input files

This section describes in detail the format of CombiStats input files. This is the same format in which the software stores data that have been entered by hand. If you are in charge of creating a conversion program that generates input files for CombiStats, it is recommended to print an existing input file (extension *.epa) using a text editor. This will facilitate understanding the format. The files are in ASCII format. Each entry starts on a new line. The three existing data types are strings, numerical values and boolean values. Strings are enclosed in double quotes. Numerical values use a full stop as decimal separator. Boolean values are entered as \#TRUE\# and \#FALSE\#.

Line	Type	Description for files with the extension *.epa and *.epm
1	String	"CombiStats v7.0"
2	Boolean	\#FALSE\#=Orientation of doses horizontal, \#TRUE\#=Orientation of doses vertical.
3	Num.	The number of information lines in the tables.
4	Num.	The number of pre-dilution steps including the assigned potency.
5	Num.	The number of rows for the observations (i.e. the number of replicates in case of horizontal doses or the number of doses in case of vertical doses).
6	Num.	The number of columns for the observations (i.e. the number of doses in case of vertical doses or the number of replicates in case of horizontal doses).
7	Num.	The number of preparations. 8 Num.1=Parallel lines, 2=Slope ratio, 3=Quantal responses, 4=EDxx determination, 5=Sigmoid curves.
9	Boolean	\#FALSE\#=Estimate common parameter from data, \#TRUE\#=Use a fixed common parameter.
10	String	Value of the fixed common parameter. Empty string if not applicable.
11	Num.	1=Completely randomised, 2=Randomised blocks, 3=(Latin) square.

Line	Type	Description for files with the extension *.epa and *.epm
12	Num.	$1=$ No transformation, $2=$ Square root, $3=$ Logarithmic, $4=$ Square, $5=$ Other, $6=$ Probit, $7=$ Logit, $8=$ Angular, $9=$ Rectangular, $10=$ Gompertz. Add 16 to the values 6 to 10 in case a 5 -parameter model is used.
13	Num.	$1=$ Observed residuals, $2=$ Theoretical residuals, $3=$ Residuals from deviations from model, $4=$ Residuals from deviations from linearity.
14	Num.	$1=$ No ANOVA, $2=$ Reduced ANOVA, $3=$ Normal ANOVA, $4=$ Extended ANOVA, $5=$ Complete ANOVA. Add 8 to the value if the option for equivalence testing is selected.
15	Boolean	\#TRUE\#=Explicit doses, \#FALSE\#=Implicit doses.
16	Num.	$1=$ Increasing doses, $-1=$ Decreasing doses, Anything if not applicable.
17	String	Encrypted string for password protection. Empty string in case default protection as specified in the preferences has to be used.
18	String	Value between 0 and 100 (between double quotes) to indicate xx in case of EDxx determination. Empty string if not applicable.
19	String	Transformation, e.g. y or $\log (y)$ or $((y * z)-(3 * 3)) * \mathrm{pi} / 4$.
20	String	Number of non-zero doses in case of a slope ratio model. Dilution step in other models. Empty string if not applicable.
21	String	Theoretical residual (between double quotes). Empty string if not applicable.
22	String	Remarks. May contain embedded returns, but no embedded double quotes. Empty string if not applicable.
23	Num.	Number of rows for the table with assay related information (at least 1).

Line	Type	Description for files with the extension *.epa and *.epm
24 and following (say K lines)	Strings	The information to be displayed in the table for assay related information. One line for each cell, starting from left to right and from top to bottom. The number of lines K must exactly match twice the number stated on line 21 (hence, at least 2).
$K+24$	Boolean	\#FALSE\#=Hide design. \#TRUE\#=Show design.
$K+25$	Boolean	\#FALSE\#=Letters horizontal (columns). \#TRUE\#=Letters vertical (rows).
$K+26$	Num.	Number of rows of the design.
$K+27$	Num.	Number of columns of the design.
L lines	Strings	In case the design is displayed, the layout of the template, starting from left to right and from top to bottom. The cells with (1), (2), etc., and (A), (B), etc., are not output to the file. Hence, the number of lines L necessary for the template equals Rows \times Columns. If the design is not displayed, this section is not output to the file.
M lines	Strings and Booleans	The information to be displayed in the tables for sample related information. One line for each cell, starting from left to right and from the top down to the last pre-dilution. The cell with the word Doses and the cells with (1), (2), etc., are not output to the file. Then follows the first dose (as a string), the first replicate of that dose (also as a string) and whether that observation is excluded (\#FALSE\#=included, \#TRUE\#=excluded). Then follows the second replicate and whether or not it is excluded, and so on until the last replicate of the first dose. Then follows the second dose (as a string), and so on until the last dose. Hence, the number of lines necessary for one table equals $1+2 \times$ Information lines + + + \times
Predilutions + Doses + $2 \times$ Replicates \times Doses.		
Continue until all tables are filled.		

Line	Type	Description for files with the extension *.epa and *.epm
L lines	Strings	In case the design is displayed, the observations as positioned on the design, starting from left to right and from top to bottom. These values should be consistent with the corresponding values in the preparation tables, but will overrule them in case they are not consistent.
3 lines	Strings	The names or initials of persons responsible. Empty strings if not applicable.
1 line*	String	The power transformation λ of the doses.
1 line*	String	The a priori transformation of the observations.
1 line*	String	The inverse link function h.
1 line*	String	The first derivative h^{\prime} of the inverse link function h.
1 line*	String	The weight function w.
1 line*	String	The starting value of the non-linear term for addition. Empty string if not specified.
1 line*	Boolean	\#TRUE\# if the non-linear addition is fixed. \#FALSE\# otherwise.
1 line*	String	The starting value of the non-linear factor for multiplication. Empty string if not specified.
1 line*	Boolean	\#TRUE\# if the non-linear multiplication is fixed. \#FALSE\# otherwise.
1 line*	String	The response level for which an effective dose is needed. Empty string if not specified.
1 line*	Boolean	\#TRUE\# if the EDxx has to be expressed with inverted units. \#FALSE\# otherwise.
1 line*	String	The minimum number of iterations requested. Empty string if not specified.
1 line*	String	The maximum number of iterations requested. Empty string if not specified.
last line	Boolean	\#TRUE\# if advanced options where used (see remark below). \#FALSE\# otherwise.

Line	Type	Description for files with the extension *.epc
1 line	String	"CombiStats v3.0 comb"

Line	Type	Description for files with the extension ..epc
1 line	Num.	Number of rows for the table with general information, not counting the row with the assumed potency (last row of the table).
Strings	The information to be displayed in the table for assay related information excluding the row with the assumed potency (last row). One line for each cell, starting from left to right and from top to bottom. The number of lines must exactly match twice the number stated on line 2 (can be zero).	
1 line	Num.	The assumed potency (not on log-scale). Use 0 if no assumed potency is specified.
1 line	Num.	The log-base on which the assumed potency is expressed. Use 0 if no log-scale is used.
1 line	String	The unit before the slash of the assumed potency. Empty string if not specified.
1 line	String	The unit after the slash of the assumed potency. Empty string if not specified.
1 line	Num.	Number of intervals in the table (including the filtered and barred intervals).
1 line	Num.	Number of columns in the table increased by 6. The 6 extra columns are never shown in the table, but are only used to store specific information on the format of the table. The minimum number is $6+6=12$.
\ldots lines	Strings	The header of columns before the column with the header Sample. These are the columns for which the header name was chosen by the user. The number of lines is equal to the number specified above minus 12 (so can be 0).
1		

Line	Type	Description for files with the extension *.epc
12 lines	Strings	_SAMPLE_ (the underscores are necessary to indicate that these columns are system columns) _INFO_ _LOWER LIMIT_ _ESTIMATE_ _UPPER LIMIT_ _DF_ _ASSUMED_ (this is the first of 6 invisible columns with formatting information) _LOGBASE_ _UNIT1_ _UNIT2_ _STRIKETHROUGH_ _FILTER_
... lines	Strings	The content of the cells of the first assay. Only the cells in non-system columns. The number of lines is equal to the number specified above minus 12 (so can be 0).
1 line	String	The sample number.
1 line	String	The sample information. Empty string if not used.
1 line	Num.	The lower limit of the potency estimate, not on log-scale.
1 line	Num.	The potency estimate, not on log-scale.
1 line	Num.	The upper limit of the potency estimate, not on \log-scale.
1 line	Num.	The number of degrees of freedom.
1 line	Num.	The assumed potency. 0 if not specified.
1 line	Num.	The log-base on which the assumed potency is expressed. 0 of not on log-scale.
1 line	String	The unit before the slash of the estimated potency.
1 line	String	The unit after the slash of the estimated potency.
1 line	Boolean	\#TRUE\# if the interval is struck through. \#FALSE\# otherwise.
1 line	Boolean	\#TRUE\# if the interval is visible. \#FALSE\# if it is filtered out.
		(repeat the above for each of the intervals).

Line	Type	Description for files with the extension *.epc
1 line	Boolean	\#TRUE\#=Geometric combination. \#FALSE\#=Arithmetic combination.
1 line	String	The remarks. May contain embedded returns, but no embedded double quotes. Empty string if not applicable.
1 line	Boolean	\#TRUE\#=Force percentage. \#FALSE\#=Do not force percentages (default).
1 line	Boolean	\#TRUE\#=Zoom in on figures (default). \#FALSE\#=Do not Zoom in on figures.
Last 3 lines	Strings	The names or initials of persons responsible. Empty strings if not applicable.

6.4 Creating output files

You can create an output file by saving a data sheet or combination sheet with the extension *.txt. All information contained in the sheet is then output to the file, including results from calculations (which is not the case for input files). This file is identical to the information that would be contained in the clipboard if Edit■ Copy All is used. Each section is separated by an empty line. Columns are separated by tabs, and rows are separated by returns. If the remarks contain embedded returns, one line will be used for each embedded return.

6.5 Exporting matrices

It is possible to export the estimated parameters and covariance matrices calculated for each of the various models. It is also possible to export the input dataset together with its linear structure matrix and vectors of observed and predicted observations. You can do this from the menu (Options \triangleright Advanced \triangleright Export matrices) or with CTRL $+E$. The matrices are copied to the clipboard and can be pasted in a suitable external program (e.g. Excel). The exported matrices allow you to obtain extra information on parameter estimates that would otherwise not be available from the standard interface of CombiStats. This enables you, for example, to perform custom hypothesis tests or to obtain individual slopes of the preparations.

The dataset contains, in addition to the linear structure matrix of the fitted model, a column with the linearised weights, observations and predictors, the non-linearised weights, observations and predictors (after the a priori transformation), the diagonal elements of the hat-matrix, the raw residuals and the standardised residuals.

The estimated parameters and covariance matrices for 7 different models (each relaxing some of the model assumptions) are also output. Non estimable parameters are not shown. The 7 models are:

1. The fitted model with fixed common parameter, if applicable.
2. The fitted model with common parameter estimated from the data.
3. Linear lines, each with their own intercept.
4. Quadratic curve.
5. Only intercepts and no slope.
6. Allowing an extra parameter for blanks.
7. The full parametrised model.

6.6 Protecting templates and data sheets

It is possible to protect templates and data sheets from accidental editing. This can be done by clicking on the button (depicting a padlock, from the menu (Edit \triangleright Protect sheet) or with CTRL+T. There are 4 levels of protection possible:

1. Unprotected: This is the default level allowing full access for editing the data sheet;
2. Protect options: This blocks access to the options wizard and the advanced options so that table sizes and model specifications cannot be modified unless the protection level is first brought back to level 1;
3. Protect options and non-empty cells: This is the same as level 2 plus protection of pre-filled cells from editing, so that only empty cells can be edited. The protection status of individual cells is determined at the moment level 3 protection is installed. This status is permanently retained unless the protection level is brought back to level 1 or 2 .
4. Fully protected (read only): The data sheet cannot be modified unless the protection level is brought back to level 1,2 or 3 .

Levels 2 and 3 are particularly useful for protecting templates. After all data are entered, the level can be increased to 4 to protect the final sheet from further editing. The level of protection can be increased with or without a password. Select the new level and optionally specify a password. You can leave it blank for simple protection without password. If you specify a password, you will be asked to retype it to avoid typing errors. The level of protection can be decreased by selecting the new level and typing the correct

Figure 6.1: The four levels of protection
password for that level. If no password was used to increase the level, the protection can be removed without a password.

Passwords can be stacked. For example, if you first increase the level from 1 to 3 with password "Hello" and then from 3 to 4 with password "Goodbye", the level can only be decreased to level 1 by first going back to level 3 with "Goodbye" and then back to level 1 with "Hello". The CombiStats logo in the upper-left corner of each page changes colour to indicate the level of protection: $1=$ black, $2=$ blue, $3=$ green, $4=$ red.

Because files created with older versions of CombiStats do not contain any information about protection levels, you can specify how CombiStats should behave in case an old file is opened. By default, such a file is opened at level 1. In the preferences, you can specify that such files should be opened at level 4, with or without password protection. If you place the file with preferences in a read-only location, the user cannot change the default password that is needed to remove the protection from these data sheets.

IMPORTANT REMARK: Password protection of data sheets is intended as a light-weight protection against accidental editing. It is not designed as a bullet-proof protection against intentional tampering with the file. In fact, it is quite easy to edit a file using a text editor unless there is some external protection by a document management system. The only protection offered by CombiStats is that you cannot accidentally modify protected files during normal use of the program.

Chapter 7

Advanced options

7.1 Introduction

The advanced options form allows the more advanced user to gain maximum control over CombiStats' core engine which fits the generalized linear models. The average user is not expected to use this form, but only the options wizard (see chapter 2). Only users with a clear understanding of the theory behind generalized linear models and with a clear view of what they want to achieve should be using the advanced options. Using the advanced options slightly changes the output on the data sheet because a full equation of the model appears, as well as the weight function. If you use advanced options, you must assume full responsibility for the validity of the output.

With the advanced options, you can analyse a very broad class of dilution assays. A few examples are the possibility to use any power transformation of the x-axis, any mathematical function of the regression curve and any weighting function. However, there is no check of the data that CombiStats normally performs when the normal options wizard is used. For example, in probit analysis, CombiStats requires that observations are ratios of integers and that the integer before the slash is not greater or smaller than the integer after the slash. This check is not performed if the advanced options are used.

To illustrate the possibilities of the advanced options, it is perhaps instructive to examine the example shown in figure 7.1. These settings are equivalent with the standard probit analysis in the options wizard.

The power transformation of the doses is set to 0 , meaning a $\log _{e^{-}}$ transformation. The a priori transformation of the responses is r / n expressing the ratio of positive responses in a group. The inverse link function is phi (x), expressing the standard normal distribution curve. Its first derivative phider (x) expresses the standard normal density function. The weight function $n /(m *(1-m))$ expresses that the weights are proportional to the group size n and inversely proportional to the variance of the expected response m. The starting value for addition and multiplication are fixed at 0

Figure 7.1: The advanced options
and 1, because the asymptotes are not supposed to be estimated from the data. Each of the various fields will be discussed in detail in the following sections.

7.2 Transformation doses

Let us write $x=$ dose $^{\lambda}$ to denote the power transformation of the doses. In classical slope ratio assays, the doses are not transformed $(\lambda=1)$ and it can be shown that the $\log _{e}$-transformation as used in parallel line models is equivalent to $\lim _{\lambda \downarrow 0}$ dose $^{\lambda}$. We therefore use $\lambda=0$ to denote the $\log _{e^{-}}$ transformation. Apart from these two classical transformations, it is possible to specify any other positive value, for example $\lambda=0.5$ for the square root transformation. Very large values should not be used to avoid computer overflow, as well as values close to 0 . Typical values are $\lambda \in\left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2}, 2,3\right\}$.

7.3 Transformation responses

This is the a priori transformation to be applied to the observations in order to construct the observation vector \mathbf{y}^{\prime}. It is applied unconditionally before the fitting of the model starts. The following variables can be used in the expression:

- y or r to refer to the part of the observation before the slash. If there is no slash, the observation is taken as is.
- z or n to refer to the part of the observation after the slash. If there is no slash, it is assumed to be 1 .
y and z are typical for quantitative data, and r and n are typical for quantal data, although a bizarre notation like $\exp (z) / \sin (r)$ would not upset CombiStats (as long as you think it has a meaning). For a list of available functions, see section 7.10.

7.4 Inverse link function

The link function is in the literature usually denoted as g. It is the monotonic differentiable function that relates the expected responses μ to the linear predictors η. For example, g is the probit function in probit analysis. Rather than the link function, CombiStats uses the inverse link function h, which can be thought of as a normalised regression curve. For example, h is the standard normal distribution function in probit analysis, and h is the identity function in parallel line or slope ratio analysis. For a list of available functions, see section 7.10. When you specify a link function, do it in such a way that 0 is located in a central part of the function because this is used as a starting point for the iterations. The following variables can be used in the expression:

- i to refer to the number of the current iteration. The first iteration has number 0 .
- x to refer to the linear predictor η in the current iteration.

7.5 First derivative

This is the first derivative $d h / d \eta$ of the inverse link function. CombiStats does not check if you specify the first derivative correctly. If you make a mistake in specifying the function, the output will be flawed. For a list of available functions, see section 7.10. The following variables can be used in the expression:

- i to refer to the number of the current iteration. The first iteration has number 0 .
- x to refer to the linear predictor η in the current iteration.

7.6 Weight function

This is a function that specifies the weights to be given to the observations. For a list of available functions, see section 7.10. For unbiased estimates, the weight function is taken to be inversely proportional to the theoretical variance. Some examples of frequently used weight functions are:

- 1 for homoscedastic data (unweighted regression).
- $n /(m *(1-m))$ for quantal data with binomial responses, such as encountered in probit analysis.
- $1 / \mathrm{m}$ for data where the responses follow a Poisson distribution.
- $1 /(\mathrm{m} * \mathrm{~m})$ for data with constant coefficient of variation.

The analysis of variance will only display F-ratios with their corresponding p-values if, and only if, the weighting function is exactly 1 and no theoretical variance is used. In all other cases, the χ^{2}-values and their corresponding p values are displayed, the reason being that the residual error has no obvious interpretation in weighted regression. It is important to be aware that p values are based on the Normal error distribution. Non-normal distributions may fail to have properties similar to those of a Normal theory residual, if no adjustment is made to normalise the distribution, for example by using Anscombe residuals or deviance residuals. The following variables can be used in the expression:

- a to refer to the non-linear multiplier a in the current iteration.
- d to refer to the non-linear addition d in the current iteration.
- e to refer to the difference $e=y^{\prime}-\mu$ between the observed (possibly transformed) response y^{\prime} and the expected response μ in the current iteration.
- h to refer to Huber's weight at the current iteration with winsorisation factor 1.5. This value is 1 if $|e|<1.701 \times s$ and is $1.701 \times s /|e|$ otherwise.
- i to refer to the number of the current iteration. The first iteration has number 0 .
- m to refer to the expected response μ in the current iteration.
- n to refer to the part of the observation after the slash (usually the group size, or frequency of an observation).
- s to refer to the residual error at the current iteration. This residual is not the same as that used in the ANOVA because it takes on the full number of degrees of freedom (number of observations minus number of parameters estimated) instead of the within-treatments residual.
- x to refer to the linear predictor η in the current iteration.
- y to refer to the observed (possibly transformed) response y^{\prime}.

7.7 Start value for non-linear parameters

For most models, these values do not really play a role and hence are fixed at 0 and 1 , respectively. However, for some models, you cannot fully specify the inverse link function without the use of additional non-linear parameters. Examples of such parameters are the upper and lower asymptote in

4-parameter sigmoid models, or the rate of natural mortality in probit analysis. The non-linear parameter for addition can be thought of as the lower asymptote and the non-linear parameter for multiplication can be thought of as the difference between the upper and lower asymptote. The use of the terms non-linear addition and non-linear multiplication are more general than the term asymptote because not all regression models calling for non-linear parameters have asymptotes. When non-linear parameters are used, they are multiplied and added to the inverse link function. If they are not kept fixed, an improved estimate of these parameters is made after each iteration. If they are not specified, CombiStats will initialize the addition at the minimum observed response, and the multiplication at the difference between the maximum and minimum response.

7.8 Effective dose

The effective dose is generally abbreviated to ED followed by a percentage, usually the ED50. It will give you the amount of doses in your test sample capable of inducing the response you specify. For example, if a dose of 2 IU is estimated to induce a positive response in 50 per cent of the experimental units and your test sample contains $1000 \mathrm{IU} /$ vial, the ED50/vial is 500 . It means that the vial is estimated to contain 500 doses to induce a response in 50 per cent of the experimental units. In the case of a 4-parameter logistic curve model, the ED50 will give you the point of inflexion of the sigmoid curve, translated to the number of doses contained in the test sample to induce the response at the point of inflexion.

By default, the percentage option is checked. 0 per cent will then correspond to the dose inducing a response of d, where d is the non-linear parameter for addition (usually the lower asymptote) and 100 per cent will correspond to the dose inducing a response of $d+a$, where a is the non-linear parameter for multiplication, $d+a$ usually being the upper asymptote.

If the percentage option is unchecked, the effective dose is taken as such. For example, it might be a very specific absorbance level you are interested in, or a very specific diameter of an inhibition zone. In this case, the software returns the dose that induces a specific response after the a priori transformation. For example, if you used a logarithmic transformation of the response level, you should also specify the log-transformed level of response. You cannot use notation like $\log (1.5)$, but you have to calculate that level of response yourself, in this case 0.1761 .

If the inverse option is checked, the result will be expressed with the units inverted. In the above example, you would get $2 \mathrm{IU} / \mathrm{ED} 50$ instead of 500 ED50/vial.

7.9 Minimum and maximum number of iterations

In some cases, it may be desirable to put a maximum on the number of iterations. By default, no value is specified, which makes CombiStats carry out a practically unlimited amount of $2^{31}-1=2147483647$ iterations. It is always possible to interrupt the iterations by pressing the BREAK key (or SHIFT + ESC), but if you want CombiStats to stop iterating at a well defined maximum, you can specify a number.

It can also occur that you want to force CombiStats to carry out a fixed minimum number of iterations, even if convergence has been reached at earlier iterations. An example would be a weighting function depending on the number of iterations like $\mathrm{w}=(\mathrm{i}<100)+(\mathrm{i}>=100) *(\operatorname{abs}(\mathrm{e})<0.2)$, which performs 100 unweighted iterations, but rejects values with a residual error of more than 0.2 after 100 iterations.

7.10 Expressions

Expressions can contain the standard arithmetic operators such as multiplication (*), division (/), addition (+), subtraction (-) and exponentiation $\left(^{\wedge}\right)$. In addition, you can use comparison operators, which evaluate to either 0 , if the comparison is false, or to 1 if the comparison is true. The following comparison operators are available:

$>$	(greater than).
$<$	(less than).
$>=$	(greater than or equal to).
$<=$	(less than or equal to).
$=$	(equal to).
$<>$	(not equal to).

The normal priority rules apply to the arithmetic operators. The comparison operators have lower priority than any of the arithmetic operators and are evaluated from left to right in case of equal priority. For example: The expression $2+3<4 * 5<>0$ is interpreted as $((2+3)<(4 * 5))<>0$ and evaluates to 1 . Use parentheses to overrule the priority rules. The constant π is available as the keyword pi. For example, pi*y^2.

The following functions are available. They are always followed by one argument between parentheses, which itself may again be a valid expression, e.g. $\operatorname{sqrt}(\operatorname{abs}(x))$.
abs The absolute value $x=\left\{\begin{array}{cll}-x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{array}\right.$.
acs The arc cosine.
ang The angular distribution $F(x)=\left\{\begin{array}{ll}0 & \text { if } x<-\frac{\pi}{2} \\ \frac{1}{2}+\frac{1}{2} \sin x & \text { if }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ 1 & \text { if } x>\frac{\pi}{2}\end{array}\right.$.
angder The first derivative of the angular distribution
$F^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { if } x<-\frac{\pi}{2} \\ \frac{1}{2} \cos x & \text { if }-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ 0 & \text { if } x>\frac{\pi}{2}\end{array}\right.$.
anginv The inverse of the angular distribution.
asn The arc sine.
atn The arc tangent.
cos The cosine.
$\exp \quad$ The natural antilogarithm.
gmp \quad The gompertz distribution $F(x)=1-e^{-e^{x}}$.
gmpder The first derivative of the gompertz distribution $F^{\prime}(x)=e^{x-e^{x}}$.
gmpinv The inverse of the gompertz distribution, also known as the gompit.
lgt The logistic distribution $F(x)=\frac{1}{1+e^{-x}}$.
lgtder \quad The first derivative of the logistic distribution $F^{\prime}(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}$.
lgtinv The inverse of the logistic distribution, also known as the logit .
In \quad The natural logarithm ${ }^{1} \log _{e}$.
log The logarithm to base 10.
phi The standard normal distribution $F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y$.
phider The first derivative of the standard normal distribution $F^{\prime}(x)=$ $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.

[^0]phiinv The inverse of the standard normal distribution, also known as the normit or probit.

rec The rectangular distribution $F(x)=\left\{\begin{array}{lll}0 & \text { if } x<-\frac{1}{2} \\ \frac{1}{2}+x & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 1 & \text { if } x>\frac{1}{2}\end{array}\right.$
recder The first derivative of the rectangular distribution $F^{\prime}(x)=\left\{\begin{array}{lll}0 & \text { if } & x<-\frac{1}{2} \\ 1 & \text { if } & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ 0 & \text { if } & x>\frac{1}{2}\end{array}\right.$.
recinv The inverse of the rectangular distribution.
sin The sine.
sqrt The square root.
tan The tangent.
To avoid computer overflow, the following bounds are used for distribution functions F and their first derivatives F^{\prime} :

- $F(x) \geq 10^{-14}$.
- $F(x) \leq 1-10^{-14}$.
- $F^{\prime}(x) \geq 10^{-14}$.

Chapter 8

Computational details

8.1 Computational details

This chapter describes in detail the computational procedures that CombiStats uses to perform the calculations. Let p denote the number of preparations (=number of tables), q the number of doses per preparation and r the number of replicates per preparation. CombiStats collects the data from the tables in a design matrix \mathbf{X} and an observation vector \mathbf{y}^{\prime}. The number of rows of \mathbf{X} and \mathbf{y}^{\prime} is equal to $p q r$. The number of columns of \mathbf{X} is equal to $p+1+r+p q$. If an observation is missing (i.e. cell is empty) or if it is excluded (i.e. barred), the corresponding row of \mathbf{X} is filled with 0 's as well as the corresponding row of \mathbf{y}^{\prime}. For each observation, the first p columns contain only 0 's except the column that relates to the corresponding sample, which is set to 1 if $\lambda=0$, or to dose ${ }^{\lambda}$ if $\lambda>0$. Column $p+1$ contains $\log _{e}($ dose $)$ if $\lambda=0$, or 1 if $\lambda>0$. The next r columns contain only 0 's except the column that relates to a specific block effect (of the replications), which is set to 1 . The last $p q$ columns contain only 0 's except the column that relates to a specific block effect (row or column in Latin squares). It should be noted that all observations are considered to belong to the same block (the first), in case of a completely randomised design, and that a similar statement holds true for randomised block designs. Hence, the last $r+p q$ columns are only fully used in case of a (Latin) square design. The vector \mathbf{y}^{\prime} is filled with the observations after applying the selected transformation (i.e. $\mathbf{y}^{\prime}=f(\mathbf{y}, \mathbf{z})$), where f denotes the transformation, \mathbf{y} the value before the slash, and \mathbf{z} the optional part after the slash). A vector of linear predictors η, with the same size as \mathbf{y}^{\prime}, is initialised with only 0 's.

The iterations start here. A vector μ of non-linear predictors is calculated as $\mu=d+a h(\eta)$, a vector ζ is calculated as $a h^{\prime}(\eta)$ where h denotes the inverse link function, h^{\prime} its first derivative and d and a the non-linear parameters for addition and multiplication respectively. A vector \mathbf{Y} of linearized responses is calculated as $\mathbf{Y}=\eta+\left(\mathbf{y}^{\prime}-\mu\right) \zeta^{-1}$. A diagonal matrix \mathbf{W}^{*} of weights
is constructed on the basis of the specified weight function w. A diagonal matrix \mathbf{W} is calculated with $\mathbf{W}^{*} \zeta^{2}$ on the diagonal. Negative weights are set to 0 in both matrices.

When \mathbf{X}, \mathbf{W}, and \mathbf{Y} are constructed, CombiStats continues with the following steps:

- Calculation of the cross product $\mathbf{X}^{\mathbf{t}} \mathbf{W X}$, where $\mathbf{X}^{\mathbf{t}}$ denotes the transposed matrix \mathbf{X}.
- Calculation of the covariance matrix $\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{X}\right)^{-}$, where - denotes the generalized inverse matrix that contains 0's in rows, which are linearly dependent of the preceding set of rows, and similarly for the columns.
- Calculation of the vector of parameter estimates $\mathbf{b}=\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{X}\right)^{-}\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{Y}\right)$.
- Calculation of a new vector of linear predictors $\eta=\mathbf{X b}$. If a and/or d are not fixed, new values are calculated by performing a suitable regression using weight \mathbf{W}^{*}.

The iterations are repeated until $\max _{i} \frac{\left|\eta_{i}-\eta_{i}^{*}\right|}{\left|\eta_{i}\right|+10^{-6}}<10^{-8}$, where η_{i}^{*} denotes η_{i} of the preceding cycle.

For each test sample T, the potency m relative to the standard S is calculated as $\mathbf{b}_{T} \mathbf{b}_{S}^{-1}$ if $\lambda>0$ and as $\left(\mathbf{b}_{T}-\mathbf{b}_{S}\right) \mathbf{b}_{p+1}^{-1}$ if $\lambda=0$, where \mathbf{b}_{S} and \mathbf{b}_{T} denote the parameter estimates that relate to the standard and the test preparation respectively, and \mathbf{b}_{p+1} denotes the parameter estimate that relates to the common parameter.

In the case of EDxx determinations, m is calculated as $\left(h^{-1}(\mathrm{xx})-\mathbf{b}_{p+1}\right) \mathbf{b}_{T}^{-1}$ if $\lambda>0$ and as $\left(h^{-1}(\mathrm{xx})-\mathbf{b}_{T}\right) \mathbf{b}_{p+1}^{-1}$ if $\lambda=0$. The relative confidence limits m_{L} and m_{U} are calculated using Fieller's theorem:
$m_{L}, m_{U}=\left[m-\frac{g v_{12}}{v_{22}} \pm \frac{t s}{b} \sqrt{v_{11}-2 m v_{12}+m^{2} v_{22}-g\left(v_{11}-\frac{v_{12}^{2}}{v_{22}}\right)}\right] \div(1-g)$
where b is the denominator used in the calculation of m, s is the square root of the selected variance, t is Student's two-sided value $(p=0.95)$ for the number of degrees of freedom of the selected variance (∞ if theoretical), v_{11}, v_{22} and v_{12} are the variance multipliers of the numerator in the calculation of m, the denominator and their covariance multiplier, and $g=t^{2} s^{2} v_{22} b^{-2}$. The estimated potency is now found as $\sqrt[\lambda]{m}$ if $\lambda>0$ and as e^{m} if $\lambda=0$. Similar so for the confidence limits.

For the analysis of variance, the design matrix \mathbf{X}, the final diagonal matrix \mathbf{W} and the linearized responses \mathbf{Y} are now treated as a classical weighted general linear model on which the linear hypotheses are tested. No additional iterations are carried out. The non-linear parameters a and d are, a posteriori, considered to be known and fixed and do no longer play a role
in the analysis. The hat-matrix is calculated as $\mathbf{W}^{\mathbf{1} / \mathbf{2}} \mathbf{X}\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{X}\right)^{-} \mathbf{X}^{\mathbf{t}} \mathbf{W}^{\mathbf{1 / 2}}$. The analysis of variance is constructed as follows: For each of the hypotheses to be tested, an appropriate design matrix \mathbf{X} and a hypothesis matrix \mathbf{L} is constructed. The number of columns of \mathbf{L} is equal to the number of parameters fitted, and the number of rows of \mathbf{L} is equal to the number of degrees of freedom of the hypothesis. The sum of squares is then calculated as $S S=(\mathbf{L b})^{\mathbf{t}}\left(\mathbf{L}\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{X}\right)^{-} \mathbf{L}^{\mathbf{t}}\right)^{-}(\mathbf{L} \mathbf{b})$ where $\mathbf{b}=\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{X}\right)^{-}\left(\mathbf{X}^{\mathbf{t}} \mathbf{W} \mathbf{Y}\right)$ and \mathbf{W} is the final diagonal matrix as calculated above (the transformation is supposed to be fixed, so that \mathbf{W} and \mathbf{Y} are taken as they appeared in the final cycle. No new cycles are performed).

Seven types of matrices are constructed. Each matrix also takes account of the block constraints in the last $r+p q$ columns:

1. $\mathbf{X}_{\text {fixed }}$: Assuming linear and parallel (if $\lambda=0$) or intersecting (if $\lambda>0$) lines with a specified fixed common slope or intercept. This matrix has $p+r+p q$ columns and is used to test for deviations from the common parameter.
2. $\mathbf{X}_{\text {model }}$: Assuming linear and parallel (if $\lambda=0$) or intersecting (if $\lambda>0)$ lines. This matrix has $p+1+r+p q$ columns and is used to test for regression and deviations from model assumptions. It is identical to the matrix used above.
3. $\mathbf{X}_{\text {lin }}$: Assuming linear, but not necessarily parallel or intersecting lines. This matrix has $2 p+r+p q$ columns and is used to test for nonparallelism or intersection.
4. $\mathbf{X}_{\text {quad }}$: Assuming a common quadratic curvature. This matrix has $2 p+1+r+p q$ columns and is used to test for quadratic curvature.
5. $\mathbf{X}_{\text {prep }}$: Assuming a dose independent response per sample. This matrix has $p+r+p q$ columns and is used to test for differences between preparations.
6. $\mathbf{X}_{\text {blank }}$: Assuming intersecting linear lines, allowing for an extra parameter for the blanks. This matrix has $p+2+r+p q$ columns and is used to test for blanks.
7. $\mathbf{X}_{\text {full }}$: Assuming a full factorial model. This matrix has $p q+1+r+p q$ columns and is used to test for linearity, treatments, blocks, columns and the full factorial hypothesis.

The hypothesis matrices are in general constructed in such a way that the column of the first estimable parameter of interest is set to 1 and the other columns are set in such a way as to express a meaningful hypothesis. For
example, to test for parallelism in an assay with 1 standard and 2 test samples, the hypothesis matrix would be constructed as:

$$
L=\left[\begin{array}{rrrrrrl}
0 & 0 & 0 & 1 & -1 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & -1 & \ldots
\end{array}\right]
$$

where the first 3 columns relate to the 3 intercepts (unimportant for the test), the next 3 columns relate to the 3 slopes (these are the parameters of interest) and the subsequent columns relate to the block effects (unimportant for the test, so they are all set to 0). The matrix expresses the simultaneous hypothesis that $\mathbf{b}_{S}-\mathbf{b}_{T}=0$ and $\mathbf{b}_{S}-\mathbf{b}_{U}=0$. It should be noted that the test for linearity is constructed from the distance between 3 doses where the first 2 doses are taken to be fixed. For example, to test for linearity of one sample with 4 equally spaced doses, the hypothesis matrix would be constructed as:

$$
L=\left[\begin{array}{rrrrr}
-1 & 2 & -1 & 0 & \cdots \\
-2 & 3 & 0 & -1 & \cdots
\end{array}\right]
$$

where the first 4 columns relate to the treatments (the parameters of interest) and the remaining columns relate to the block effects (unimportant for the test, so set to 0). The matrix expresses the simultaneous hypothesis that $-d_{1}+2 d_{2}-d_{3}=0$ and $-2 d_{1}+3 d_{2}-d_{4}=0$.

Equivalence statistics are based on $\mathbf{X}_{\text {lin }}$. For models with $\lambda=0$, let \mathbf{b}_{T} denote the slope of any preparation and v_{22} its variance multiplier. The equivalence limits of the individual slopes are then calculated as $\mathbf{b}_{T} \pm t s \sqrt{v_{22}}$, where s is the square root of the selected variance and t is Student's twosided value ($p=0.90$) for the number of degrees of freedom of the selected variance (∞ if theoretical). If a standard is included, let \mathbf{b}_{S} denote the slope of the standard, v_{11} its variance multiplier and v_{12} the covariance multiplier, then the equivalence limits of the difference between slopes is calculated as $\mathbf{b}_{T}-\mathbf{b}_{S} \pm t s \sqrt{v_{11}+v_{22}-2 v_{12}}$. The equivalence limits of the ratio of slopes is calculated with Fieller's theorem (see above) with $m=\frac{\mathbf{b}_{T}}{\mathbf{b}_{S}}$ and $b=\mathbf{b}_{S}$. For models with $\lambda>0$, the intercepts are used instead of the slopes but the equations are the same. No ratio between intercepts is calculated because this has no meaningful interpretation. It should be noted that equivalence limits use the 2 -sided probability level $p=0.90$ instead of $p=0.95$ as is used for the confidence limits of potency. This is because equivalence tests are intended to be used as 1 -sided tests.

Chapter 9

Preferences

9.1 Introduction

You can configure several aspects of the global behaviour of CombiStats through the 'Preferences' dialogue box (see figure 9.1). You can access the preferences via the menu Options \triangleright Advanced \triangleright Preferences. You can modify the location of your licence authorisation file, the location of your library of templates, the default Internet address of the CombiStats website, several features required in some quality controlled environments and miscellaneous other options.

9.2 Location of passwords

By default, the file with information about your CombiStats licence is located in the program directory. If your organisation owns multiple licences, you may find it cumbersome to have to enter the licence details such as expiry date, contact person and password on each individual computer. Even though you are not allowed to install the CombiStats program on a central server, you are allowed to store the licence details on a server, provided this file is only accessed from within your organisation. You can do this by moving the file 'Authorisation' from the program directory to a location of your choice on a server. Typically you would make the file read-only for all users except personnel responsible for updating the licence details. After moving the file you have to tell CombiStats where to find it. You do this by browsing to the new location of the passwords via the preferences dialogue box. You have to do this only once on each computer.

9.3 Location of library of templates

Similar to the location of passwords, you may find it undesirable that individual users have to maintain their own library of templates. Instead, you

Figure 9.1: The 'Preferences' dialogue box
can instruct CombiStats to look for the library on a central server. Typically you would make that location read-only for all users except those who are responsible for maintaining the library. If, in addition, you make sure that the templates to which the library links are located on a read-only location, you can be sure that nobody can accidentally alter a template and you can be sure that everybody is always using the same and most recent version of any given template.

It should be noted that this does not prevent users from modifying a template once it is loaded into CombiStats, unless you use password protection of the data sheet as described in sections 6.6 and 9.11.

9.4 The official CombiStats website

Although the EDQM has no intention to change the internet address of the official CombiStats website, it cannot be excluded that this will never happen. If it should happen, you can change the URL of the CombiStats website via the Preferences. CombiStats will open this address in your default browser whenever you click on or the menu Help \triangleright Internet Homepage or the shortcut CTRL+I.

9.5 Print file name on each page

You can instruct CombiStats to print the file name at the bottom of each page of the output. This way, it is easier to locate the original file on the basis of archived print-outs. The number you put in the preferences indicates the maximum path length you want to appear. Valid numbers are:
-1 Print full path.
$0 \quad$ Print nothing.
1 Print file name only.
$>1 \quad$ Print file name and parent directories up to the specified path length.

9.6 Print file size on each page

You can instruct CombiStats to print the file size in bytes on each page of the output by checking this option in the preferences. It should be noted that the possibility exists that the output is printed after modifications were made to the data without saving these modifications. In that case, it is impossible for CombiStats to determine the file size and it will issue a warning that the file size will not be printed, giving you the option to cancel the print command so you can save the file first. If you ignore the warning and print the output without saving, CombiStats will print the following message at the bottom of each page: "Document was printed without saving modifications to disk."

9.7 Print hash code of the file on each page

You can also instruct CombiStats to print a hash code on each page. The hash code serves as a 'fingerprint' of the file. Even the smallest modification to the file will result in a different hash code. It is therefore a very reliable way to determine whether a file has not been altered after it was printed. CombiStats uses a publicly available algorithm known as RIPEMD-160. To check whether the hash code of a given CombiStats file is the same as the hash code printed on a page, simply open the file in CombiStats and click on the menu File>Hash RIPEMD-160 or use the shortcut CTRL+H. Alternatively you can use third party software to generate the hash code without having to open it in CombiStats. Suitable programs are abundantly available from the Internet.

CombiStats generates a warning if you attempt to print the output without first saving modifications to disk, giving you the option to cancel the print command or print the file without hash code.

9.8 Title 21 CFR Part 11

Title 21 CFR Part 11 defines the criteria under which electronic records and electronic signatures are considered to be trustworthy, reliable and equivalent to paper records. In case you want to send electronic records to regulators, such as the FDA, you have to comply with Part 11 of the Code of Federal Regulations of the United States of America. Inspectors, accreditors and auditors, on other markets, may also require that you comply with this rule. CombiStats offers the required technical controls of a compliant system. However, it should be noted that Part 11 requires both procedural controls (i.e. notification, training, SOPs, administration) and administrative controls to be put in place by the user, in addition to the technical controls that CombiStats can offer.

One of the easiest and most universally applicable ways to comply with Part 11 is to use third party software such as Acrobat Distiller to transform the CombiStats output to Portable Document Format (PDF) and to apply your certified digital signature to the document using the Adobe product suite. A popular standard in the bio-pharmaceutical industry is Signatures and Authentication For Everyone (SAFE). This standard is supported by Adobe Acrobat and certified digital signatures can be acquired from SAFE BioPharma and other vendors.

In practice, you will probably not only archive the (digitally signed) PDF version of the computer output, but also the original CombiStats file (the master-file), and perhaps also a paper version. The link between the PDF version, the paper version, and the master-file is made by the file name, the file size and the hash code printed on each page. See sections 9.5 to 9.7 for more details. An example of a hybrid configuration (i.e. a system in which both electronic versions and paper versions are used) is illustrated in figure 9.2.

9.9 Use of colours in designs

CombiStats offers the possibility to display designs with colours as a visual aid to assess the position of preparations in the layout. Up to a maximum of 12 preparations can be distinguished this way. Additional preparations will be shaded in grey, as well as the cells containing labels instead of references. The use of colours can be extended to all tables, be limited to the design only, or be completely disabled. Furthermore, it is possible to enable or disable the use of colours independently for screen and printer.

Figure 9.2: Three document formats in a Part 11 compliant configuration

9.10 Miscellaneous other preferences

For non-linear models, convergence is not guaranteed or convergence may be very slow. By default, a message is displayed after 1000 iterations, informing the user of possible reasons for slow convergence. This message can be disabled in the preferences.

The 'Undo' functionality, which can be accessed via the button §, the menu Edit \triangleright Undo or the shortcut CTRL+Z, are enabled by default. However, on some (older) computers, this functionality can noticeably slow down responsiveness of the software during data entry. If this happens to be the case on your computer, you can disable the 'Undo' functionality in the preferences to improve speed of data entry.

9.11 Protection of version 4.0 and earlier files

Data sheets and templates created with older versions of CombiStats are, by default, opened in unprotected mode, because these files contain no information on data sheet protection. However, you can force CombiStats to open these files in read-only mode (level 4 protection) by ticking the corresponding box in the preferences and optionally specify a password. If you place the preferences in a read-only location for your users, you can be sure that they cannot alter the preferences and can only remove the protection from legacy files using the default password you specified in the preferences.

Appendix A

Examples

This appendix provides a large set of examples, which can be used to validate the software in your hardware configuration or as inspiration to create your own templates. They break down into three categories:

- Section A. 1 contains all examples published in the European Pharmacopoeia, chapter 5.3 'Statistical Analysis of Results of Biological Assays and Tests'.
- Section A. 2 contains almost all numerical examples given by D.J. Finney in his standard work 'Statistical Method in Biological Assay, 3rd Edition, Griffin, London (1978)'.
- Section A. 3 contains an additional multitude of examples taken from practice or to illustrate different approaches and configurations.

The examples are not primarily intended to illustrate how a specific type of assay or substance should be analysed. Indeed, some types of assays may be obsolete or alternative statistical approaches may have come into use. Instead, the examples are intended to provide a source of inspiration of how templates can be configured to accommodate different types of data and models.

All examples are installed on the hard-disk of your computer and can be accessed by clicking on the button depicting a light bulb.

A. 1 Examples from the European Pharmacopoeia

A.1.1 Example 5.1.1. (Including all samples)

A.1.2 Example 5.1.1. (Excluding sample U)

A.1.3 Example 5.1.2.

Standard			
Id.	S		
Ass. pot.	$4855 \mathrm{IU} / \mathrm{mg}$		
Reconsitution	$25.2 \mathrm{mg} / 24.5 \mathrm{ml}$		
Doses	$1 / 45$	$1 / 30$	$1 / 20$
(1)	161	171	187
(2)	150	172	192
(3)	161	174	195
(4)	163	184	194
(5)	151	176	201
(6)	166	182	198

Sample 1			
Id.	T		
Ass. pot.	$5600 \mathrm{IU} / \mathrm{mg}$		
Reconsitution	$21.4 \mathrm{mg} / 23.95 \mathrm{ml}$		
Doses	$1 / 45$	$1 / 30$	$1 / 20$
(1)			
160	178	194	
(2)	151	170	192
(3)	151	162	193
(4)	160	171	199
(5)	154	181	202
(6)	161	186	193

Design	(A)	(B)	(C)	(D)	(E)	(F)
(1)	$1 \mid 1$	$2 \mid 1$	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$	$2 \mid 3$
(2)	$2 \mid 1$	$2 \mid 3$	$1 \mid 1$	$1 \mid 2$	$2 \mid 2$	$1 \mid 3$
(3)	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$	$1 \mid 1$	$2 \mid 3$	$2 \mid 1$
(4)	$1 \mid 3$	$1 \mid 2$	$2 \mid 3$	$2 \mid 1$	$1 \mid 1$	$2 \mid 2$
(5)	$1 \mid 2$	$2 \mid 2$	$1 \mid 3$	$2 \mid 3$	$2 \mid 1$	$1 \mid 1$
(6)	$2 \mid 3$	$1 \mid 1$	$2 \mid 1$	$2 \mid 2$	$1 \mid 3$	$1 \mid 2$

Observ.	(A)	(B)	(C)	(D)	(E)	(F)
(1)	161	160	178	187	171	194
(2)	151	192	150	172	170	192
(3)	162	195	174	161	193	151
(4)	194	184	199	160	163	171
(5)	176	181	201	202	154	151
(6)	193	166	161	186	198	182

Model: Parallel lines
Common slope(factor) $=46.3460$ (42.3892 to 50.3027)
Design: (Latin) square
Correlation |r|: 0.976750
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	1	11.1111	11.1111	0.535	0.473	
Regression	1	8475.04	8475.04	408.108	0.000	$\left(^{* * *}\right)$
Non-parallelism	1	18.3750	18.3750	0.885	0.358	
Non-linearity	2	5.47222	2.73611	0.132	0.877	
Standard	1	0.0277778	0.0277778	0.001	0.971	
Sample 1	1	5.44444	5.44444	0.262	0.614	
Treatments	5	8510.00	1702.00	81.958	0.000	$\left(^{* * *)}\right)$
Rows	5	412.000	82.4000	3.968	$0.012 \quad\left(^{\star}\right)$	
Columns	5	218.667	43.7333	2.106	0.107	
Residual error	20	415.333	20.7667			
Total	35	9556.00	273.029			

Sample 1			
Id.	T		
(IU/mg)	Lower limit	Estimate	Upper limit
Potency	5092.37	5456.37	5843.36
Rel. to Ass.	90.9%	97.4%	104.3%
Rel. to Est.	93.3%	100.0%	107.1%

Iombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Project	Validation CombiStats version 7.0

Assay Example 5.1.2 from the Ph. Eur.

Executed by:
Calculated by:
Approved by:

A.1.4 Example 5.1.3.

वmbitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

```
Project 
```

Remarks:

Assay	Example 5.1.3 from the Ph. Eur.

Sample 1				
Id.	T			
Ass. pot.	20000 IU/vial			
Reconsitution	$1 \mathrm{vial} / 40 \mathrm{ml}$			
Pre-dilution	$1 \mathrm{ml} / 40 \mathrm{ml}$			
Doses	T1	T2	T3	T4
(1)	242	206	146	115
(2)	236	197	153	102
(3)	246	197	148	104
(4)	231	191	159	106
(5)	232	186	146	95

Model: Parallel lines
Design: Randomised block
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
Dilution step (Increasing): 1.5

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	1	632.025	632.025	11.722	$0.002 \quad\left({ }^{* *)}\right.$	
Regression	1	101746	101746	>1000	$0.000 \quad\left({ }^{* * *)}\right.$	
Non-parallelism	1	25.2050	25.2050	0.467	0.500	
Non-linearity	4	259.140	64.7850	1.202	0.332	
Standard	2	238.140	119.070	2.208	0.129	
Sample 1	2	21.0000	10.5000	0.195	0.824	
Treatments	7	102662	14666.0	272.015	$0.000 \quad\left({ }^{* * *)}\right.$	
Blocks	4	876.750	219.188	4.065	$0.010 \quad\left({ }^{*}\right)$	
Residual error	28	1509.65	53.9161			
Total	39	105048	2693.55			

Sample 1			
Id.	T		
(IU/vial)	Lower limit	Estimate	Upper limit
Potency	18423.4	19228.5	20075.2
Rel. to Ass.	92.1%	96.1%	100.4%
Rel. to Est.	95.8%	100.0%	104.4%

All samples

Executed by:

Standard S

Calculated by:

Common slope(factor) $=-111.255(-115.612$ to -106.898$)$ Correlation |r|: 0.991424

Approved by:

Standard					
Id.	S				
Ass. pot.	$670 \mathrm{IU} / \mathrm{mg}$				
Reconsitution	$16.7 \mathrm{mg} / 25 \mathrm{ml}$				
Pre-dilution	$1 \mathrm{~m} / 40 \mathrm{ml}$				
Doses	S 1	S 2	S 3	S 4	
(1)	252	207	168	113	
(2)	249	201	187	107	
(3)	247	193	162	111	
(4)	250	207	155	108	
(5)	235	207	140	98	

Filename: ...\A104 PhEur Ex 513 PLA Blocks.epa. ID: EDQM/DBO/FRA

A.1.5 Example 5.1.4.

A.1. 6 Example 5.2.1.

A.1.7 Example 5.2.2.

A.1.8 Example 5.3.1. (Probits)

Executed by:

Calculated by:

Approved by:

A.1.9 Example 5.3.2. (Logits)

वmb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Sample 1	
Id.	T
Ass. pot.	$140 \mathrm{IU} / \mathrm{vial}$
Doses	(1)
1.0 IU	$0 / 11$
1.6 IU	$4 / 12$
2.5 IU	$8 / 11$
4.0 IU	$10 / 11$

> Model: Quantal responses
> Design: Completely randomised
> Transformation: $\mathrm{y}^{\prime}=\operatorname{logit}(\mathrm{y})$
> Theoretical variance: 1

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability
Preparations	1	0.0407131	0.0407131	0.0407131	0.840
Regression	1	26.3975	26.3975	26.3975	$0.000 \quad(* *)$
Non-parallelism	1	0.00662306	0.00662306	0.00662306	0.935
Non-linearity	4	2.15046	0.537614	2.15046	0.708
Standard	2	1.09388	0.546940	1.09388	0.579
Sample 1	2	1.05658	0.528288	1.05658	0.590
Treatments	7	28.5953	4.08504	28.5953	$0.000 \quad(* *)$
Theoretical variance			1.00000		
Total	7	28.5953	4.08504		

Sample 1			
Id.	T		
(IU/vial)	Lower limit	Estimate	Upper limit
Potency	121.131	162.859	221.106
Rel. to Ass.	86.5%	116.3%	157.9%
Rel. to Est.	74.4%	100.0%	135.8%

Executed by:

Calculated by:

Approved by:

A.1.10 Example 5.3.2. (Gompits)

Executed by:

Calculated by:

Approved by:

A.1.11 Example 5.3.2. (Angles)

A.1.12 Example 5.3.3.

A.1.13 Example 5.3.3. (Alternative)

ombitals Version 7.0. Friday, 15 October 202

Project	Validation CombiStats version 7.0
Assay	Example 5.3.3 from the Ph. Eur.

Remarks: This example uses the advanced options to convert the responses to their complements (i.e. reversing the role of negative and positive).

Sample 1										
Ass. pot.	$? \log 10$ ED50/ml									
Conversion	$1 \mathrm{ml} / 1000 \mu \mathrm{l}$									
Volume applied	$50 \mu /$ well									
Doses	-3.5 log	-4.0 log	-4.5 log	-5.0 log	-5.5 log	-6.0 \log	-6.5 \log	-7.0 log	-7.5 log	-8.0 \log
(1)	+	+	+	+	-	-	-	-	-	-
(2)	+	+	+	+	-	-	-	-	-	-
(3)	+	+	-	-	-	-	-	-	-	-
(4)	+	+	+	+	-	-	-	-	-	-
(5)	+	+	+	-	-	-	-	-	-	-
(6)	+	+	+	+	+	-	-	-	-	-
(7)	+	+	+	+	+	-	+	-	-	-
(8)	+	+	+	+	-	+	-	-	-	-

Model: $(\mathrm{n}-\mathrm{r}) / \mathrm{n}=(\mathrm{phi}(\mathrm{x}))$ where $\mathrm{x}=\mathrm{c} .+\mathrm{b}^{*} \ln ($ dose $)$
Design: Completely randomised
Weight function: $w=n /\left(m^{*}(1-m)\right)$
Theoretical variance: 1

| Source of variation | Degrees of freedom | Sum of squares | Mean square | Chi-square | Probability |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Regression | 1 | 23.3374 | 23.3374 | 23.3374 | $0.000 \quad\left({ }^{* * *)}\right)$ |
| Non-linearity | 8 | 2.71119 | 0.338899 | 2.71119 | $0.951 \quad$ |
| Treatments | 9 | 26.0486 | 2.89429 | 26.0486 | $0.002 \quad\left({ }^{* *)}\right)$ |
| Residual error | 70 | 51.1447 | 0.730639 | 51.1447 | 0.956 |
| Theoretical variance | | | 1.00000 | | |
| Total | 79 | 77.1933 | 0.977130 | | |

Sample 1			
(log10 ED50/ml)	Lower limit	Estimate	Upper limit
log10 ED50/ml	6.30328	6.63128	6.95780
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	-0.328001	0.00000	+0.326519

Executed by:
Calculated by
Approved by:

A.1.14 Example 5.4.1.

A.1.15 Example 6.4.

Assay	Sample	Info	Lower limit	Estimate	Upper limit	df
1	1	Test	17755.0	18367.0	19002.0	20
2	1	Test	17415.0	18003.0	18610.0	20
3	1	Test	17319.0	18064.0	18838.0	20
4	1	Test	17253.0	17832.0	18429.0	20
5	1	Test	17959.0	18635.0	19339.0	20
6	1	Test	17722.0	18269.0	18834.0	20

Geometric combination
Homogeneity: $p=0.491$

Weighted combination			
(IU/vial)	Lower limit	Estimate	Upper limit
Potency	17946.1	18186.9	18430.9
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	98.7%	100.0%	101.3%

Semi-weighted combination			
(IU/vial)	Lower limit	Estimate	Upper limit
Potency	17943.7	18186.9	18433.4
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	98.7%	100.0%	101.4%

Unweighted combination			
(IU/vial)	Lower limit	Estimate	Upper limit
Potency	17894.1	18193.1	18497.1
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	98.4%	100.0%	101.7%

Executed by:
Calculated by:
Approved by:

A. 2 Examples from D.J. Finney

A.2.1 Example 3.9.1. (Without transformation)

Standard								
Id.								
Ass. pot.	1 unit/unit							
Doses	S1	S2	S3	S4	S5	S6	S7	S8
(1)	0.15	0.28	0.36	0.51	0.68	0.85	1.06	1.21
(2)	0.14	0.20	0.36	0.53	0.63	0.80	0.91	1.22
(3)	0.19	0.23	0.34	0.54	0.64	0.71	1.09	1.29
(4)	0.19	0.25	0.37	0.45	0.61	0.85	0.93	1.24
(5)	0.17	0.23	0.33	0.57	0.65	0.94	1.09	1.18
(6)	0.16	0.23	0.38	0.49	0.68	0.83	1.12	1.24

Model: Parallel lines
Design: Completely randomised
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
Dilution step (Increasing): 1.5

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Regression	1	6.01716	6.01716	>1000	0.000	$(* \star \kappa)$
Non-linearity	6	0.104468	0.0174113	7.288	0.000	$(* \star \star)$
Quadratic curvature	1	0.0996036	0.0996036	41.690	0.000	$(* \star)$
Lack of quadratic fit	5	0.00486429	0.000972857	0.407	0.841	
Treatments	7	6.12163	0.874518	366.035	0.000	$(* \star \star)$
Model	1	6.01716	6.01716	>1000	0.000	$(* \star)$
Deviations from model	6	0.104468	0.0174113	7.288	0.000	$(* \star)$
Full factorial	7	6.12163	0.874518	366.035	0.000	$(* \star)$
Residual error	40	0.0955667	0.00238917			
Total	47	6.21719	0.132281			

Executed by:
Calculated by:
Approved by:

Common slope(factor) $=0.381103$ (0.368315 to 0.393890) Correlation | r |: 0.983781

Cald

A.2.2 Example 3.9.1. (With exact transformation)

वmb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Substance	Vitamin B12
Method	turbidimetric
Micro-organism	Lactobacillus leichmannii

Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page 48 and applying a square-root transformation as described on page 52. The analysis of variance is in close agreement with that given on page 52 The small differences can be explained because Finney used rounded values after the transformation. If the rounded values as given on page 2. (See Example Finey2 PLA SqrtY rounded epa)
52. (See Example Finney052 PLA SqrtY rounded.epa)

Standard								
Id.								
Ass. pot.	1 unit/unit							
Doses	S1	S2	S3	S4	S5	S6	S7	S8
(1)	0.15	0.28	0.36	0.51	0.68	0.85	1.06	1.21
(2)	0.14	0.20	0.36	0.53	0.63	0.80	0.91	1.22
(3)	0.19	0.23	0.34	0.54	0.64	0.71	1.09	1.29
(4)	0.19	0.25	0.37	0.45	0.61	0.85	0.93	1.24
(5)	0.17	0.23	0.33	0.57	0.65	0.94	1.09	1.18
(6)	0.16	0.23	0.38	0.49	0.68	0.83	1.12	1.24

Model: Parallel lines
Design: Completely randomised
Transformation: y = sqrt(y)
Variance: Observed residuals
Dilution step (Increasing): 1.5

Common slope(factor) $=0.252100(0.244475$ to 0.259726$)$ Correlation |r|: 0.993019

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Regression	1	2.63302	2.63302	>1000	$0.000 \quad(* *)$	
Non-linearity	6	0.00316761	0.000527935	0.621	0.712	
Quadratic curvature	1	$8.46615 \mathrm{E}-06$	$8.46615 \mathrm{E}-06$	0.010	0.921	
Lack of quadratic fit	5	0.00315914	0.000631829	0.744	0.595	
Treatments	7	2.63619	0.376598	443.270	$0.000 \quad\left({ }^{* * *)}\right.$	
Model	1	2.63302	2.63302	>1000	$0.000 \quad(* *)$	
Deviations from model	6	0.00316761	0.000527935	0.621	0.712	
Full factorial	7	2.63619	0.376598	443.270	$0.000 \quad(* * *)$	
Residual error	40	0.0339836	0.000849590			
Total	47	2.67017	0.0568122			

Executed by:

A.2.3 Example 3.9.1. (With rounded transformation)

Model: Parallel lines
Design: Completely randomised
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
Dilution step (Increasing): 1.5

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Regression	1	2.61488	2.61488	>1000	0.000	$\left({ }^{* * *)}\right)$
Non-linearity	6	0.00279008	0.000465013	0.521	0.789	
Quadratic curvature	1	$3.57143 \mathrm{E}-06$	$3.57143 \mathrm{E}-06$	0.004	0.950	
Lack of quadratic fit	5	0.00278651	0.000557302	0.624	0.682	
Treatments	7	2.61767	0.373952	418.603	0.000	$(* \star)$
Model	1	2.61488	2.61488	>1000	0.000	$\left({ }^{* * *)}\right.$
Deviations from model	6	0.00279008	0.000465013	0.521	0.789	
Full factorial	7	2.61767	0.373952	418.603	$0.000 \quad\left({ }^{* * *)}\right.$	
Residual error	40	0.0357333	0.000893333			
Total	47	2.65340	0.0564553			

Executed by:

A.2.4 Example 4.2.1.

(ambitaly Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 2

| Substance | D3 in cod-liver oil |
| :--- | :--- | Method Antirachitic activity in chickens

Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page 70. The analysis of variance is in agreement with that given on page 73 The small differences for non-parallelism can be explained from rounding by Finney. The estimated potency is in agreement with that given on page 80 and the 95% confidence limits are in agreement with those given on page 87 .

Sample 1				
Id.				
Ass. pot.	? unit/mg			
Pre-dil. 1				
Doses	32.4 mg	54 mg	90 mg	150 mg
(1)	20	26	57	140
(2)	39	60	89	133
(3)	16	48	103	142
(4)	27	-8	129	118
(5)	-12	46	139	137
(6)	2	77	128	84
(7)	31		89	101
(8)			86	
(9)				
(10)				

Model: Parallel lines
Design: Completely randomised
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
Dilution step (Increasing): 1.666666

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	687.086	687.086	1.438	0.236
Regression	1	74088.4	74088.4	155.104	$0.000 \quad\left({ }^{* * *)}\right)$
Non-parallelism	1	9.29015	9.29015	0.019	0.890
Non-linearity	3	2311.77	770.591	1.613	0.199
Standard	1	96.1211	96.1211	0.201	0.656
Sample 1	2	2215.65	1107.83	2.319	0.109
Treatments	6	77096.6	12849.4	26.900	$0.000 \quad\left({ }^{* * *)}\right.$
Residual error	48	22928.2	477.670		
Total	54	100025	1852.31		

Sample 1			
Id.			
(unit/mg)	Lower limit	Estimate	Upper limit
Potency	0.124330	0.145995	0.172315
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	85.2%	100.0%	118.0%

[ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Executed by:
Calculated by:
Approved by:

A.2.5 Example 4.15.1.

Dmbitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J Finney, 3rd Edition, 1978, Griffin. Data as given on page 89 exclusing the missing values. The analysis of variance is in close agreement with that given on page 103. The difference for litters is due to the fact that Finney ignored doses, whereas CombiStats does not ignore doses. Also, CombiStats computes separate values for regression, parallelism and preparations even though they are not orthogonal and not additive. This is described on page 103 but Finney does not give the actual with those given on page 104. The difference, nobably in the upper limit, is again caused by the fact that Finney ignored litters (i.e. he inverted a 3×3 matrix) whereas CombiStats inverts a the full 9×9 matrix including the $6(=7-1)$ parameters for litters.

Standard		
Id.		
Ass. pot.	$1 \mu \mathrm{~g} / \mathrm{unit}$	
Doses	$0.2 \mu \mathrm{~g}$	$0.4 \mu \mathrm{~g}$
(1)	54	152
(2)	49	71
(3)	51	112
(4)		58
(5)	81	102
(6)	63	
(7)	126	

Sample 1		
Id.		
Ass. pot.	$? \mu \mathrm{~g} / \mathrm{ml}$	
Doses	0.0075 ml	0.015 ml
(1)	61	92
(2)	74	63
(3)	51	
(4)	60	102
(5)		120
(6)	83	105
(7)	83	108

Model: Parallel lines
Design: Randomised block
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals

Common slope $($ factor $)=45.5948$ (19.5721 to 71.6175) Correlation | $\mathrm{r} \mid: 0.760838$

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	2.52083	2.52083	0.005	0.947
Regression	1	5306.17	5306.17	9.628	$0.008 \quad\left({ }^{* \star}\right)$
Non-parallelism	1	178.847	178.847	0.325	0.579
Treatments	3	5487.54	1829.18	3.319	0.054
Blocks	6	5443.37	907.228	1.646	0.212
Residual error	13	7164.63	551.126		
Total	22	17437.7	792.625		

Sample 1			
Id.			
$(\mu \mathrm{g} / \mathrm{ml})$	Lower limit	Estimate	Upper limit
Potency	12.6734	25.1539	48.5286
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	50.4%	100.0%	192.9%

All samples
Standard

Calculated by:
Executed by:
Filename: ...A205 Finney089 PLA Blocks.epa. ID: EDQM/DBO/FRA

A.2.6 Example 5.2.1.

A.2.7 Example 5.4.2.

A.2.8 Example 7.3.1. (Including blanks)

A.2.9 Example 7.3.1. (Excluding blanks)

amb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Substance	Nicotine acid
Method	Acidity by titration with $\mathrm{N} / 14 \mathrm{NaOH}$
Micro-organism	Lactobacillus arabinosus

Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page 150 . The blank have been excluded due to
anomalous behaviour. For the analysis including blanks see example Finney150 Slope Ratio Blanks incl.epa The estimated potency is in agreement with that on page 155 and 95% page 156. The very small difference is due to the fact that Finney chose to estimate the residual error including the bla (see remark before equation 7.6.4). CombiStats never uses excluded values to compute the residual error.

Standard					
Id.					
Ass. pot.	$1 \mu \mathrm{~g} / \mathrm{tube}$				
Doses	$0.05 \mu \mathrm{~g}$	$0.10 \mu \mathrm{~g}$	$0.15 \mu \mathrm{~g}$	$0.20 \mu \mathrm{~g}$	$0.25 \mu \mathrm{~g}$
(1)	3.5	5.0	6.2	8.0	9.4
(2)	3.2	4.7	6.1	7.7	9.5

Sample 1					
Id.					
Ass. pot.	$? \mu \mathrm{~g} / \mathrm{ml}$				
Doses	1.0 ml	1.5 ml	2.0 ml		0 ml
(1)	4.9	6.3	7.7		1.5
(2)	4.8	6.5	7.7		1.4

Model: Slope ratio
Design: Completely randomised
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Regression	2	54.3063	27.1531	>1000	0.000 (***)
Intersection	1	0.0248773	0.0248773	1.171	0.311
Non-linearity	4	0.108833	0.0272083	1.280	0.354
Standard	3	0.0880000	0.0293333	1.380	0.317
Sample 1	1	0.0208333	0.0208333	0.980	0.351
Treatments	7	54.4400	7.77714	365.983	0.000 (***)
Model	2	54.3063	27.1531	>1000	0.000 (***)
Deviations from model	5	0.133711	0.0267421	1.258	0.367
Full factorial	7	54.4400	7.77714	365.983	0.000 (***)
Residual error	8	0.170000	0.0212500		
Total	15	54.6100	3.64067		

Sample 1			
Id.			
($\mathrm{g} / \mathrm{ml})$	Lower limit	Estimate	Upper limit
Potency	0.0955214	0.0991645	0.102849
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	96.3%	100.0%	103.7%

All samples

Executed by:

Calculated by:

Approved by:

[^1]
A.2.10 Example 7.10.2.

Dmbitlat Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Substance	Riboflavin in Malt
Method	Acidity by titration with NaOH
Micro-organism	Lactobacillus helveticus

Remarks: Example taken from 'Statistical Method in Biological Assay'
by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page
161. The analysis of variance is in agreement with that given on
page 162. The estimated potency and the 95% confidence limits are
in agreement with those given on page 162

Standard			
Id.			
Ass. pot.	$0.2 \mu \mathrm{~g} / \mathrm{unit}$		
Doses	$0 \mu \mathrm{~g}$	$0.1 \mu \mathrm{~g}$	$0.2 \mu \mathrm{~g}$
(1)	38	97	167
(2)	45	100	164
(3)	40	105	159
(4)	44	98	156

Sample 1			
Id.			
Ass. pot.	$? \mu \mathrm{~g} / \mathrm{g}$		
Doses	0.025 g	0.05 g	
(1)	80	121	
(2)	88	124	
(3)	90	122	
(4)	82	122	

Model: Slope ratio
Design: Completely randomised
Common intercept $=42.1429$ (39.3285 to 44.9572)
Correlation |r|: 0.996005
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Regression	2	31456.9	15728.5	>1000	$0.000 \quad\left({ }^{* * *)}\right.$	
Blanks	1	2.16071	2.16071	0.150	$0.704 \quad$	
Intersection	1	34.2250	34.2250	2.371	0.144	
Treatments	4	31493.3	7873.33	545.496	$0.000 \quad\left({ }^{* * *)}\right.$	
Residual error	15	216.500	14.4333			
Total	19	31709.8	1668.94			

Sample 1			
Id.			
$(\mu \mathrm{g} / \mathrm{g})$	Lower limit	Estimate	Upper limit
Potency	2.58550	2.73892	2.89443
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	94.4%	100.0%	105.7%

Executed by:

Calculated by:

Approved by:

A.2.11 Example 9.5.1.

ambitaly Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 2
Substance $\begin{aligned} & \text { Artifical data } \quad \text { Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd }\end{aligned}$
Edition, 1978, Griffin. Data as given on page 184. The analysis of variance is in
agreement with the 2nd part of the table given on page 186. CombiStats does not
automatically generate the 1st part of the table. The estimated potency and the 95%
confidence limits are in agreement with those given on page 187. For an alternative way
of entering these data see example Finney 184 PLA Blocks Table.epa.

Standard			
Id.			
Ass. pot.	1 unit/unit		
Doses	0.9 unit	1.5 unit	2.5 unit
(1)	20	33	
(2)	18	36	
(3)	16		44
(4)	22		33
(5)	29		
(6)	26		
(7)	47		
(8)	30		
(9)	16		
(10)	30		
(11)		40	47
(12)		40	59
(13)		35	
(14)		47	
(15)		27	
(16)		43	
(17)		43	
(18)		37	
(19)			44
(20)			48
(21)			35
(22)			43
(23)			46
(24)			51
(25)			
(26)			
(27)			
(28)			
(29)			
(30)			

Sample 1			
Id.			
Ass. pot.	? unit/mg		
Doses	0.45 mg	0.75 mg	1.25 mg
(1)			
(2)			
(3)			
(4)			
(5)	35		
(6)	14		
(7)		48	
(8)		30	
(9)			38
(10)			41
(11)			
(12)			
(13)	4		
(14)	16		
(15)		35	
(16)		35	
(17)			50
(18)			33
(19)	26		
(20)	28		
(21)		43	
(22)		33	
(23)			23
(24)			51
(25)	20	37	
(26)	12	30	
(27)	21		33
(28)	25		40
(29)		39	43
(30)		18	27

[^2]Common slope (factor) $=18.2303$ (13.8330 to 22.6276)
Correlation |r|: 0.915154
[ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Substance	Artifical data

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	1	245.444	245.444	5.914	0.023	(*)
Regression	1	2081.34	2081.34	50.149	0.000	(***)
Non-parallelism	1	0.260417	0.260417	0.006	0.937	
Non-linearity	2	237.868	118.934	2.866	0.076	
Standard	1	66.6944	66.6944	1.607	0.217	
Sample 1	1	171.174	171.174	4.124	0.053	
Quadratic curvature	1	225.781	225.781	5.440	0.028	(*)
Lack of quadratic fit	1	12.0868	12.0868	0.291	0.594	
Treatments	5	2564.92	512.983	12.360	0.000	(***)
Blocks	29	2617.12	90.2454	2.174	0.026	(*)
Residual error	25	1037.58	41.5033			
Total	59	7850.85	133.065			

Sample 1			
Id.			
(unit/mg)	Lower limit	Estimate	Upper limit
Potency	1.11719	1.50184	1.91482
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	74.4%	100.0%	127.5%

Executed by:

Calculated by:

Approved by:

A.2.12 Example 9.5.1. (Alternative)

वmb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 2

Substance | | Artifical data \quad Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd |
| :--- | :--- | Edition, 1978, Griffin. Data as given on page 184. The analysis of variance is in agreement with the 2nd part of the table given on page 186. CombiStats does no automatically generate the 1st part of the table. The estimated potency and the 95% confidence limits are in agreement with those given on page 187. For an alternative way of entering these data see example Finney184 PLA Blocks.epa.

Standard			
Id.			
Ass. pot.	1 unit/unit		
Doses	0.9 unit	1.5 unit	2.5 unit
(1)	20	33	44
(2)	18	36	33
(3)	16	40	47
(4)	22	40	59
(5)	29	35	44
(6)	26	47	48
(7)	47	27	35
(8)	30	43	43
(9)	16	43	46
(10)	30	37	51

Sample 1			
Id.			
Ass. pot.	? unit/mg		
Doses	0.45 mg	0.75 mg	1.25 mg
(1)	35	48	38
(2)	14	30	41
(3)	4	35	50
(4)	16	35	33
(5)	26	43	23
(6)	28	33	51
(7)	20	37	33
(8)	12	30	40
(9)	21	39	43
(10)	25	18	27

Design	(A)	(B)	Observ.	(A)	(B)		
(1)	1\|1	1	1\|2	1	(1)	20	33
(2)	1\|1	2	1\|2	2	(2)	18	36
(3)	1\|1	3	1\|3	1	(3)	16	44
(4)	1\|1	4	$1\|3\| 2$	(4)	22	33	
(5)	1\|1	5	2\|1	1	(5)	29	35
(6)	1\|1	6	2\|1	2	(6)	26	14
(7)	1\|1	7	2\|2	1	(7)	47	48
(8)	1\|1	8	2\|2	2	(8)	30	30
(9)	1\|1	9	2\|3	1	(9)	16	38
(10)	1\|1	10	$2\|3\| 2$	(10)	30	41	
(11)	$1\|2\| 3$	$1\|3\| 3$	(11)	40	47		
(12)	1\|2	4	1\|3	4	(12)	40	59
(13)	1\|2	5	$2\|1\| 3$	(13)	35	4	
(14)	1\|2	6	2\|1	4	(14)	47	16
(15)	1\|2	7	2\|2	3	(15)	27	35
(16)	1\|2	8	2\|2	4	(16)	43	35
(17)	1\|2	9	2\|3	3	(17)	43	50
(18)	1\|2	10	2\|3	4	(18)	37	33
(19)	$1\|3\| 5$	2\|1	5	(19)	44	26	
(20)	1\|3	6	2\|1	6	(20)	48	28
(21)	$1\|3\| 7$	2\|2	5	(21)	35	43	
(22)	1\|3	8	2\|2	6	(22)	43	33
(23)	1\|3	9	$2\|3\| 5$	(23)	46	23	
(24)	1\|3	10	2\|3	6	(24)	51	51
(25)	2\|117	2\|2	7	(25)	20	37	
(26)	2\|1	8	2\|2	8	(26)	12	30
(27)	$2\|1\| 9$	$2\|3\| 7$	(27)	21	33		
(28)	2\|1	10	2\|3	8	(28)	25	40
(29)	2\|2	9	2\|3	9	(29)	39	43
(30)	2\|2	10	2\|3	10	(30)	18	27

Model: Parallel lines
Design: Randomised block
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
[ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Substance	Artifical data

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Preparations	1	245.444	245.444	5.914	0.023 (*)
Regression	1	2081.34	2081.34	50.149	0.000 (***)
Non-parallelism	1	0.260417	0.260417	0.006	0.937
Non-linearity	2	237.868	118.934	2.866	0.076
Standard	1	66.6944	66.6944	1.607	0.217
Sample 1	1	171.174	171.174	4.124	0.053
Quadratic curvature	1	225.781	225.781	5.440	0.028 (*)
Lack of quadratic fit	1	12.0868	12.0868	0.291	0.594
Treatments	5	2564.92	512.983	12.360	0.000 (***)
Blocks	29	2617.12	90.2454	2.174	0.026 (*)
Residual error	25	1037.58	41.5033		
Total	59	7850.85	133.065		

Sample 1			
Id.			
(unit/mg)	Lower limit	Estimate	Upper limit
Potency	1.11719	1.50184	1.91482
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	74.4%	100.0%	127.5%

Executed by:

Calculated by:

A.2.13 Example 11.2.1.

वmbitaly Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page 228. The analysis of variance is in agreement with that given on page 229. The slope differs by a factor $\operatorname{In}(5)$ because Finney used dose metameters. The estimated potency and 95% confidence limits are in agreement with those given on page 230.

Standard			
Id.			
Ass. pot.	unit/unit		
Doses	S 1	S 2	S 3
(1)	36	52	64
(2)	41	48	62
(3)	44	48	100
(4)	48	52	59

Sample 1			
Id.			
Ass. pot.	1 unit/unit		
Doses	T1	T2	T3
(1)	45	40	65
(2)	38	42	65
(3)	45	62	57
(4)	40	42	70

Sample 2			
Id.			
Ass. pot.	1 unit/unit		
Doses	U1	U2	U3
(1)	33	44	70
(2)	36	57	63
(3)	33	54	78
(4)	37	61	70

Model: Parallel lines
Design: Randomised block
Transformation: $y^{\prime}=y$
Variance: Observed residuals
Dilution step (Increasing): 5

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	2	77.7222	38.8611	0.595	0.560	
Regression	1	5017.04	5017.04	76.791	$0.000 \quad\left({ }^{* * *)}\right.$	
Non-parallelism	2	175.583	87.7917	1.344	0.280	
Non-linearity	3	244.542	81.5139	1.248	0.315	
Standard	1	121.500	121.500	1.860	0.185	
Sample 1	1	117.042	117.042	1.791	0.193	
Sample 2	1	6.00000	6.00000	0.092	0.764	
Quadratic curvature	1	125.347	125.347	1.919	0.179	
Lack of quadratic fit	2	119.194	59.5972	0.912	0.415	
Treatments	8	5514.89	689.361	10.551	0.000	$\left({ }^{* * *)}\right)$
Blocks	3	370.750	123.583	1.892	0.158	
Residual error	24	1568.00	65.3333			
Total	35	7453.64	212.961			

Sample 1			
Id.			
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.298590	0.671071	1.43917
Rel. to Ass.	29.9%	67.1%	143.9%
Rel. to Est.	44.5%	100.0%	214.5%

Sample 2			
Id.			
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.383678	0.846222	1.83014
Rel. to Ass.	38.4%	84.6%	183.0%
Rel. to Est.	45.3%	100.0%	216.3%

Executed by:

Calculated by:

Approved by:

Filename: ...\A213 Finney228 PLA Blocks.epa. ID: EDQM/DBO/FRA

A.2.14 Example 11.3.1.

Model: Parallel lines
Design: (Latin) square
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals

Common slope(factor) $=3.13335$ (2.97929 to 3.28741) Correlation | r |: 0.985111

Warning: Design has confounded effects (df=2)

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	7	9.33359	1.33337	20.831	0.000	$\left({ }^{* * *)}\right.$
Regression	1	75.4727	75.4727	>1000	0.000	$\left({ }^{* * *)}\right)$
Non-parallelism	7	0.624531	0.0892188	1.394	0.238	
Treatments	15	85.4308	5.69539	88.976	0.000	$\left({ }^{* * *)}\right.$
Rows	6	3.98844	0.664740	10.385	0.000	$\left({ }^{* * *)}\right.$
Columns	6	0.319688	0.0532813	0.832	0.553	
Model	22	90.8284	4.12857	64.498	0.000	$\left({ }^{* * *)}\right)$
Deviations from model	5	0.462031	0.0924063	1.444	0.232	
Full factorial	27	91.2905	3.38113	52.822	0.000	$\left({ }^{* * *)}\right)$
Residual error	36	2.30438	0.0640104			
Total	63	93.5948	1.48563			

ambitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 3

Substance	Vitamin B12
Method	Agar diffusion

Sample 1			
Id.	A		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.723656	0.787131	0.854740
Rel. to Ass.	72.4%	78.7%	85.5%
Rel. to Est.	91.9%	100.0%	108.6%

Sample 2			
Id.	B		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.643410	0.701138	0.762148
Rel. to Ass.	64.3%	70.1%	76.2%
Rel. to Est.	91.8%	100.0%	108.7%

Sample 3			
Id.	C		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	2.28802	2.48709	2.69994
Rel. to Ass.	228.8%	248.7%	270.0%
Rel. to Est.	92.0%	100.0%	108.6%

Sample 4			
Id.	D		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.622825	0.679114	0.738487
Rel. to Ass.	62.3%	67.9%	73.8%
Rel. to Est.	91.7%	100.0%	108.7%

Sample 5			
Id.	E		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.784508	0.852507	0.925366
Rel. to Ass.	78.5%	85.3%	92.5%
Rel. to Est.	92.0%	100.0%	108.5%

Sample 6			
Id.	F		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	1.71421	1.86142	2.02025
Rel. to Ass.	171.4%	186.1%	202.0%
Rel. to Est.	92.1%	100.0%	108.5%

Sample 7			
Id.	G		
(unit/unit)	Lower limit	Estimate	Upper limit
Potency	0.759601	0.825729	0.896413
Rel. to Ass.	76.0%	82.6%	89.6%
Rel. to Est.	92.0%	100.0%	108.6%

All samples

Sample 1

A.2.15 Example 18.2.1.

ambitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of

Substance	Insulin
Method	Mouse convulsion

Remarks: Example taken from 'Statistical Method in Biological Assay' by D.J. Finney, 3rd Edition, 1978, Griffin. Data as given on page 376. Calculated potency and 95% confidence limits are in agreement with the computer-print on page 387 . Chi-square for deviations from model ($\mathrm{df}=11$) is in agreement with value given on page 386. The common slope differes by a factor $\log (10)$ from that given by Finney because he used common logs whereas Combistats uses natural logarithms. linearity.

Standard	
Preparation	Standard (S)
Ass. pot.	$20 \mathrm{IU} / \mathrm{mg}$
Doses	(1)
3.4 IU	$0 / 33$
5.2 IU	$5 / 32$
7.0 IU	$11 / 38$
8.5 IU	$14 / 37$
10.5 IU	$18 / 40$
13.0 IU	$21 / 37$
18.0 IU	$23 / 31$
21.0 IU	$30 / 37$
28.0 IU	$27 / 30$

Sample 1	
Preparation	Test (T)
Ass. pot.	$20 \mathrm{IU} / \mathrm{mg}$
Doses	(1)
6.5 IU	$2 / 40$
10.0 IU	$10 / 30$
14.0 IU	$18 / 40$
21.5 IU	$21 / 35$
29.0 IU	$27 / 37$

Model: Quantal responses
Design: Completely randomised
Transformation: $y^{\prime}=\operatorname{probit}(y)$
Theoretical variance: 1

Common slope(factor) $=1.39143$ (1.19090 to 1.59195) Correlation $|\mathrm{r}|: 0.978896$ (Weighted)

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability	
Preparations	1	0.594412	0.594412	0.594412	0.441	
Regression	1	130.268	130.268	130.268	0.000	$\left({ }^{* * *)}\right)$
Non-parallelism	1	0.282426	0.282426	0.282426	0.595	
Non-linearity	10	5.42085	0.542085	5.42085	0.861	
Standard	7	2.05821	0.294031	2.05821	0.957	
Sample 1	3	3.36263	1.12088	3.36263	0.339	
Quadratic curvature	1	1.97386	1.97386	1.97386	0.160	
Lack of quadratic fit	9	3.44698	0.382998	3.44698	0.944	
Treatments	13	136.566	10.5050	136.566	0.000	$\left({ }^{* * \star}\right)$
Model	2	130.862	65.4311	130.862	0.000	$\left({ }^{* * *)}\right)$
Deviations from model	11	5.70327	0.518479	5.70327	0.892	
Full factorial	13	136.566	10.5050	136.566	0.000	$\left({ }^{* * *)}\right.$
Theoretical variance			1.00000			
Total	13	136.566	10.5050			

Sample 1			
Preparation	Test (T)		
(IU/mg)	Lower limit	Estimate	Upper limit
Potency	11.0678	13.3704	16.0812
Rel. to Ass.	55.3%	66.9%	80.4%
Rel. to Est.	82.8%	100.0%	120.3%

A. 3 Miscellaneous other examples

A.3.1 Diphtheria vaccine, intradermal challenge

A.3.2 Erythromycin, agar diffusion (assay 1)

A.3.3 Erythromycin, agar diffusion (assay 2)

A.3.4 Erythromycin, agar diffusion (assay 3)

Tomb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Project	Erythromycin
Assy	

Assay 3

Standard			
Ass. Pot. $920 \mathrm{IU} / \mathrm{mg}$			
Pre-dil. 1	$21.5 \mathrm{mg} / 20 \mathrm{ml}$		
Doses	S 1	S 2	S 3
(1)	189	206	222
(2)	191	207	220
(3)	190	208	222
(4)	192	210	227
(5)	191	202	226
(6)	194	215	227

Sample 1			
Ass. Pot.	$1000 \mathrm{IU} / \mathrm{mg}$		
Pre-dil. 1	$26 \mathrm{mg} / 25 \mathrm{ml}$		
Doses	T 1	T 2	T 3
(1)	185	207	218
(2)	188	208	226
(3)	188	207	224
(4)	190	210	222
(5)	188	208	218
(6)	194	208	228

Model: Parallel lines
Design: Randomised block
Transformation: $\mathrm{y}^{\prime}=\mathrm{y}$
Variance: Observed residuals
Dilution step (Increasing): 1.5

Common slope(factor) $=41.1051$ (39.1533 to 43.0568) Correlation | r |: 0.989129

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
Preparations	1	13.4444	13.4444	2.610	0.119	
Regression	1	6666.67	6666.67	>1000	0.000	$(* * \star)$
Non-parallelism	1	1.50000	1.50000	0.291	0.594	
Non-linearity	2	20.9444	10.4722	2.033	0.152	
Standard	1	0.694444	0.694444	0.135	0.717	
Sample 1	1	20.2500	20.2500	3.931	0.058	
Quadratic curvature	1	14.2222	14.2222	2.761	0.109	
Lack of quadratic fit	1	6.72222	6.72222	1.305	0.264	
Treatments	5	6702.56	1340.51	260.237	0.000	$(* \star \star)$
Blocks	5	162.222	32.4444	6.299	0.001	$(* *)$
Residual error	25	128.778	5.15111			
Total	35	6993.56	199.816			

Sample 1			
(IU/mg)	Lower limit	Estimate	Upper limit
Potency	888.590	923.102	958.767
Rel. to Ass.	88.9%	92.3%	95.9%
Rel. to Est.	96.3%	100.0%	103.9%

Executed by:

Calculated by:

by:

A.3.5 Erythromycin, combination of assays

A.3.6 Erythropoetin rDNA, normocythaemic mice

A.3.7 Factor IX, coagulation

A.3.8 Factor VIII, chromogenic

A.3.9 Heparin sodium, clotting

A.3.10 Hepatitis A vaccine, immunogenicity (in vivo)

[ambitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Remarks:

Standard	
Sample	Ph. Eur. BRP Batch 1
Ass. pot.	37 IU / ml
Doses	(1)
$1 / 24$	$7 / 10$
$1 / 48$	$7 / 10$
$1 / 96$	$3 / 10$
$1 / 192$	$1 / 10$
$1 / 384$	$1 / 10$

Sample 1	
Sample	Batch 345999
Ass. pot.	$40 \mathrm{IU} / \mathrm{ml}$
Doses	(1)
$1 / 24$	$6 / 10$
$1 / 48$	$5 / 10$
$1 / 96$	$1 / 10$
$1 / 192$	$0 / 10$
$1 / 384$	$0 / 10$

Model: Quantal responses
Design: Completely randomised
Common slope(factor) $=0.934926$ (0.627585 to 1.24227)
Transformation: $\mathrm{y}^{\prime}=\operatorname{probit}(\mathrm{y})$
Theoretical variance: 1

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability
Preparations	1	1.05446	1.05446	1.05446	0.304
Regression	1	25.0362	25.0362	25.0362	$0.000 \quad(* \star \star)$
Non-parallelism	1	0.966516	0.966516	0.966516	0.326
Non-linearity	6	3.07224	0.512041	3.07224	0.800
Standard	3	1.88308	0.627693	1.88308	0.597
Sample 1	3	1.18917	0.396389	1.18917	0.756
Treatments	9	30.1294	3.34771	30.1294	$0.000 \quad(* \star)$
Theoretical variance			1.00000		
Total	9	30.1294	3.34771		

Sample 1			
Sample	Batch 345999		
(IU/mI)	Lower limit	Estimate	Upper limit
Potency	9.01185	19.6497	37.9049
Rel. to Ass.	22.5%	49.1%	94.8%
Rel. to Est.	45.9%	100.0%	192.9%

All samples

Executed by:

Calculated by:
Approved by:

[^3]
A.3.11 Hepatitis B vaccine, antigen content by ELISA

A.3.12 Hepatitis A immunoglobulin, ELISA

A.3.13 Rabies immunoglobulin, RFFIT

A.3.14 Tetanus vaccine, lethal challenge

A.3.15 Inactivated poliomyelitis vaccine, D-antigen content

A.3.16 Influenza vaccine, single radial immunodiffusion

ambitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Substance	Influenza vaccine
Method	Single radial immunodiffusion
Determination	Haemagglutinin antigen content

Remarks:

Model: Slope ratio
Design: Completely randomised
Transformation: $y^{\prime}=\left(\left(y^{*} z\right)-\left(3^{*} 3\right)\right)^{*}$ pi/4
Variance: Observed residuals

Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability
Regression	3	1087.22	362.405	288.559	$0.000 \quad(* \star)$
Intersection	2	2.46581	1.23291	0.982	0.403
Non-linearity	6	4.56414	0.760691	0.606	0.722
Standard	2	0.409117	0.204558	0.163	0.852
Sample 1	2	3.76503	1.88251	1.499	0.262
Sample 2	2	0.389997	0.194999	0.155	0.858
Treatments	11	1094.25	99.4769	79.207	$0.000 \quad(* \star \star)$
Residual error	12	15.0709	1.25591		
Total	23	1109.32	48.2312		

Sample 1			
Sample	Batch 345		
($\mu \mathrm{g} /$ dose $)$	Lower limit	Estimate	Upper limit
Potency	13.3493	14.3548	15.4267
Rel. to Ass.	89.0%	95.7%	102.8%
Rel. to Est.	93.0%	100.0%	107.5%

Sample 2			
Sample	Batch 346		
$(\mu \mathrm{g} /$ dose $)$	Lower limit	Estimate	Upper limit
Potency	8.62938	9.58347	10.5403
Rel. to Ass.	57.5%	63.9%	70.3%
Rel. to Est.	90.0%	100.0%	110.0%

Executed by:

Calculated by:

Approved by:

Filename: ...IA316 Flu SRID Slope Ratio YZ Area.epa. ID: EDQM/DBO/FRA

A.3.17 Inverted ED50 units

A.3.18 Inverted ED50 volumes

वmb'talt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Substance
Remarks:

Sample 1	
Ass. pot.	? IU/dose
Pre-dil. 1	1 dose/0.5ml
Pre-dil. 2	$0.1 \mathrm{ml} / \mathrm{well}$
Doses	(1)
$-2.4 \log$	$10 / 10$
$-3.0 \log$	$8 / 10$
$-3.6 \log$	$2 / 10$
$-4.2 \log$	$0 / 10$

Model: $\mathrm{r} / \mathrm{n}=(\operatorname{lgt}(\mathrm{x}))$ where $\mathrm{x}=\mathrm{c} .+\mathrm{b}^{*} \ln ($ dose $)$
Common slope(factor): $\mathrm{b}=2.26625$ (1.14038 to 3.39211)
Design: Completely randomised Correlation | r |: 0.987224 (Weighted)
Weight function: $w=n /\left(m^{*}(1-m)\right)$
Theoretical variance: 1

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability
Regression	1	10.9622	10.9622	10.9622	$0.001 \quad(* *)$
Non-linearity	2	0.285566	0.142783	0.285566	0.867
Treatments	3	11.2477	3.74924	11.2477	$\left.0.010 \quad \quad^{*}\right)$
Theoretical variance			1.00000		
Total	3	11.2477	3.74924		

Sample 1			
(IU/dose)	Lower limit	Estimate	Upper limit
dose/ED50	$5.41622 \mathrm{E}-05$	0.000100237	0.000185508
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	54.0%	100.0%	185.1%

Executed by:
Calculated by:
Approved by:

A.3.19 MMR vaccine / Measles, ED50 using ratios

A.3.20 MMR vaccine / Mumps, ED50 using +/- per well

[ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Substance	MMR vaccine

Component Mumps

All samples

Executed by:
Calculated by:
Approved by:

A.3.21 Oral poliomyelitis vaccine, ELISA

A.3.22 Acellular pertussis, limit test with quantitative data

A.3.23 Yellow fever vaccine, plaque forming units

वmbitaly Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1

Remarks:
Remis example is based on an example given in WHO/BS/03.1985 Rev. 1 Unfortunately, the WHO document only gives the mean counts per dilution and not the individual results. It also does not specify on how many replicates the mean is based. Without this knowledge it is not possible to calculate the confidence limits.
For the purpose of this example it was assumed that 3 replicates were perfomed
and 3 random counts were 'recreated' in such a way that the mean is (almost)
dentical to the mean in the document. The weight of $1 / \mathrm{m}$ is based on the
assumption that the counts follow a Poisson distribution.
Another possibility would have been to use the mean values, and specify a weight function of $w=3 / \mathrm{m}$. (the number 3 is the number of replicates on which the mean is based).

Sample 1			
Ass. pot.	? log10 PFU/ml		
Pre-dil. 1	$0.2 \mathrm{ml} / \mathrm{well}$		
Doses	(1)	(2)	(3)
$-5 \log 10$	86	80	90
$-6 \log 10$	9	12	11
$-7 \log 10$	3	3	2

Model: $y=100^{*}(\exp (x))$ where $x=c .+b^{*} \ln ($ dose $)$
Design: Completely randomised
Weight function: $w=1 / \mathrm{m}$
Theoretical variance: 1

Common slope(factor): $b=1.00000$ (fixed, $p=0.006$)
Correlation | r |: 0.972745 (Weighted)
Multiplication: $\mathrm{a}=100.000$, Addition: $\mathrm{d}=0.00000$

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability	
Regression	1	113.471	113.471	113.471	0.000	$(* \star)$
Non-linearity	1	4.60255	4.60255	4.60255	0.032	$\left({ }^{*}\right)$
Treatments	2	118.073	59.0366	118.073	0.000	$(* *)$
Residual error	6	1.84500	0.307500	1.84500	0.933	
Theoretical variance			1.00000			
Total	8	119.918	14.9898			

Sample 1			
(log10 PFU/ml)	Lower limit	Estimate	Upper limit
$\log 10 \mathrm{ED}(1) / \mathrm{ml}$	7.59834	7.64782	7.69729
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	-0.0494751	0.00000	+0.0494751

Executed by:

A.3.24 Tetanus immunoglobulins, toxoid binding inhibition

ambitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Substance	Human Tetanus Immunoglobulins
Method	Toxoid binding Inhibition Assay (TIA)

Sample 1			
Id.	Sample A		
(IU/ml)	Lower limit	Estimate	Upper limit
Potency	270.458	280.428	290.727
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	96.4%	100.0%	103.7%

Sample 2			
Id.	Sample B		
(IU/mI)	Lower limit	Estimate	Upper limit
Potency	275.726	285.908	296.440
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	96.4%	100.0%	103.7%

Sample 3			
Id.	Sample C		
(IU/ml)	Lower limit	Estimate	Upper limit
Potency	142.706	148.040	153.579
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	96.4%	100.0%	103.7%

All samples

Executed by:

Calculated by:

Approved by
,

A.3.25 Inactivated rabies (veterinary), challenge assay

A.3.26 MMR vaccine / Rubella, ED50 by pooling of ratios

Standard			
Preparation	Ph. Eur. BRP Batch 1		
Ass. pot.	$3.6 \log 10$ IU / vial		
Reconstitution vol.	vial / $500 ~ \mu \mathrm{l}$		
Inoculation vol.	$100 ~ \mu \mathrm{l} / \mathrm{well}$		
Doses	(1)	(2)	(3)
$-1.0 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-1.6 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-2.2 \log 10$	$8 / 8$	$7 / 8$	$8 / 8$
$-2.8 \log 10$	$4 / 8$	$2 / 8$	$4 / 8$
$-3.4 \log 10$	$2 / 8$	$1 / 8$	$1 / 8$
$-4.0 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-4.6 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-5.2 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-5.8 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-6.4 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$

Sample 1			
Preparation	Batch 123A456		
Ass. pot.	$?$? log10 IU/vial		
Reconstitution vol.	1 vial $/ 700 ~ \mu \mathrm{l}$		
Inoculation vol.	$100 \mu \mathrm{l} /$ well		
Doses	(1)	(2)	(3)
$-1.0 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-1.6 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-2.2 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-2.8 \log 10$	$8 / 8$	$8 / 8$	$8 / 8$
$-3.4 \log 10$	$2 / 8$	$2 / 8$	$3 / 8$
$-4.0 \log 10$	$1 / 8$	$0 / 8$	$2 / 8$
$-4.6 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-5.2 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-5.8 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$
$-6.4 \log 10$	$0 / 8$	$0 / 8$	$0 / 8$

> Model: Determination ED50
> Design: Completely randomised
> Transformation: $y^{\prime}=$ probit(y)
> Theoretical variance: 1

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability
Preparations	1	$1.55722 \mathrm{E}-06$	$1.55722 \mathrm{E}-06$	$1.55722 \mathrm{E}-06$	0.999
Regression	1	74.0737	74.0737	74.0737	$0.000 \quad\left({ }^{* * *)}\right.$
Non-parallelism	1	0.390169	0.390169	0.390169	0.532
Non-linearity	16	9.85754	0.616096	9.85754	0.874
Standard	8	3.20992	0.401240	3.20992	0.921
Sample 1	8	6.64762	0.830953	6.64762	0.575
Treatments	19	84.3214	4.43797	84.3214	$0.000 \quad\left({ }^{* * \star)}\right.$
Residual error	40	8.06970	0.201743	8.06970	1.000
Theoretical variance			1.00000		
Total	59	92.3911	1.56595		

Standard			
Preparation	Ph. Eur. BRP Batch 1		
(log10 IU/vial)	Lower limit	Estimate	Upper limit
Potency	3.60000	3.60000	3.60000
Rel. to Ass.	+0.00000	+0.00000	+0.00000
Rel. to Est.	0.00000	0.00000	+0.00000
log10 ED50/vial	3.38516	3.53841	3.69165
Rel. to Ass.	-0.214841	-0.0615908	+0.0916508
Rel. to Est.	-0.153250	0.00000	+0.153242

Sample 1			
Preparation	Batch 123A456		
(log10 IU/vial)	Lower limit	Estimate	Upper limit
Potency	4.06365	4.28037	4.49710
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	-0.216715	0.00000	+0.216730
log10 ED50/vial	4.06553	4.21878	4.37202
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	-0.153243	0.00000	+0.153249

[^4][ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2

Substance	MMR vaccine

Component Rubella

All samples

Executed by:
Calculated by:
Approved by:

A.3.27 MMR vaccine / Measles, ED50 with fixed slope

A.3.28 Swine erysipelas, limit test with quantal data

A.3.29 Hepatitis B vaccine, weighted exponential regression

A.3.30 Robust regression with Huber's weights

A.3.31 Automatic invocation of the Spearman/Kärber method

A.3.32 Five-parameter logistic curve regression

Standard		
Ass. pot.	$0.4 \mathrm{IU} / \mathrm{ml}$	
Doses	(1)	(2)
$1 / 10$	2.912	2.917
$1 / 20$	2.579	2.654
$1 / 40$	2.130	2.212
$1 / 80$	1.651	1.638
$1 / 160$	1.073	0.973
$1 / 320$	0.585	0.666
$1 / 640$	0.463	0.356
$1 / 1280$	0.266	0.234
$1 / 2560$	0.228	0.197
$1 / 5120$	0.176	0.215

Sample 1		
Ass. pot.	IU/ml	
Doses	(1)	(2)
$1 / 10$	3.017	2.987
$1 / 20$	2.801	2.808
$1 / 40$	2.401	2.450
$1 / 80$	1.918	1.963
$1 / 160$	1.364	1.299
$1 / 320$	0.861	0.854
$1 / 640$	0.497	0.496
$1 / 1280$	0.340	0.344
$1 / 2560$	0.242	0.217
$1 / 5120$	0.178	0.125

Model: $\mathrm{y}=\mathrm{d}+\mathrm{a}^{\star}(\operatorname{lgt}(\mathrm{x}))^{\wedge} \mathrm{g}$ where $\mathrm{x}=\mathrm{c} .+\mathrm{b}^{\star} \ln ($ dose $)$
Common slope(factor): $b=1.18041$ (1.15672 to 1.20409)
Design: Completely randomised
Correlation $|\mathrm{r}|: 0.997888$ (Weighted), 0.999518 (Unweighted)
Weight function: $w=1.0$
Asymptotes: 3.25804 and 0.15436
Variance: Observed residuals
Asymmetry factor: $\mathrm{g}=0.806338$

Source of variation	Degrees of freedom	Sum of squares	Mean square	Chi-square	Probability
Preparations	1	0.00120101	0.00120101	0.840468	0.359
Regression	1	9.60311	9.60311	6720.28	$0.000 \quad(* \star \star)$
Non-parallelism	1	0.000121809	0.000121809	0.0852423	0.770
Non-linearity	16	0.0120056	0.000750349	8.40154	0.936
Standard	8	0.00640260	0.000800325	4.48055	0.811
Sample 1	8	0.00560299	0.000700373	3.92098	0.864
Treatments	19	9.61644	0.506128	6729.60	$0.000 \quad(* * \star)$
Residual error	20	0.0285795	0.00142897		
Total	39	9.64502	0.247308		

Sample 1			
(IU/ml)	Lower limit	Estimate	Upper limit
Potency	0.556676	0.583385	0.611391
Rel. to Ass.	$?$	$?$	$?$
Rel. to Est.	95.4%	100.0%	104.8%

All samples

Executed by:
Calculated by:
Approved by:

A.3.33 Five-parameter logistic curve regression

```
Dmb'tals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1
```Remarks: Data reconstructed from Gottschalk and Dunn "The five-parameter logistic: A characterization and comparison with the four-parameter logistic".

\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Standard } \\
\hline Id. & \\
\hline Ass. pot. & \(1 \mathrm{IU} / \mathrm{mL}\) \\
\hline Doses & \((1)\) \\
\hline \(1 / 125\) & 246 \\
\hline \(1 / 250\) & 282 \\
\hline \(1 / 500\) & 387 \\
\hline \(1 / 750\) & 458 \\
\hline \(1 / 1000\) & 634 \\
\hline \(1 / 1500\) & 915 \\
\hline \(1 / 2000\) & 1197 \\
\hline \(1 / 3000\) & 1866 \\
\hline \(1 / 4000\) & 2430 \\
\hline \(1 / 8000\) & 5282 \\
\hline \(1 / 16000\) & 11092 \\
\hline \(1 / 32000\) & 22958 \\
\hline \(1 / 64000\) & 24049 \\
\hline \(1 / 128000\) & 24120 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Model: \(\mathrm{y}=\mathrm{d}+\mathrm{a}^{*}(1-\lg (\mathrm{x}))^{\wedge} \mathrm{g}\) where \(\mathrm{x}=\mathrm{c} .+\mathrm{b}^{*} \ln (\) dose \()\)} & \multicolumn{3}{|l|}{Common slope(factor): \(\mathrm{b}=9.01489\) (9.01343 to 9.01634)} \\
\hline \multicolumn{3}{|l|}{Design: Completely randomised} & \multicolumn{3}{|l|}{Correlation | r |: 0.998091 (Weighted), 0.999833 (Unweighted)} \\
\hline \multicolumn{3}{|l|}{Weight function: w=1.0} & \multicolumn{3}{|l|}{Multiplication: \(\mathrm{a}=23987.1\), Addition: \(\mathrm{d}=163.512\)} \\
\hline \multicolumn{3}{|l|}{Theoretical variance: 1} & \multicolumn{3}{|l|}{Asymmetry factor: \(\mathrm{g}=0.133047\)} \\
\hline Source of variation & Degrees of freedom & Sum of squares & Mean square & Chi-square & Probability \\
\hline Regression & 1 & \(1.04191 \mathrm{E}+08\) & \(1.04191 \mathrm{E}+08\) & \(1.04191 \mathrm{E}+08\) & 0.000 (***) \\
\hline Non-linearity & 12 & 398980 & 33248.4 & 398980 & 0.000 (***) \\
\hline Treatments & 13 & \(1.04590 \mathrm{E}+08\) & \(8.04537 \mathrm{E}+06\) & \(1.04590 \mathrm{E}+08\) & 0.000 (***) \\
\hline Theoretical variance & & & 1.00000 & & \\
\hline Total & 13 & \(1.04590 \mathrm{E}+08\) & \(8.04537 \mathrm{E}+06\) & & \\
\hline
\end{tabular}

Executed by:
Calculated by:
Approved by:

\section*{A.3.34 Equivalence testing}

[ombitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 2 of 2
\begin{tabular}{|l|l|}
\hline Project & Validation CombiStats version 7.0 \\
\hline & \\
\hline
\end{tabular}
Assay Example 5.1.1 from the Ph. Eur.

Executed by:

Calculated by:

Approved by:

\section*{A.3.35 Single dose assay with quantal responses}
[ombitalt Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1Remarks: Single dose assays based upon quantal responses can be entered as ratio, provided the model specification on the options wizard is set to "Quantal Responses".

\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Sample 2 } \\
\hline Id. & average sub-potent batch \\
\hline Ass. pot. & \(2.5 \mathrm{IU} / \mathrm{ml}\) \\
\hline Doses & \((1)\) \\
\hline \(1 / 30\) & \multicolumn{1}{|c|}{\(15 / 28\)} \\
\hline
\end{tabular}

Executed by:
Calculated by:
Approved by:

\section*{Appendix B}

\section*{Tutorial}

\section*{Introduction}

This tutorial is intended to offer a quick and easy way to become familiar with the possibilities of CombiStats. It is assumed that you know how to use Windows and also that you have some basic knowledge of the statistical interpretation of biological assays. You should try to reproduce all examples, even though you may perhaps never perform this particular type of assay. The type of assay is not essential for understanding the possibilities of CombiStats. So, switch on your computer and take the time to work your way through this tutorial. In doing so, you will very soon be able to use the software as correctly and as efficiently as possible, even if the type of assay you perform is not described here.

\section*{Lesson 1: Creating a template}

\subsection*{1.1 Getting started}

Let us assume that you want to perform a parallel line analysis on data that you obtained from the micro-biological assay by diffusion of the antibiotic Tylosin. The Ph. Eur. CRS 1 (Chemical Reference Substance, Batch 1) has an assigned potency of \(1035 \mathrm{IU} / \mathrm{mg}\). You are interested in the potency of a test sample in IU/vial. Let us also assume that you know that the sample being tested contains approximately \(25000 \mathrm{IU} / \mathrm{vial}\). On the basis of this information, you want to create stock solutions containing approximately \(500 \mathrm{IU} / \mathrm{ml}\). To achieve this, you weigh 24.2 mg of the CRS and dissolve this in 50 ml solvent. The content of a complete vial of the test sample is also dissolved in 50 ml solvent. From each of these stock solutions, three serial dilutions are prepared using a dilution step of 1.5 , and each of the resulting six treatments is applied once in eight Petri dishes with agar.

Make sure that CombiStats is installed on your computer. By default,

Figure B.1: The start screen of CombiStats
a shortcut 験 should appear on your desktop. It has the twelve European stars with two parallel lines crossing it. If the icon does not appear on your desktop, try to start it from the Start menu or try to find the file CombiStats.exe and create a shortcut. Your screen should now look like shown in figure B.1. We are now ready to create our first calculation sheet.

\subsection*{1.2 Size of tables}

Click on the button with a blank sheet \(\square\) in the toolbar or select File \(\triangleright\) New from the menu. You are now presented with the Options Wizard. Since the assay includes one standard and one test sample, we need 2 tables. As additional information, we want to include the batch number of our test sample and the name of the manufacturer. We therefore need 2 information lines. The stock solutions were prepared from 1 pre-dilution, from which we prepared 3 doses, and which we applied in 8 replicates (one per Petri dish). So, we modify the Options Wizard as shown in figure B.2. Click on Next to go to the next group of options, which is the orientation of the tables.

\subsection*{1.3 Orientation of tables}

The orientation of the tables is purely a matter of page layout. In some cases, it is better to present the tables with the doses on top (doses horizontal), and, sometimes, it is better to present the doses on the left (doses vertical). In most cases, it will be chosen so as to save paper. Since we can easily change the orientation of the tables at a later stage, we will not worry about it right now. Just click on Next to go to the next group of options, which is the choice of models.

(a) Modify the size of the tables as shown here.

(c) The option 'Parallel lines' is (d) Each Petri dish contains all already selected by default.
 treatments, so they can be identified as blocks.

Figure B.2: The options wizard

\subsection*{1.4 Model}

CombiStats can deal with 5 types of models. We want to analyse our data with the parallel line model, which is already selected by default. Click on Next to go to the next group of options, which is the choice of design. The design of our assay is Randomised blocks because each block (the Petri dishes) can be identified as a source of variation. Select this option and move to the next group of options.

\subsection*{1.5 Design}

The design of our assay is Randomised blocks because each block (the Petri dishes) can be identified as a source of variation. Select this option and move to the next group of options.

\subsection*{1.6 Notation of doses}

The next group of options are the doses (see figure B.3). Here we have the possibility to specify if the doses are given in symbolic notation (e.g. S1, S2, S3 or Low, Middle, High) or in explicit notation (e.g. \(4 \mathrm{IU}, 6 \mathrm{IU}, 9 \mathrm{IU}\) or \(1 / 22.5,1 / 15,1 / 10)\). Symbolic notation can only be used for equal dilution steps, and, since this is the case in our assay, we decide to use symbolic notation. Click on Symbolic notation (Increasing), specify the dilution step of 1.5 and move to the next group of options.

\subsection*{1.7 Transformation}

The next group is the group of transformations. Suppose that we have measured the diameter of the inhibition zones and that this is assumed to have a linear relationship with the \(\log\) (dose). In that case, we need "No transformation" (\(y^{\prime}=\mathrm{y}\)). But, if the area of the inhibition zones is assumed to have a linear relationship instead of the diameter, we need to apply a "Square" transformation (\(\mathrm{y}^{\prime}=\mathrm{y}^{\wedge} 2\) or \(\mathrm{y}^{\prime}=\mathrm{y} * \mathrm{y}\)). The square transformation does not exactly give the area of the zones but only differs by a constant factor \(\frac{\pi}{4}\), which does not affect the results. However, if you prefer, you can select "Other" and then specify y' \(=\left(y^{\wedge} 2\right) *\) pi/4. For our assay, we will select "No transformation".

\subsection*{1.8 Variance}

The next group is the group of variances. This allows us to specify which residual error has to be used in the analysis of variance and for the calculation of the 95 per cent confidence limits. For parallel lines and slope ratio assays, you usually select "Observed residuals". The other options will be discussed later.

(a) We use a constant dilution (b) By default, 'No transforstep of a factor 1.5 and we want mation' is selected. Let's not to specify them in increasing or- change that for the moment. der using symbolic notation.

(c) In assays with quantitative (d) The extended ANOVA will responses, the observed residu- allow us to check the quadratic als are normally used to esti- curvature in addition to the mate the residual variance. normal ANOVA.

Figure B.3: The options wizard

Figure B.4: Your screen should now look like this

\subsection*{1.9 Analysis of variance}

The last group of options ANOVA allows you to specify which sources of variation you want to be included in the analysis of variance. By default, "Normal" is selected, which allows you to check for linearity and parallelism. The Extended ANOVA also includes the quadratic curvature and the lack of quadratic fit. The "Complete ANOVA" includes several more sources of variation and the "Reduced ANOVA" is restricted to the deviations from the model (with all sources combined except those which can be explained from the model assumptions). We select the Extended ANOVA.

Finished! All options are defined and the data sheet can be created with a click on the OK button.

\subsection*{1.10 The initial template}

Your screen should now look like shown figure B.4. On top of the page, you can see the version number, the date, the time, and the page numbering. Then follows a table that contains five entries by default. These entries are only suggestions and we will modify them later. Next to this table is a remarks box, in which you can place any important remarks regarding your assay. Below this are the tables for the standard and the test sample, and a summary of the options we selected.

\subsection*{1.11 Further customising the template}

The tables are not yet completely ready to be used as a template. Suppose that we do not want to specify the assay number and the technician, but instead we want to specify the study number. We can do this as follows (see figure B.5): Select with the mouse the cells from Assay number to Date of assay and press DELETE on the keyboard. The last two rows disappear and one empty row stays selected. Type "Study number" followed by ENTER. One line is added. You can also use the arrow keys to move down and add new rows. Type "Date of assay" followed by ENTER.

Figure B.5: You can customize the standard entries of your template if desired

Figure B.6: The template is now ready to be added to the library

The two tables for the standard and the sample also need to be further customised. Since we included two additional information lines for the manufacturer and the batch number, we complete the tables accordingly. The doses can be given in symbolic notation, since that is what we specified in the options wizard. Symbolic notation always starts with a letter (A to Z or a to \(z\), but no accents or special characters). It does not matter what you fill in exactly, because CombiStats calculates the doses on the basis of the dilution step that you have specified. You can even leave the cells empty, but this is not recommended because it makes the tables more difficult to understand for a human reader. If you enter something that can be interpreted as an explicit notation (for example 100 IU), this overrules the dose that would be calculated by CombiStats. Complete the tables as shown in figure B.6. The template is now ready for use.

\subsection*{1.12 Adding the template to the library}

We can save this template to a file so that we can use it each time we need it. In this way, we do not have to specify all the options each time we want to analyse new data, but simply open the template and immediately start entering the observed data.

Click on or select File \(\triangleright\) Save from the menu and go to the directory

Figure B.7: Be sure to save the file with the extension EPM

Figure B.8: The library contains the template we just created
where you want to save this template. Choose an appropriate name, for example "Antibiotics Diffusion" or "Tylosin Diffusion" and save the form as an *.epm file. It is important that you do not save it as an *.epa file, because CombiStats will then not recognize the form as a template (see figure B.7). Click on Save and CombiStats will ask you if you want to add this template to the library. Click on Yes and we are finished. Close the form by selecting File \(\triangleright\) Close from the menu or click on the cross in the upper right corner (be careful not to close the application, but only the form). This ends the first lesson. In the next lesson, you will use this template to enter some data and get familiar with the output.

\section*{Lesson 2: Completing a data sheet}

\subsection*{2.1 Entering data into a template}

We will now use the template that we created in Lesson 1 to enter some assay data. Click on the button showing a template 展 or select File \(\triangleright\) Library of templates from the menu. The library of templates as shown in figure B. 8 appears.

It contains the template that we just created. Select it and click on OK. You can also open the form by double clicking on it. We can now start entering the data. Complete the data sheet as shown in figure B.9. Tip: Use the Insert key on your keyboard if you want to modify the contents of a cell. Use the 'Undo' button \(\curvearrowleft\) if you have accidentally deleted something and want to revert back.

When you have finished entering the data, save the sheet by clicking on the save button 国 or by selecting File \(\triangleright\) Save from the menu. Go to the

Figure B.9: Enter data into the tables as shown here
directory where you want to save the file, choose an appropriate name, for example "Tylosine Assay 1" and save the file with the extension *.epa.

\subsection*{2.2 Calculate and print}

Click on the pocket calculator 曾 or select Tools \(\triangleright\) Calculate from the menu. CombiStats will now perform the necessary calculations. Click on the print button or select File \(\triangleright\) Print from the menu. If your printer is correctly installed, a printout should be made that looks like shown in figure B.10. The large table in the middle of the page is the analysis of variance. We can see that there are no significant deviations from linearity or parallelism (Probability \(>0.05\)) and that there is a highly significant regression (Probability \(<0.001\)). The small table shows the potency estimate with the 95 per cent confidence limits expressed in IU/vial, relative to the assumed potency (in percentage), and relative to the estimated potency (also in percentage). At the bottom of the page are shown 3 small graphics, the first being a superposition of standard and test sample, and the others being separate representations of each preparation. These graphics show the observed responses (the little dots) and the fitted parallel lines.

The information you have given in the first information line of the sample tables is repeated in the table of the potency estimate and in the graphics. It is therefore a good idea to put information in that first line that uniquely identifies \({ }^{2}\) the preparation in the context of the assay. For example, if we had different batches from the same manufacturer, it would have been better to use the batch number as identification instead of the name of the manufacturer.

Combitals Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Substance & \multicolumn{3}{|l|}{Tylosin} & \multicolumn{5}{|l|}{Remarks:} \\
\hline Method & \multicolumn{3}{|l|}{Diffusion} & & & & & \\
\hline Study number & \multicolumn{3}{|l|}{T112-a} & & & & & \\
\hline Date of assay & \multicolumn{3}{|l|}{21/03/2020} & & & & & \\
\hline \multicolumn{9}{|c|}{Standard} \\
\hline Origin & \multicolumn{8}{|l|}{Ph. Eur. CRS} \\
\hline Batch number & \multicolumn{8}{|l|}{Batch 1} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{~mL}\)} \\
\hline Doses & (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline S1 & 162 & 164 & 178 & 162 & 168 & 168 & 170 & 168 \\
\hline S2 & 184 & 194 & 192 & 186 & 196 & 186 & 190 & 185 \\
\hline S3 & 208 & 208 & 208 & 214 & 206 & 206 & 202 & 206 \\
\hline
\end{tabular}

Model: Parallel lines
Design: Randomised block
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Sample 1} \\
\hline Manufacturer & \multicolumn{8}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{8}{|l|}{34G56} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{25000 IU/vial} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{\(1 \mathrm{via} / / 50 \mathrm{~mL}\)} \\
\hline Doses & (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline T1 & 168 & 174 & 162 & 175 & 172 & 168 & 164 & 174 \\
\hline T2 & 194 & 192 & 190 & 194 & 186 & 192 & 188 & 194 \\
\hline T3 & 204 & 210 & 206 & 204 & 212 & 208 & 210 & 206 \\
\hline
\end{tabular}

Common slope(factor) \(=47.8617\) (44.7195 to 51.0039\()\)

Transformation: \(\mathrm{y}^{\prime}=\mathrm{y}\)
Variance: Observed residuals
Dilution step (Increasing): 1.5
\begin{tabular}{|l|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ Source of variation } & Degrees of freedom & Sum of squares & Mean square & F-ratio & Probability \\
\hline Preparations & 1 & 27.0000 & 27.0000 & 1.484 & 0.231 \\
\hline Regression & 1 & 12051.3 & 12051.3 & 662.332 & \(0.000 \quad(* * *)\) \\
\hline Non-parallelism & 1 & 7.03125 & 7.03125 & 0.386 & 0.538 \\
\hline Non-linearity & 2 & 54.8542 & 27.4271 & 1.507 & 0.236 \\
\hline Standard & 1 & 16.3333 & 16.3333 & 0.898 & 0.350 \\
\hline Sample 1 & 1 & 38.5208 & 38.5208 & 2.117 & 0.155 \\
\hline Treatments & 5 & 12140.2 & 2428.03 & 133.443 & \(0.000 \quad(* * \star)\) \\
\hline Blocks & 7 & 68.9167 & 9.84524 & 0.541 & 0.797 \\
\hline Residual error & 35 & 636.833 & 18.1952 & & & \\
\hline Total & 47 & 12845.9 & 273.317 & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|c|}{ Fantasy Pharm Ltd. } \\
\hline (IU/vial) & Lower limit & Estimate & Upper limit \\
\hline Potency & 24528.6 & 25844.4 & 27241.5 \\
\hline Rel. to Ass. & \(98.1 \%\) & \(103.4 \%\) & \(109.0 \%\) \\
\hline Rel. to Est. & \(94.9 \%\) & \(100.0 \%\) & \(105.4 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline All samples \\
\\
\\
\\
\\
\\
\\
\\
\(\vdots\)
\end{tabular}

Executed by:
Standard
Ph. Eur. CRS

Calculated by:

Approved by:

Filename: ...ITylosin.epa. ID: EDQM/DBO/FRA

Figure B.10: A printed data sheet with the calculated results

\subsection*{2.3 Detailed graphics}

The graphics on the calculation sheet are intended to spot irregularities in the assay, such as outliers, typing errors in the data entry, or a specific curvature of the responses. In some cases, you might want to have a more detailed graphic. Click on the graph button graphic that looks like shown in figure B.11.

Click on the portrait button \(\triangle\) to change the graph to a portrait layout. Click on the coloured representation or a black and white representation. Click on \({ }_{l}^{\text {L }}\) to obtain a graph that connects the mean of the observed responses per doses. The doses are shown on a logarithmic scale with labels at the dose levels of the standard as indicated in the calculation sheet (\(\mathrm{S} 1, \mathrm{~S} 2\) ans S 3). In some cases, you might prefer to see the doses expressed in units rather than (or in addition to) the dose labels. You can do this by clicking on the menu Options \(\triangleright\) Show Doses. You will now get the units of the standard, calculated on the basis of the information provided in the calculation sheet. You will see that the doses are \(222.64 \mathrm{IU}, 333.96 \mathrm{IU}\) and 500.94 IU respectively. CombiStats has calculated this as \(1035 \cdot \frac{24.2}{50} \cdot\) (working dilution), where the working dilution is assumed to be \(1 / 1\) for the highest dose. In this case, the highest dose is S3 because we have specified that the doses would increase with steps of 1.5.

It is your own responsibility to provide enough details for CombiStats to be able to calculate the dose in units correctly. If you have only provided relative doses (e.g by omitting pre-dilution steps), the scale in units will not necessarily match the actual doses administered to the experimental units, although the calculated potency might still be correct (e.g. if the omitted predilution steps were the same for the standard and all test preparations).

\section*{Lesson 3: What else is possible...}

\subsection*{3.1 Introduction}

Now that we have created an example, we can use it to explore some of the other features of CombiStats. This lesson is not intended to show a typical way of exploring data or performing the analysis. They are merely intended to show some additional functionalities of the software. Close the example that we just created. Select the menu File and you will find the name of the example at the bottom of the menu as shown in figure B.12. This enables you to quickly open the most recently used files. CombiStats keeps record of the 9 last files. Alternatively you can click on the appropriate button and search for the file yourself.

Filename: ...ITylosin.epa. ID: EDQM/DBO/FRA

Figure B.11: A printed sheet of the detailed graph

Figure B.12: Recent files can be accessed more rapidly from the File menu
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & Ph. Eur. CRS \\
\hline Batch number & \multicolumn{2}{|l|}{ Batch 1 } \\
\hline Ass. pot. & \multicolumn{2}{|c|}{\(035 \mathrm{IU} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / 50 \mathrm{ml}\) \\
\hline Doses & \(S 1\) & S 2 & 53 \\
\hline\([1]\) & 162 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \multicolumn{2}{|l|}{\(34 G 56\)} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{25000 IU / vial } \\
\hline Pre-dil. 1 & \multicolumn{1}{|c|}{ 1 vial/50 ml } \\
\hline Doses & T1 & T2 & T3 \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.13: The orientation of the doses is now horizontal

\subsection*{3.2 Changing the orientation}

Click on the wizard button 图 or select Tools \(\triangleright\) Options Wizard from the menu. Go to Orientation and select Doses horizontal. Click on OK and the presentation of the tables will be modified in the way you would expect (see figure B.13).

\subsection*{3.3 Inspecting the mean response}

Select Options \(\triangleright\) Mean response from the menu. This allows you to do a quick on-screen inspection of the mean response per dose (see figure B.14). The means disappear automatically when you perform your next action or when you select the same menu option again. The number of decimals shown is equal to the number of decimals used for the first response in the table. So, if you want CombiStats to show more decimals, it suffices to add some non-significant zeros to the first observation as shown in figure B.15.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Standard} & \multicolumn{4}{|c|}{Sample 1} \\
\hline Origin & \multicolumn{3}{|l|}{Ph. Eur. CRS} & Manufacturer & \multicolumn{3}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{3}{|l|}{Batch 1} & Batch number & \multicolumn{3}{|l|}{34G56} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} & Ass. pot. & \multicolumn{3}{|l|}{25000 lU / vial} \\
\hline Pre-dil. 1 & \multicolumn{3}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{ml}\)} & Pre-dil. 1 & \multicolumn{3}{|l|}{1 vial / 50 ml} \\
\hline Doses & S1 & S2 & S3 & Doses & T1 & T2 & T3 \\
\hline (1) & 162 & 184 & 208 & [1] & 168 & 194 & 204 \\
\hline [2) & 164 & 194 & 208 & [2) & 174 & 192 & 210 \\
\hline [3) & 178 & 192 & 208 & (3) & 162 & 190 & 206 \\
\hline (4) & 162 & 186 & 214 & (4) & 175 & 194 & 204 \\
\hline (5) & 168 & 196 & 206 & (5) & 172 & 186 & 212 \\
\hline (6) & 168 & 186 & 206 & (6) & 168 & 192 & 208 \\
\hline (7) & 170 & 190 & 202 & (7) & 164 & 188 & 210 \\
\hline (8) & 168 & 185 & 206 & (8) & 174 & 194 & 206 \\
\hline & 168 & 189 & 207 & & 170 & 191 & 208 \\
\hline
\end{tabular}

Figure B.14: An extra row with the average responses is added at the bottom
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & \multicolumn{2}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{2}{|l|}{ Batch 1 } \\
\hline Ass. pot. & \multicolumn{3}{|c|}{} \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / \mathrm{mg}\) \\
\hline Doses & 51 & S2 & 53 \\
\hline\([1]\) & 162.0 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline & 167.5 & 189.1 & 207.3 \\
\cline { 2 - 4 } & & &
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \multicolumn{2}{|l|}{34556} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{\(25000 \mathrm{IU} /\) vial } \\
\hline Pre-dil. 1 & \multicolumn{3}{|c|}{ vial / 50 ml } \\
\hline Doses & T1 & T2 & T3 \\
\hline\([1]\) & 168.0 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline & 169.6 & 191.3 & 207.5 \\
\cline { 2 - 4 } & & &
\end{tabular}

Figure B.15: Add extra zero's to the first observation to obtain more decimals for the average response

\subsection*{3.4 Excluding observations}

Double click on S1 in the table of the standard. All observations of the first dose are barred out (see figure B.16).

\subsection*{3.5 Selecting the table for the standard}

Double click on the word Sample 1 in the top row of the table. It changes into "Standard" and the other table is automatically renumbered to contain the word "Sample 1" (see figure B.17).

This enables you to put the standard in a different table than the first, which is the table by default to contain the Standard. This can also be useful if you have included two different standards (e.g. an in-house standard and an international standard) and want to compare the outcome for both. When you double click on the header of the Standard itself, none of the tables is assigned to the standard anymore. This may occasionally happen in assays that do not strictly require a standard, such as ED50 determinations. Click on the first table to make it the standard again.

Although you can still see them, they will no longer be taken into account in the calculations. Double click again on S1 and the values are again included. Double click on (2) to exclude the second block. Double click on Doses to exclude all observations. Do this again to include all observations.

\subsection*{3.6 Notation of the doses}

We have arrived at a very important part of this lesson: The notation of the doses. Basically, there are 4 types of notation and it is very important that you understand how CombiStats interprets each of the notations in order to make the correct choice when creating a data sheet. The 4 types of notation are listed below followed by a few examples:
- Symbolic notation: S1, High, Blahblah, etc.
- Content units: 30 IU, 1000 AU, 1.25 units, etc.
- Volume units: \(0.5 \mathrm{ml}, 500 \mu \mathrm{l}, 0.5\) vial, etc.
- Dilutions: \(1 / 10,5 / 100,-2 \log 10\), etc.

The manual gives more detailed information about the syntax of each of these notations.

In our example, we have used symbolic notation (S1, S2, S3 and T1, T2, T3). CombiStats interprets anything that starts with a character of the alphabet (A to Z or a to z) as symbolic notation. It is just a label you attribute to the dose and it has no special meaning to CombiStats. Only its position in the table is of importance. The first or last dose in a table (depending on whether the doses increase or decrease) is interpreted
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & \multicolumn{3}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{3}{|l|}{ Batch 1} \\
\hline Ass. pot. & \multicolumn{3}{|c|}{} \\
\hline Pre-dil. 1 & \multicolumn{2}{|c|}{\(24.2 \mathrm{mg} / \mathrm{mg}\)} \\
\hline Doses & \(S 1\) & sl & S \\
\hline\([1]\) & 162 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{2}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \(34 G 56\) \\
\hline Ass. pot. & \multicolumn{3}{|l|}{25000 IU / vial } \\
\hline Pre-dil. 1 & \multicolumn{4}{|c|}{1 vial / 50 ml } \\
\hline Doses & T1 & T2 & T3 \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.16: Double click on S1 to exclude observations
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Origin & \multicolumn{3}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{1}{|l|}{ Batch 1 } \\
\hline Ass. pot. & \multicolumn{3}{|c|}{} \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / \mathrm{mg}\) \\
\hline Doses & 51 & Sl & 53 \\
\hline\([1]\) & 162 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Manufacturer & \multicolumn{2}{|l|}{ Fantasy } \\
\hline Batch number & 34 G 56 \\
\hline Ass. pot. & \multicolumn{4}{|c|}{25000 IU / / vial } \\
\hline Pre-dil. 1 & 1 vial / 50 ml \\
\hline Doses & T1 & T2 & T3 \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.17: Double click on the header of a table to define it as the standard
as "undiluted" or " \(1 / 1\) " with respect to the working solution. So, S3 in our example is interpreted as 500.95 IU since the working solution for the standard is \(\frac{1035}{1} \times \frac{24.2}{50}=500.94 \mathrm{IU} / \mathrm{ml}\), and S 3 is positioned in the last column of the table. We had already seen this when we were viewing the axis of the detailed graph. With this in mind, it is not difficult to see that T 3 is interpreted as 500 IU and T 1 as 222.222 IU , which are of course only temporarily assigned values, based on the assumed potency of the test preparation. The horizontal distance between the parallel lines will be a measure of how much this temporarily assigned value has to be adjusted.

Modify the doses as shown in figure B. 18 so as to represent volumes. Note that the last pre-dilution in the example is specified in ml, so only doses in ml can be interpreted as volume units. The dose with 0.6 ml of the standard is interpreted by CombiStats as \(\frac{1035}{1} \times \frac{24.2}{50} \times 0.6=300.564 \mathrm{IU}\). The doses are now interpreted as if you applied the specified volumes of the stock solution to the experimental units, thus taking into account the pre-dilution steps. Check this in the detailed graph if you want to convince yourself about this. Perform the calculations and compare the outcome with the printout we made earlier. There should be no difference. Although the doses are not the same in the calculations, they still lead to the same outcome because they have changed by the same proportion for both preparations.

Now modify the doses to represent ratios as shown in figure B.19. Ratios are dimensionless and are interpreted relative to the stock solutions. So, a dose of \(1 / 45\) of the standard is interpreted as \(\frac{1035}{1} \times \frac{24.2}{50} \times \frac{1}{45}=11.132\) IU. Perform the calculations and compare the results with the previous results. Again there should be no difference because proportionally nothing has changed, although the doses are not at all the same in the calculations as you can see by viewing the doses in the detailed graph. Dilutions can also be given as logarithm, e.g. a series of \(1 / 1,1 / 10,1 / 100\) is equivalent with \(0 \log 10,-1 \log 10,-2 \log 10\) or with \(0 \log ,-1 \log ,-2 \log\). A series of \(1 / 4,1 / 8\), \(1 / 16\) is equivalent with \(-2 \log 2,-3 \log 2,-4 \log 2\). Refer to the manual for more details.

Modify the doses once again as shown in figure B.20. They are now written as content units because IU is the unit used for the Standard. This time, you will notice a difference in the calculation of the potency estimate. Why? In the previous examples, CombiStats had to calculate the contents in IU on the basis of the assumed potency, the pre-dilution steps and the notation used for the doses. The doses for the sample under test were not exactly equipotent to the doses of the standard. In this case, however, CombiStats will use the doses "as is" (in IU) and we pretend that the contents are the same for both preparations. The software will assume that we prepared the doses in such a manner that the units are correct on the basis of the assigned or assumed potencies, ignoring any pre-dilution step that we might have specified. So, be careful when you specify doses in content units because you have to calculate them accurately on the basis of the assigned
\begin{tabular}{|l|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & \multicolumn{1}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{3}{|l|}{ Batch 1 } \\
\hline Ass. pot. & \multicolumn{3}{|l|}{\(1035 \mathrm{IL} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / 50 \mathrm{ml}\) \\
\hline Doses & 0.4 ml & 0.6 ml \\
\hline\([0.9 \mathrm{ml}\) \\
\hline\([1]\) & 162 & 184 \\
\hline\([2]\) & 164 & 194 \\
\hline\([3]\) & 178 & 192 \\
\hline\([4]\) & 162 & 186 \\
\hline\([5]\) & 168 & 196 \\
\hline\([6]\) & 168 & 186 \\
\hline\([7]\) & 170 & 190 \\
\hline\([8]\) & 168 & 185 \\
\hline & 206 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \multicolumn{3}{|l|}{34 G 56} \\
\hline Ass. pot. & \multicolumn{2}{|l|}{\(25000 \mathrm{IL} /\) vial } \\
\hline Pre-dil. 1 & 1 vial \(/ 50 \mathrm{ml}\) \\
\hline Doses & 0.4 ml & 0.6 ml & 0.9 ml \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.18: The notation of the doses is now in volume units
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & \multicolumn{3}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{3}{|l|}{ Batch 1} \\
\hline Ass. pot. & \multicolumn{4}{|l|}{\(1035 \mathrm{IJ} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / 50 \mathrm{ml}\) \\
\hline Doses & \(1 / 45\) & \(1 / 30\) & \(1 / 20\) \\
\hline\([1]\) & 162 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \multicolumn{3}{|l|}{3456} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{ 25000 IU / vial } \\
\hline Pre-dil. 1 & 1 vial / 50 ml \\
\hline Doses & \(1 / 45\) & \(1 / 30\) & \(1 / 20\) \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.19: The notation of the doses is now in dilution ratios
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Standard} & \multicolumn{4}{|c|}{Sample 1} \\
\hline Origin & \multicolumn{3}{|l|}{Ph. Eur. CRS} & Manufacturer & \multicolumn{3}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{3}{|l|}{Batch 1} & Batch number & \multicolumn{3}{|l|}{34G56} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} & Ass. pot. & \multicolumn{3}{|l|}{25000 IU / vial} \\
\hline Pre-dil. 1 & \multicolumn{3}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{ml}\)} & Pre-dil. 1 & \multicolumn{3}{|l|}{1 vial / 50 ml} \\
\hline Doses & 40 IU & 601 J & 90 IL & Doses & 401 J & 601 J & 901 J \\
\hline (1) & 162 & 184 & 208 & (1) & 168 & 194 & 204 \\
\hline (2) & 164 & 194 & 208 & [2) & 174 & 192 & 210 \\
\hline (3) & 178 & 192 & 208 & (3) & 162 & 190 & 206 \\
\hline (4) & 162 & 186 & 214 & (4) & 175 & 194 & 204 \\
\hline (5) & 168 & 196 & 206 & (5) & 172 & 186 & 212 \\
\hline (6) & 168 & 186 & 206 & (6) & 168 & 192 & 208 \\
\hline (7) & 170 & 190 & 202 & (7) & 164 & 188 & 210 \\
\hline (8) & 168 & 185 & 206 & (8) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.20: The notation of the doses is now in content units
and assumed potency. In practice, you will probably only specify doses as contents if the standard and test preparations are of equal composition and are in all respects treated identically.

\subsection*{3.7 Unknown assumed potency}

But what if you don't know the assumed potency? Well, in that case you normally carry out a preliminary assay to get a rough idea of the potency. Or you might take a nominal potency or specified potency from relevant documentation. After all, how can you reasonably prepare dilutions if you have no idea about the potency? However, there is a way to perform the calculations without specifying an assumed potency. Although not recommended, you can use a question mark followed by the units in which you want the software to calculate the potency. Try it as shown in figure B.21.

Perform the calculations and look what happens. You get an error message. Of course: How would you know that this dilution contains 40 IU if you do not know the assumed potency? That would make no sense. But it would make sense to use the volume or dilutions of the stock solution applied. Modify the doses so as to express dilution ratios as shown in figure B.22. and try again to calculate. It works! The only difference with the other examples is that the estimated potency can no longer be expressed as a relative percentage of the assumed potency. If you give question marks, you get question marks in return. It is therefore recommended to specify the assumed potency whenever possible.

Here are some explanations to make you understand how CombiStats deals internally with unknown potencies. CombiStats calculates an implicitly assumed potency on the basis of the pre-dilutions you specify, on the assumption that the stock solutions of the standard and test preparations are prepared to be equipotent. So, in our example the implicitly assumed potency is \(\frac{1035}{1} \times \frac{24.2}{50} \times \frac{50}{1} \times 1=25047 \mathrm{IU} /\) vial. Indeed, you can see in the detailed graph that the doses of the standard and test do now exactly coincide whereas they were slightly shifted in the earlier examples. Also note that if you had used an assumed potency of \(25047 \mathrm{IU} /\) vial in the example where we used contents for the doses, we would have found exactly the same potency estimate.

\subsection*{3.8 Which residual variance?}

Restore all the options to their original settings or simply close the sheet and open the file that we saved earlier (provided that you have not overwritten it with the modifications). Exclude blocks 2 to 8 as shown in figure B.23. The quickest way to achieve this is to double click first on "Doses" and then on (1). Let CombiStats perform the calculations and look what happens. You get the following error message in red: "The residual error cannot be
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Standard} & \multicolumn{4}{|c|}{Sample 1} \\
\hline Origin & \multicolumn{3}{|l|}{Ph. Eur. CRS} & Manufacturer & \multicolumn{3}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{3}{|l|}{Batch 1} & Batch number & \multicolumn{3}{|l|}{34G56} \\
\hline Ass. pot. & \multicolumn{3}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} & Ass. pot. & \multicolumn{3}{|l|}{? IU / vial} \\
\hline Pre-dil. 1 & \multicolumn{3}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{ml}\)} & Pre-dil. 1 & \multicolumn{3}{|l|}{1 vial / 50 ml} \\
\hline Doses & 40 IU & 601 J & 901 J & Doses & 401 J & 601 J & 901 J \\
\hline (1) & 162 & 184 & 208 & (1) & 168 & 194 & 204 \\
\hline (2) & 164 & 194 & 208 & (2) & 174 & 192 & 210 \\
\hline (3) & 178 & 192 & 208 & (3) & 162 & 190 & 206 \\
\hline (4) & 162 & 186 & 214 & (4) & 175 & 194 & 204 \\
\hline (5) & 168 & 196 & 206 & (5) & 172 & 186 & 212 \\
\hline (6) & 168 & 186 & 206 & (6) & 168 & 192 & 208 \\
\hline (7) & 170 & 190 & 202 & (7) & 164 & 188 & 210 \\
\hline (8) & 168 & 185 & 206 & (8) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.21: This will not work! You cannot use content notation if you don't specify an assumed potency
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Standard } \\
\hline Origin & \multicolumn{3}{|l|}{ Ph. Eur. CRS } \\
\hline Batch number & \multicolumn{3}{|l|}{ Batch 1} \\
\hline Ass. pot. & \(1035 \mathrm{IJ} / \mathrm{mg}\) \\
\hline Pre-dil. 1 & \(24.2 \mathrm{mg} / 50 \mathrm{ml}\) \\
\hline Doses & \(1 / 45\) & \(1 / 30\) & \(1 / 20\) \\
\hline\([1]\) & 162 & 184 & 208 \\
\hline\([2]\) & 164 & 194 & 208 \\
\hline\([3]\) & 178 & 192 & 208 \\
\hline\([4]\) & 162 & 186 & 214 \\
\hline\([5]\) & 168 & 196 & 206 \\
\hline\([6]\) & 168 & 186 & 206 \\
\hline\([7]\) & 170 & 190 & 202 \\
\hline\([8]\) & 168 & 185 & 206 \\
\hline \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Sample 1 } \\
\hline Manufacturer & \multicolumn{3}{|l|}{ Fantasy Pharm Ltd. } \\
\hline Batch number & \(34 G 56\) \\
\hline Ass. pot. & \multicolumn{3}{|l|}{ ? IU / vial } \\
\hline Pre-dil. 1 & \multicolumn{3}{|c|}{ vial / 50 ml } \\
\hline Doses & \(1 / 45\) & \(1 / 30\) & \(1 / 20\) \\
\hline\([1]\) & 168 & 194 & 204 \\
\hline\([2]\) & 174 & 192 & 210 \\
\hline\([3]\) & 162 & 190 & 206 \\
\hline\([4]\) & 175 & 194 & 204 \\
\hline\([5]\) & 172 & 186 & 212 \\
\hline\([6]\) & 168 & 192 & 208 \\
\hline\([7]\) & 164 & 188 & 210 \\
\hline\([8]\) & 174 & 194 & 206 \\
\hline
\end{tabular}

Figure B.22: This will work! We do not need to know an assumed potency to know which dilution ratios we have used
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Standard} \\
\hline Origin & \multicolumn{8}{|l|}{Ph. Eur. CRS} \\
\hline Batch number & \multicolumn{8}{|l|}{Batch 1} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{ml}\)} \\
\hline Doses & [1] & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline 51 & 162 & 164 & 178 & 162 & 168 & 168 & 170 & 168 \\
\hline S2 & 184 & 194 & 192 & 186 & 196 & 186 & 190 & 185 \\
\hline 53 & 208 & 208 & 208 & 214 & 206 & 206 & 202 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Sample 1} \\
\hline Manufacturer & \multicolumn{8}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{8}{|l|}{34G56} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{25000 IU / vial} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{1 vial / 50 ml} \\
\hline Doses & [1] & (2) & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline T1 & 168 & 174 & 162 & 175 & 172 & 168 & 164 & 174 \\
\hline T2 & 194 & 192 & 190 & 194 & 186 & 192 & 188 & 194 \\
\hline T3 & 204 & 210 & 206 & 204 & 212 & 208 & 210 & 206 \\
\hline
\end{tabular}

Figure B.23: The residual error cannot be estimated with only 1 observation per dose
estimated from the observed data". Indeed, you need at least 2 replicates per dose in order to estimate the residual error from the observed data. The residual error is needed for the validity checks in the analysis of variance and the calculation of the confidence limits. However, let us suppose that you know from historical data that the residual error is on average 20. In this case, you might decide to substitute the estimated residual error by this theoretical residual error. Open the options wizard and go to Variance. Select Theoretical variance, enter 20, and click on OK. Perform the calculations and examine the analysis of variance and the width of the confidence limits. Note that the theoretical variance has no degrees of freedom. In fact, it has \(\infty\) degrees of freedom. Note also that the confidence limits are much wider than when all data were included. That makes sense: The more data you have, the more precise the estimated potency will be.

There are two other ways to treat data with only one replicate per dose. Open the options wizard and go to Variance. Try both of the other possibilities. If you select deviations from model you can no longer do a validity check. It can therefore only be used for assays that are strictly controlled, and where no doubt about the validity exists. You will also notice that the confidence limits are even wider than in the last example. This is because the residual error had to be estimated from very few observations. If you select deviations from linearity you can check for non-parallelism, but the confidence limits will again become wider. These options are therefore only useful if you have a reasonable range of doses, say at least 6 doses per preparation.

For assays described in monographs, you usually only need to specify observed residuals and make sure that you include enough independent replicates in the assay for a reliable estimate of the residual variance.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Standard} \\
\hline Origin & \multicolumn{8}{|l|}{Ph. Eur. CRS} \\
\hline Batch number & \multicolumn{8}{|l|}{Batch 1} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{\(1035 \mathrm{IU} / \mathrm{mg}\)} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{\(24.2 \mathrm{mg} / 50 \mathrm{ml}\)} \\
\hline Doses & [1] & [2] & (3) & (4) & (5) & (6) & (7) & (8) \\
\hline S1 & 162 & 164 & 178 & 162 & 168 & 168 & 170 & 168 \\
\hline S2 & 184 & 194 & 192 & 186 & 196 & 186 & 190 & 185 \\
\hline S3 & 208 & 208 & 208 & 214 & 206 & 206 & 292 & 206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Sample 1} \\
\hline Manufacturer & \multicolumn{8}{|l|}{Fantasy Pharm Ltd.} \\
\hline Batch number & \multicolumn{8}{|l|}{34 G 56} \\
\hline Ass. pot. & \multicolumn{8}{|l|}{25000 IU / vial} \\
\hline Pre-dil. 1 & \multicolumn{8}{|l|}{1 vial/ 50 ml} \\
\hline Doses & [1] & (2) & [3) & (4) & (5) & (6) & (7) & (8) \\
\hline T1 & 168 & 174 & 162 & 175 & 172 & 168 & 164 & 174 \\
\hline T2 & 194 & 192 & 190 & 194 & 186 & 192 & 188 & 194 \\
\hline T3 & 204 & 210 & 206 & 204 & 212 & 208 & 210 & 206 \\
\hline
\end{tabular}

Figure B.24: It is not possible to fit a line with only one dose per preparation. Instead, a limit test is performed
\begin{tabular}{|l|c|c|c|c|c|}
\hline Source of variation & Degrees of freedom & Sum of squares & Mean square & F-ratio & Probability \\
\hline Preparations & 1 & 18.0625 & 18.0625 & 0.707 & 0.415 \\
\hline Treatments & 1 & 18.0625 & 18.0625 & 0.707 & 0.415 \\
\hline Residual error & 14 & 357.875 & 25.5625 & & \\
\hline Total & 15 & 375.938 & 25.0625 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Sample 1 } \\
\hline Manufacturer & Fantasy Pharm Ltd. \\
\hline Limit tested & \(25047.0 \mathrm{IU} /\) vial \\
\hline Probability & 0.197 \\
\hline
\end{tabular}

Figure B.25: No significant difference between the preparations

\subsection*{3.9 Single dose model}

Set the variance back to Observed residuals. Now exclude the middle and the high doses as shown in figure B.24. Let CombiStats calculate this. Since you have only one dose of each preparation, it is not possible to calculate parallel lines. However, it is still possible to perform a limit test. A limit test allows you to check if a sample contains significantly more than a specific potency. Unfortunately, it is not possible to perform a limit test on designs that are not completely randomised. For this example, however, we will assume that the effect of the individual Petri dishes is negligible and that we can treat the data as if they were obtained in a completely randomised design.

How should we interpret the output in figure B. 25 ? The analysis of variance shows that there is no significant difference (\(p=0.415\)) between
\begin{tabular}{|l|c|c|c|c|c|}
\hline Source of variation & Degrees of freedom & Sum of squares & Mean square & F-ratio & Probability \\
\hline Preparations & 1 & 2256.25 & 2256.25 & 124.606 & 0.000 \\
\hline [xx> \(]\) \\
\hline Treatments & 1 & 2256.25 & 2256.25 & 124.606 & \(0.000 \quad[\mathrm{xxx}]\) \\
\hline Residual error & 14 & 253.500 & 18.1071 & & \\
\hline Total & 15 & 2509.75 & 167.317 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Sample 1 } \\
\hline Manufacturer & Fantasy Pharm Ltd. \\
\hline Limit tested & \(16698.0 \mathrm{IU} / \mathrm{vial}\) \\
\hline Probability & \(0.000\left[{ }^{[\times \times]}\right]\) \\
\hline
\end{tabular}

Figure B.26: A highly significant difference between the preparations
the preparations if the two-sided \(t\)-test is used. That would lead to the conclusion that the potency of Sample 1 is not significantly different from 25047 IU / vial. The probability of 0.197 is obtained with another statistical test often more powerful and therefore preferable (one-sided test of Wilcoxon-Mann-Whitney). In this case, the conclusion of both tests is the same, but, in particular cases, one test may be significant whereas the other is not. The test must be chosen before running the assay. In general, the Wilcoxon-Mann-Whitney test is preferred.

Now try to compare S 1 with T 2 in a limit test. This time you will find a highly significant difference (see figure B.26). This means that Sample 1 induces a significantly higher response than the standard. Since higher responses in the diffusion assay are related to higher potencies, we can conclude that Sample 1 contains significantly more than \(16698 \mathrm{IU} /\) vial. Be careful with the interpretation: some types of assay give lower responses with higher doses, leading to exactly the opposite conclusion. Knowledge of the dose-response behaviour (positive or negative slope) is necessary to draw the correct conclusion.

Figure B.27: The 3 data sheets appear next to each other

\subsection*{3.10 Combination of assays}

CombiStats came with more examples of different types of assays. These files are automatically copied to the hard disk of your computer when installed. Close all data sheets and open the three files with the names "Erythromycin Assay x". As you will notice, they will appear in separate windows next to each other (see figure B.27). Click on \(\sqrt{\square}\), and \(\mathbb{I}\), and look what happens.

We will now try to combine the three assays into one single potency estimate. To achieve this, click on a summary of the three assays is automatically generated and three types of combination are carried out:
- A weighted combination, which assumes homogeneous potency estimates (homogeneity increases with the overlapping of confidence intervals). Weights applied to individual estimates are then based on intra-assay variations only.
- A semi-weighted combination used in case of heterogeneous potency estimates (reflected by lower overlapping of confidence intervals). Weights applied to potency estimates are then based on intra-assay variations and inter-assay variation.
- An unweighted combination, which consists in calculating a simple mean and confidence interval (the quantile of the t-Student distribution is calculated for the number of assays minus one).
\begin{tabular}{|l|l|r|r|r|r|r|}
\hline Assay & Sample & Info & Lower limit & Estimate & Upper limit & df \\
\hline 1 & 1 & & 874.648 & 936.639 & 1003.23 & 25 \\
\hline \(\boldsymbol{Z}\) & 7 & & 919.331 & 970.838 & 1025.05 & 25 \\
\hline 3 & 1 & & 888.590 & 923.102 & 958.767 & 25 \\
\hline
\end{tabular}

Figure B.28: Double click on a result to exclude it from the combination

Figure B.29: The excluded result is shown with an empty dot

A test for homogeneity of the potency estimates is also performed. There are no strict rules as to which of the three should be used, but the following rule of thumb can be of use:
- If the \(p\)-value for homogeneity is more than 0.10 , the potency estimates are sufficiently homogeneous to use the weighted combination.
- If the \(p\)-value is less than 0.10 , the potency estimates tend to be heterogeneous and it would be better to use the semi-weighted combination.
- The unweighted combination should only be used if there are enough assays, say, at least 6 .

It is not possible to edit the combination sheet. It is automatically generated from the open data sheets. However, you can exclude assays from the combination by double clicking on them. The assay will then still be visible, but barred out (see figure B.28). The assay is also still presented in the graphic, but with an empty dot (see figure B.29). You can hide a column by moving the cursor over the right part of the cells of the first interval and select Hide from the drop down box. In this example, the columns Sample and Info appear pretty useless, so hide them. This way you can also filter out samples that meet a certain criterion. To recover hidden columns, use Edit■ Unhide from the menu. You can sort the table by double clicking on the top row of the column that you want to sort. Try to sort the assays by increasing estimates by double clicking on Estimate. Restore the original order by double clicking on Assay.

Click on 目 to save the combined potencies. The file extension for combination sheets is *.epc. The printout should look like shown in figure B.30.

You have now seen most of the basics of CombiStats. More detailed information on other features can be found in the online help and in the user manual by clicking on ? or on the website clicking on *). All examples included with CombiStats can be accessed by clicking on

OWb'sials Version 7.0. Friday, 15 October 2021, 12:00:00 [+01:00]. Page 1 of 1
\begin{tabular}{|l|l|}
\hline Project & Erythromycin \\
\hline Ass. pot. & \(1000.00 \mathrm{IU} / \mathrm{mg}\) \\
\hline
\end{tabular}

\section*{Remarks:}
\begin{tabular}{|l|l|r|r|r|r|r|}
\hline Assay & Sample & Info & Lower limit & \multicolumn{1}{c|}{ Estimate } & Upper limit & df \\
\hline 1 & 1 & & 874.648 & 936.639 & 1003.23 & 25 \\
\hline 2 & 1 & & 919.331 & 970.838 & 1026.05 & 25 \\
\hline 3 & 1 & & 888.590 & 923.102 & 958.767 & 25 \\
\hline
\end{tabular}

Geometric combination
Homogeneity: \(p=0.298\)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Weighted combination } \\
\hline (IU/mg) & Lower limit & Estimate & Upper limit \\
\hline Potency & 912.564 & 938.014 & 964.174 \\
\hline Rel. to Ass. & \(91.3 \%\) & \(93.8 \%\) & \(96.4 \%\) \\
\hline Rel. to Est. & \(97.3 \%\) & \(100.0 \%\) & \(102.8 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Semi-weighted combination } \\
\hline (IU/mg) & Lower limit & Estimate & Upper limit \\
\hline Potency & 912.465 & 938.014 & 964.279 \\
\hline Rel. to Ass. & \(91.2 \%\) & \(93.8 \%\) & \(96.4 \%\) \\
\hline Rel. to Est. & \(97.3 \%\) & \(100.0 \%\) & \(102.8 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ Unweighted combination } \\
\hline (IU/mg) & Lower limit & Estimate & Upper limit \\
\hline Potency & 884.424 & 943.314 & 1006.12 \\
\hline Rel. to Ass. & \(88.4 \%\) & \(94.3 \%\) & \(100.6 \%\) \\
\hline Rel. to Est. & \(93.8 \%\) & \(100.0 \%\) & \(106.7 \%\) \\
\hline
\end{tabular}

Figure B.30: A printout of the combination sheet

\section*{Index}
\(/, 58\)
\(<, 58\)
\(<=, 58\)
\(<>, 58\)
\(=, 58\)
\(>, 58\)
\(>=, 58\)
\(+, 31,58\)
\(-, 31,58\)
\({ }^{\prime}, 58\)

21 CFR Part 11, 68
4-parameter model, 16, 57
5 -parameter model, 16
0, 31
1, 31
a, 56
a priori transformation, 54
abs, 58
absolute value, 58
acs, 59
addition, 20
addition (non-linear), 53
advanced options, 53
analysis of variance, \(23,36,63,154\)
ang, 59
angder, 59
anginv, 59
angular, 20
angular distribution, 59
ANOVA, 23
antilogarithm, 59
arc cosine, 59
arc sine, 59
arc tangent, 59
arithmetic combination, 42
arithmetic operators, 20,58
asn, 59
Ass. Pot., 28
assay related information, 26
assigned potency, 28
assumed potency, 28
asymmetry parameter, 16
asymptote, 57
atn, 59
binomial data, 55
binomial distribution, 16
bivariate data, 31
bivariate observations, 20
blanks, 19, 37
block effect, 61
calculations, 11
coefficient of variation, 56
colours, 32
combining assays, 41, 172
common intercept, 16, 39
common parameter, 62
common slope, 15, 39
comparison operators, 58
complementary log-log distribution, 21
complete ANOVA, 23
completely randomised, 17, 61
confidencce limits, 39
confounded effects, 18
content, 29
content unit notation, 163
control charts, 22,37
correlation coefficient, 39
cos, 59
cosine, 59
covariance matrix, 50, 62
cross-over designs, 17
cross-product, 62
curvature, 36
d, 56
data sheet, 25
decimal separator, 28
design, \(17,18,152\)
design matrix, 50, 61
deviations from linearity, 22,169
deviations from model, 21,169
digital signatures, 68
dilution, 30
dilution notation, 163
dilution step, 19
division, 20
doses, 14, 18
e, 56
ED10, 16
ED50, 17
ED90, 16
EDxx determination, 16
effective dose (ED), 57
electronic signatures, 68
epm, 13, 26
equipotent, 165
equivalence testing, \(24,40,64\)
estimable parameter, 63
examples, 71
excluded observations, 61
excluding assays, 173
excluding intervals, 42,173
excluding observations, 31,163
exp, 59
expected response, 55,56
explicit notation, 18
exponentiation, 20
exporting data, 43
exporting matrices, 50
expressions, 58
extended ANOVA, 23
Fieller's theorem, 62
file name, 67
file size, 67
filter, 42
first derivative, \(53,55,61\)
fixed intercept, 15,17
fixed slope, 15,17
flags of significance, 36
force percentages, 40,42
frequency, 56
functions, 20, 58
general linear model, 62
generalized inverse, 62
generalized linear models, 53
geometric combination, 42
gmp, 59
gmpder, 59
gmpinv, 59
gompertz distribution, 59
gompit, 21, 59
graphics, 37,159
group size, 56
h, 56
hash code, 67
hat-matrix, 50, 63
,, 58
header, 27
help, 173
heterogeneity factor, 22
heterogeneous potency estimates, 172
hiding columns, 42, 173
historical data, 22,37
homogeneity, 173
homogeneous potency estimates, 172
homoscedastic data, 55
hypothesis matrix, 63
i, 55,56
implicitly assumed potency, 167
importing data, 43
information lines, 14, 27
input files (*.epa), 44
internet address, 66
interpretation, 35
intersection, 37
inverse link-function, 53, 55
iteration, 56
iterations, 58, 61
keying errors, 37
labrary of templates, 26
lack of quadratic fit, 23,36
Latin square, 18, 61
level of significance, 36
leverage, 38
lgt, 59
lgtder, 59
lgtinv, 59
library, 24, 25, 65, 155, 156
licence authorisation file, 65
limit test, 170
limit testing, 40
linear hypothesis, 62
linear predictor, 55,56
linear predictors, 50,61
linear structure matrix, 50
linearised observations, 50
linearised weights, 50
linearity, 36, 37
linearized responses, 61
link-function, \(53,55,61\)
\(\ln , 59\)
log, 59
logarithm, 59
logistic distribution, 59
logit, 20, 59
logit analysis, 16
logo, 7
m, 56
mean response, 35,161
menu bar, 8
meta-axis, 38
missing observations, 61
model, 15, 152
\(\mu, 28\)
multiplication, 20
multiplication (non-linear), 53
n, 54, 56
natural logarithm, 59
natural mortality, 57
no ANOVA, 23
non-linear addition, 56
non-linear multiplication, 56
non-linear parameters, 56, 61
non-linear predictors, 50
non-linearised weights, 50
non-linearity, 36, 37
non-parallelism, 36
normal ANOVA, 23
normal distribution, 59
normit, 20, 60
notation of doses, 152, 163
observation vector, 61
observations, 31, 50
observed residuals, 21, 169
OMCL, 7
online help, 173
operators, 20, 58
options wizard, 13,150
orientation, 14, 150
outliers, 37
output files (*.txt), 50
parallel lines, 15
parallelism, 36
parameter estimates, 50, 62
passwords, 65
PFU calculations, 17
phi, 59
phider, 59
phiinv, 60
pi, 20
\(\pi, 58\)
plaque forming units, 17
plate layout, 18
point of inflexion, 57
Poisson-distribution, 55
potency estimate, 39
power-transformation, 53, 54
pre-dilutions, 14,28
predicted observations, 50
predictors, 50
preferences, 65
printing, 11
priority rules, 20, 58
probit, 20, 60
probit analysis, 16
protecting data, 43,51
quadratic curvature, 23,36
quantal responses, 16
question mark, 28,167
r, 54
randomised blocks, 17, 61
raw residuals, 38,50
rec, 60
recder, 60
recinv, 60
reconstitution volume, 28
rectangular, 21
rectangular distribution, 60
reduced ANOVA, 23
regression, 36
relative potency, 62
remarks, 32
replicates, 14, 30
residual error, 37
residual plot, 38
residual variance, 167
RIPEMD-160, 67
routine assays, \(10,37,39\)
s, 56
sample related information, 14,27
scaling by dose, 38
scaling by notation, 38
scaling by \(\mathrm{x}, 38\)
semi-weighted combination, 41, 172
sigmoid curves, 16
signatures, 33
significance, 36
\(\sin , 60\)
sine, 60
single dose assay, \(15,17,23,40\)
single dose model, 170
size, 13
slope ratio, 16
slope-factor, 16
sorting intervals, 42, 173
Spearman-Kärber, 21
sqrt, 60
square root, 60
standardised residuals, 38,50
stars of significance, 36
stock solutions, 14
studentised residuals, 38
subtraction, 20
symbolic notation, \(18,19,163\)
\(\tan , 60\)
tangent, 60
template, \(10,13,24,25,149\)
test of homogeneity, 173
theoretical variance, \(21,22,37,169\)
Title 21 CFR Part 11, 68
toolbar, 8
transformation, 19, 36, 61, 152
transformation doses, 54
transformation responses, 54
tutorial, 149
unbiased estimates, 55
unit conversion, 28
unknown potency, 167
unweighted combination, 41, 172
validity criteria, 36
variance, 21,152
vertical location, 16
vertical scale, 16
volume, 29
volume unit notation, 163
w, 62
website, 66,173
weight function, \(53,55,62\)
weighted combination, 41, 172
Wilcoxon-Mann-Whitney test, 23, 40,
171
wizard, 13
x, 55,56
y, 20, 31, 54, 56
z, 20, 31, 54
zoom, 42

\title{
CombiStats
}

\section*{User Manual \\ Version 7.0}

CombiStats is a user-friendly computer program for the statistical analysis of data from biological dilution or potency assays. It can perform calculations according to Chapter 5.3 of the European Pharmacopoeia (\(5^{\text {th }}\) to \(10^{\text {th }}\) Edition) including the following models:
- parallel line models,
- slope ratio models,
- probit models,
- ED50 calculations (and other percentiles),
- 4- and 5-parameter curve models,
- single dose models,
- combination of assays,
and many more of the family of generalised linear models.```

[^0]: ${ }^{1}$ The notation of logarithms is a notorious source of confusion. Mathematicians use "log" to denote the natural logarithm whereas in many other scientific disciplines the natural logarithm is written as "ln". To avoid confusion in this manual, we have adopted the convention that the natural logarithm is written as " $\log _{e}$ ". The logarithm to base 10 is written as " \log " or " $\log _{10}$ ". The notation " $1 n$ " is not used in this manual, but a function "ln" can be used in CombiStats expressions.

[^1]: Filename: ...\A209 Finney150 Slope Ratio Blanks excl.epa. ID: EDQM/DBO/FRA

[^2]: Model: Parallel lines
 Design: Randomised block
 Transformation: $y^{\prime}=y$
 Variance: Observed residuals

[^3]: Filename: ...\A310 HepA Immunogen Quantal Probit.epa. ID: EDQM/DBO/FRA

[^4]: Filename:\A326 ED50 MMR Vaccine Quantal Probit.epa. ID: EDQM/DBO/FRA

